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Abstract: Although intravitreal administration of anti-infectives represents the standard treatment
for infectious endophthalmitis, the knowledge about their pharmacokinetics is still limited. In this
review, we aimed to summarise the factors influencing the pharmacokinetics of the anti-infective
agents. We have conducted a comprehensive review of the preclinical pharmacokinetic parameters
obtained in different studies of intravitreal injections of anti-infectives performed on animals, mainly
rabbits. The two aspects with the biggest influence on pharmacokinetics are the distribution in
the vitreous humour and the elimination through the posterior segment. The distribution can be
affected by the molecular weight of the drug, the convection flow of the vitreous, the condition of
the vitreous humour depending on the age of the patient, the possible interactions between the drug
and the components of the vitreous, and the presence of vitrectomy. Meanwhile, the elimination
includes the metabolism of the drug, the clearance via the anterior and posterior routes, and the
possible inflammation of the eye resulting from the disease. Understanding the pharmacokinetics
of the anti-infectives used in clinical practice is essential for a correct application. The information
provided in this review could offer guidance for selecting the best therapeutic option according to
the characteristics of the drugs.

Keywords: anti-infectives; intravitreal; endophthalmitis; pharmacokinetics; infection

1. Introduction: The Infectious Endophthalmitis and the Need for Anti-Infective Treatment

Endophthalmitis is severe inflammation involving both the anterior and posterior segments of
the eye secondary, in the majority of cases, to an infectious agent, such as bacteria, fungi or, in isolated
cases, to parasites. The majority of the time, the microorganisms are of exogenous origin and manage
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to penetrate the eye during surgical procedures, after the administration of intravitreal injections, or
due to ocular trauma [1].

The severity and clinical course of the infectious endophthalmitis is related to the virulence and
inoculation of infectious microorganisms, as well as to the delay in its diagnosis and the patient’s
immune status. The infectious process starts with an initial incubation phase in which a critical
load of microorganisms reaches the inside of the eye and begins to proliferate. It continues with
production of fibrin and infiltration of neutrophils, followed by an acceleration phase which produces
an immune response with numerous macrophages and lymphocytes infiltrating into the vitreous
cavity and accumulating in the aqueous humour [2]. Finally, if not treated, it follows with a phase of
tissue destruction.

The vitreous humour is a water-based gelatinous substance, rich in hyaluronic acid and collagen,
which promotes the proliferation of microorganisms. The vitreous humour is not vascularized, and, as
a consequence, the immune system is unable to control the presence of a microorganism inside the
vitreous cavity [3]. For this reason, using anti-infectives capable of reaching the intraocular cavity and
the surrounding ocular tissues is necessary in order to control the infection [3,4].

Treatment for the infectious endophthalmitis must be administered as soon as the disease is
suspected, with an empirical broad-spectrum treatment upon suspicion of potential microorganisms
acting as etiological agents. Once the microorganism or microorganisms causing the infection are
known, anti-infective agents with a spectrum of action against such microorganisms must be selected.
These agents must reach effective concentrations in the vitreous humour in order to eradicate the
microorganisms as soon as possible. Otherwise, there is a very high risk of causing irreversible
blindness [3] and, in many cases, the loss of the eye.

2. Possible Routes of Administration of Anti-Infective Agents in Infectious Endophthalmitis and
Intravitreals Currently Available

The possible routes of administration for anti-infectives, so they can reach the posterior segment
of the eye, are the topical ophthalmic route, the systemic route, the intravitreal route and periocular
administration [5] (Figure 1). Generally, topical and systemic ocular routes of administration of
anti-infectives do not provide adequate concentrations of anti-infectives in the vitreous humour, due
to various physiological factors [6].

Pharmaceutics 2018, 10, x FOR PEER REVIEW  2 of 14 

 

cases, to parasites. The majority of the time, the microorganisms are of exogenous origin and manage 

to penetrate the eye during surgical procedures, after the administration of intravitreal injections, or 

due to ocular trauma [1]. 

The severity and clinical course of the infectious endophthalmitis is related to the virulence and 

inoculation of infectious microorganisms, as well as to the delay in its diagnosis and the patient’s 

immune status. The infectious process starts with an initial incubation phase in which a critical load 

of microorganisms reaches the inside of the eye and begins to proliferate. It continues with 

production of fibrin and infiltration of neutrophils, followed by an acceleration phase which 

produces an immune response with numerous macrophages and lymphocytes infiltrating into the 

vitreous cavity and accumulating in the aqueous humour [2]. Finally, if not treated, it follows with a 

phase of tissue destruction. 

The vitreous humour is a water-based gelatinous substance, rich in hyaluronic acid and collagen, 

which promotes the proliferation of microorganisms. The vitreous humour is not vascularized, and, 

as a consequence, the immune system is unable to control the presence of a microorganism inside the 

vitreous cavity [3]. For this reason, using anti-infectives capable of reaching the intraocular cavity 

and the surrounding ocular tissues is necessary in order to control the infection [3,4]. 

Treatment for the infectious endophthalmitis must be administered as soon as the disease is 

suspected, with an empirical broad-spectrum treatment upon suspicion of potential microorganisms 

acting as etiological agents. Once the microorganism or microorganisms causing the infection are 

known, anti-infective agents with a spectrum of action against such microorganisms must be selected. 

These agents must reach effective concentrations in the vitreous humour in order to eradicate the 

microorganisms as soon as possible. Otherwise, there is a very high risk of causing irreversible 

blindness [3] and, in many cases, the loss of the eye. 

2. Possible Routes of Administration of Anti-Infective Agents in Infectious Endophthalmitis and 

Intravitreals Currently Available 

The possible routes of administration for anti-infectives, so they can reach the posterior segment 

of the eye, are the topical ophthalmic route, the systemic route, the intravitreal route and periocular 

administration [5] (Figure 1). Generally, topical and systemic ocular routes of administration of anti-

infectives do not provide adequate concentrations of anti-infectives in the vitreous humour, due to 

various physiological factors [6]. 

 

Figure 1. Scheme of the routes of administration of anti-infectives into the eye. 

Currently, the available information regarding the ocular penetration of drugs delivered via the 

systemic route is still limited [3]. In the majority of cases, effective concentrations of anti-infectives in 

the vitreous humour are not reached after oral or parenteral administration. It has been reported that 

only some fluoroquinolones (levofloxacin and moxifloxacin) [7–10] and linezolid [11–13] reach 

adequate levels in the vitreous humour via the systemic route in order to eliminate the 

microorganisms causing the infection [4]. 

Figure 1. Scheme of the routes of administration of anti-infectives into the eye.

Currently, the available information regarding the ocular penetration of drugs delivered via the
systemic route is still limited [3]. In the majority of cases, effective concentrations of anti-infectives
in the vitreous humour are not reached after oral or parenteral administration. It has been reported
that only some fluoroquinolones (levofloxacin and moxifloxacin) [7–10] and linezolid [11–13] reach
adequate levels in the vitreous humour via the systemic route in order to eliminate the microorganisms
causing the infection [4].
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The “Endophthalmitis Vitrectomy Study” conducted during the 1990s, found that a group of
patients treated with systemic antibiotics showed no improvement regarding their disease [14]. Overall,
the use of antibiotics via the parenteral route is not recommended for the treatment of endophthalmitis.
This is because it promotes the appearance of systemic toxic effects, and antibiotics take too long to
reach effective concentrations in the vitreous humour. The delay in reaching an effective concentration
of anti-infectives in the vitreous humour could lead to permanent damage of the ocular tissues and
cause blindness in the affected eye. However, in those cases of endogenous endophthalmitis, in which
the source of infection is external to the eye cavity, patients would benefit from systemic antibiotic
treatment [15].

The topical ocular administration of anti-infectives is the chosen route for the treatment of
infectious diseases of the anterior segment of the eye. However, due to low ocular retention
of the majority of ophthalmic formulations and poor drug penetration into the vitreous humour,
anti-infectives via topical ocular route are not used for the treatment of infections of the posterior
segment in clinical practice [16].

The intravitreal injection of anti-infectives is the delivery route that enables immediate high
concentrations of drug inside the vitreous for a longer period of time. Table 1 shows the anti-infective
agents which are most commonly used in clinical practice for intravitreal injections, as well as the
used dosage.

Table 1. Anti-infective intravitreal injections for human use as outlined in the various ophthalmic
formularies [17–22]. It shows the molecular weight of the active agents, as well as the electric charge
they will have in contact with the vitreous. The molecular weight (MW) values of all of the compounds
were extracted from the database The PubChem Project [23]. The charge of the anti-infectives at the pH
of the vitreous humour (7.4) was calculated with the online platform Chemicalize [24], including the
symbol (+) if the net charge is positive and (−) if the net charge is negative.

MW Net Charge

INTRAVITREAL ANTIBIOTICS

Amikacin 0.4 mg/0.1 mL o 0.1 mg/0.1 mL 585.608 g/mol +3.80
Ampicillin 5 mg/0.1 mL 349.405 g/mol −0.60

Aztreonam 0.1 mg/0.1 mL 435.426 g/mol −2.00
Cefazolin 2.25 mg/0.1 mL or 2.5 mg/0.1 mL 454.498 g/mol −1.00

Cefotaxime 0.4 mg/0.1 mL 455.460 g/mol −1.00
Ceftazidime 2 mg/0.1 mL 546.573 g/mol −1.00
Ceftriaxone 2 mg/0.1 mL 554.571 g/mol −2.00

Ciprofloxacin 0.1 mg/0.1 mL 331.347 g/mol −0.02
Clindamycin 0.5 mg/0.1 mL and 1 mg/0.1

mL 424.981 g/mol +0.59

Gentamicin 200 µg/0.1 mL 477.603 g/mol +4.52
Levofloxacin 0.625 mg/0.1 mL 361.373 g/mol −0.92

Lincomycin 1 mg/0.1mL 406.538 g/mol +0.79
Moxifloxacin 160 µg /0.1 mL 401.438 g/mol +0.01
Penicillin G 300 units/0.1 mL 334.390 g/mol −1.00

Piperacillin/Tazobactam 1.5 mg/0.1 mL 517.557 g/mol/300.289 g/mol −1.00
Tobramycin 100 µg /0.1 mL or 200 µg /0.1
mL or 300 µg /0.1 mL or 400 µg /0.1 mL 467.520 g/mol +4.42

Vancomycin 1 mg/0.1 mL or 2 mg/0.1 mL 1449.265 g/mol +0.89

INTRAVITREAL ANTIFUNGALS

Colloidal Amphotericin B 5 µg/0.1 mL 924.091 g/mol −0.02
Voriconazole 0.05 mg/0.1 mL 349.317 g/mol −0.00

INTRAVITREAL ANTIVIRALS

Ganciclovir 20 mg/mL 255.234 g/mol −0.00
Acyclovir 80 µg/0.1 mL or 200 µg/0.1 mL 225.208 g/mol −0.00

Foscarnet 1220 µg/0.1 mL 126.004 g/mol −2.06
Cidovofir 0.2 mg/mL and 8.1 mg/mL 279.189 g/mol −1.38
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The first administrations of intravitreal antibiotics were conducted in the 1940s, although it was not
until the 1970s that this practice became widespread as a treatment for endophthalmitis. The safety and
efficacy of various antibiotics delivered via intravitreal route were tested in rabbit eyes, which permitted
to establish the appropriate dosage for human administration [25,26]. To this day, the intravitreal
administration of anti-infectives represents the standard treatment for endophthalmitis, complemented
in some cases with a vitrectomy in order to promote the eradication of microorganisms [27].

3. Factors Involved in the Intravitreal Pharmacokinetics of Anti-Infectives

Nowadays, the pharmacokinetics and pharmacodynamics of anti-infective agents after intravitreal
administration remain relatively unexplored and poorly understood. The clearance mechanisms of
anti-infectives of the vitreous humour limit the duration of their effect, thus requiring in some cases the
repeated administration of injections in order to completely eliminate the infection [28]. The study of
the pharmacokinetics of anti-infectives clearance in the vitreous humour will enable the optimization
of the dosage guidelines for such treatments.

Once an anti-infective solution is injected into the vitreous humour, the initial concentration of
the anti-infective in the vitreous cavity depends on the extent of its distribution and the initial dose.
However, the concentration at any certain time after the injection depends on the distribution volume
of the drug, the initial injected dose and the elimination rate. Therefore, the two factors predominantly
affecting the pharmacokinetics of drugs injected into the vitreous are their distribution in the vitreous
humour and their elimination [29,30].

3.1. Distribution of Anti-Infectives in the Vitreous

There are three parameters that will determine distribution velocity in the vitreous. The first is
anti-infective diffusion in the matrix of the vitreous humour. The second is the effect of convection flow
on anti-infective mobility. And the third is linked to the possible interactions that could be established
between the drug and the various components of the vitreous humour.

3.1.1. Influence of the Molecular Weight and the Charge of Anti-Infectives

Drugs will usually show a higher or lower diffusivity in the vitreous humour depending on
their molecular weight [31]. Generally, drugs of a low molecular weight do not show any restrictions
regarding diffusion; therefore, the diffusivity in an aqueous solution can be used as an accurate
representation of the diffusivity of a molecule in the vitreous humour. This is possible as long as the
drug does not interact with the components of the vitreous humour [32]. With regard to molecules
of a higher molecular weight, their diffusivity seems to be limited by the structure of the vitreous
humour [31].

Anti-infectives usually have a small molecular weight, lower than 500 Da, which is the estimated
size of the vitreous humour meshwork [33], so the vitreous humour does not constitute a barrier for
the diffusion of anti-infectives. In fact, the diffusivity of small molecules in the humour is relatively
similar to their diffusion in water [16]. Consequently, it can be stated that anti-infectives spread rapidly
in the vitreous humour, although their complete diffusion in it could take some hours [34].

Consequently, it can be deduced that the concentration reached in the vitreous humour shortly
after the injection will be equal to the delivered dose divided by the volume of vitreous humour, which
in humans is approximately 4 mL. As an example, a vancomycin injection of 1000 µg, the recommended
dose for humans, will produce a concentration in the vitreous humour of 250 µg/mL. If we take into
account that minimum inhibitory concentrations for the majority of sensitive microorganisms are
between 1 and 5 µg/mL, we find that the doses delivered in clinical practice constitute a very high
initial concentration of anti-infective [29].
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3.1.2. Influence of Vitreous Convection on the Distribution of Anti-Infectives

On the other hand, the convection flow that is induced in the vitreous humour also has an effect
on the movement of the drugs in it. Convection is due to the fact that a fraction of the aqueous humour
generated in the ciliary processes flows through the vitreous humour towards the retina [31,35,36].

The significance of the effect that convection in the vitreous humour has on the distribution
of drugs depends on the diffusivity of said drugs in the vitreous. Convection does not affect
the distribution in the vitreous of drugs with high diffusivity values (1 × 10−5 cm2/s) but it can
become relevant for drugs with low diffusivity (1 × 10−5 cm2/s), particularly in cases with increased
flow [36,37]. Increased flows in the vitreous can be observed in some conditions such as glaucoma or
rhegmatogenous retinal detachment [35,36]. Anti-infectives do not have high molecular weights so
they will show high diffusivity values, and, therefore, the relevance of convection flow will be low.

3.1.3. Physiological and Pathological Conditions of the Vitreous

Influence of Patient Age and Vitreous Composition

One factor affecting both diffusion and convection in the vitreous humour is its liquefaction,
which is the degeneration process of the vitreous humour associated with ageing. The vitreous humour
consists of a vitreous humour in liquid form and a vitreous humour in gel form [38]. Ageing modifies
the ratio between the two types, with the liquid increasing while the gel decreases [31]. This is due to
a disruption in the meshwork of fibres that compose the vitreous. This liquefaction of the vitreous
is responsible for an increase in drug diffusivity, particularly for those drugs that showed limited
diffusion, such as high molecular weight drugs since there are less restrictions for the movement of
molecules inside the meshwork of fibres. This increase in diffusion can lead to an increase in the
elimination, although liquefaction in itself does not directly affect the elimination of drugs from the
posterior segment of the eye. The higher the liquefaction of the vitreous humour, the more significant
the resemblance between molecule diffusivity in the vitreous humour and molecule diffusivity in
water [16]. On the other hand, liquefaction and loss of the homogeneity of the vitreous humour caused
by ageing can also be linked to an increase in convection [34].

Such data mean that treating patients of different age groups with the same dosage scheme might
be inappropriate, because it may lead to overdose or insufficient dosage situations. Even so, to this
day, there is no evidence that the liquefaction of the vitreous humour may lead to a significant change
in the pharmacokinetics of intravitreal drugs [39]. However, we must take into account that, since the
majority of anti-infectives show high diffusivities, it is unlikely that liquefaction has a significant effect
on their diffusion [16].

Interaction of Drugs with the Components of the Vitreous Humour

Proteins

Even though protein concentration within the vitreous humour is very low [40,41], the binding of
drugs to these proteins is feasible. The binding of drugs to the vitreous proteins will lead to a slowdown
in their diffusion.

The binding of various drugs to vitreous humour proteins has already been studied, and different
binding values have been obtained depending on the type of antibiotic. The fraction of antibiotic
not bound to protein was 95–99% for levofloxacin, 16–27% for meropenem, 36–82% for moxifloxacin,
58–89% for vancomycin and 99–100% for fosfomycin [42,43]. This could have an effect on local
anti-infective activity within the vitreous humour because only the bound fraction is able to exert
its action.

A study has proven that there is a small increase in the concentration of proteins in the vitreous
humour in cases of diabetic vitreoretinopathy, mainly linked to inflammation and immunity [44].
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However, there is no published data regarding whether this small increase in the amount of proteins
could have an impact on the interaction with anti-infectives.

Vitreous Humour

The positively charged molecules deserve a special mention, since vitreous molecules are
negatively charged and electrostatic interactions between the two of them may take place and this
could lead to a decrease in drug diffusivity [16,45]. Table 1 shows the molecular weight and net charge
at the pH of the vitreous humour, for the anti-infectives which are most commonly used via intravitreal
route in clinical practice.

Consequences of the Vitrectomy

As previously it is necessary to perform a vitrectomy in some endophthalmitis cases, such as in
patients with visual acuity of light perception or diagnostic vitrectomy, so as to enable the elimination
of microorganisms. It has been found that the half-life of anti-infectives decreases when the vitreous
humour has been removed. Table 2 shows the pharmacokinetic data obtained for vitrectomised
eyes. This suggests that the vitreous humour meshwork is indeed important, because it retains the
anti-infectives in it [30].
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Table 2. Preclinical pharmacokinetic parameters of the intravitreal injection of different anti-infectives
in animal models.

Anti-Infective Study
Model

Delivered
Dose in 0.1

mL

Elimination
Route

t1/2
Normal

Condition

t1/2
Inflammation

t1/2
Aphakia

t1/2
Aphakia +
Vitrectomy

Ref.

ANTIBIOTICS

Amikacin Rabbit 400 µg/0.1 mL Anterior 25.5 h 15.5 h 14.3 h 7.9 h [46]

Aztreonam Rabbit 100 µg Posterior 7.5 h [47]

Carbenicillin
Rabbit 1000 µg Posterior 5 h 6 h [48]

Rhesus
monkey 1000 µg Posterior 10 h [49]

Cefazolin
Rhesus
monkey 1000 µg Posterior 7 h [49]

Rabbit 2250 µg Posterior 6.5 h 10.4 h 8.3 h 6.0 h [50]

Cefepime Rabbit 1000 µg Anterior 14.3 h 15.1 h [51]

Ceftazidime
Rabbit 1000 µg Anterior 20 h 21.5 h [51]

Rabbit 2250 µg Both 13.8 h 10.1 h 11.8 h 4.7 h [52]

Rabbit 1000 µg 8.1 h 11.7 h [53]

Ceftriaxone Rabbit 1000 µg Both 9.1 h 13.1 h [51]

Ciprofloxacin

Rabbit 250 µg 4.5 h [54]

Rabbit 100 µg Posterior 2.2 h 1 h [55]

Rabbit 200 µg 6.02 h 15.06 h [56]

Clarithromycin Rabbit 1000 µg 2 h [57]

Clindamycin Rabbit 800 µg 3 h [58]

Daptomycin Rabbit 200 µg * Both 25.67 h 34.6 h [59]

Gentamicin Rhesus
monkey 100 µg Anterior 33 h [49]

Linezolid Rabbit 1, 10, 30 mg 2 h [60]

Moxifloxacin Rabbit 200 µg Posterior 1.72 h [61]

Ofloxacin Rabbit 200 µg 5.65 h 9.72 h [62]

Vancomycin

Rabbit 1000 µg 25.1 h 8.9 h 9.0 h [63]

Rabbit 1000 µg Both 62.34 h 14.53 h [64]

Rabbit 1000 µg 56 h 48 h [65]

Rabbit 500 µg 12.3 h [66]

ANTIFUNGALS

Amphotericin B Rabbit 10 µg Posterior 9.1 days 8.6 days 4.7 days 1.4 days [67]

Rabbit 9.1–13.4 µg 6.9–15.1 days 1.8 days [68]

Caspofungin Rabbit 50 µg Posterior 6.28 h [69]

Fluconazole Rabbit 100 µg Posterior 23 min
3.18 h [70]

Voriconazole Rabbit 35 µg Posterior 2.5 h [71]

* 200 µg in 0.05 mL.

Theoretically, pars plana vitrectomy in endophthalmitis would allow for partial elimination of
microorganisms, intraocular toxics and vitreous membranes, the extraction of diluted samples for
microbiological study and a better distribution of intravitreal antibiotics.

Since the publication of the Endophthalmitis Vitrectomy Study (EVS) [14], randomised and of
2 × 2 factorial design, it was concluded that there was no benefit on the execution of vitrectomy unless
visual acuity was impaired to light perception (LP). However, and since endophthalmitis is a dynamic
process capable of making rapid progress, it seems reasonable to eliminate all of the damaging agents
from the vitreous cavity and to do it before visual acuity is impaired to LP and the damage becomes
irreversible. Performing a vitrectomy in endophthalmitis is particularly complex and the way in which
it is performed implies diverse pharmacokinetic and anatomo-functional consequences for the eye.



Pharmaceutics 2018, 10, 66 8 of 15

Visualization is compromised and the retina is very fragile, sometimes necrotic. In order to prevent
iatrogenic retinal damage and the subsequent retinal detachment, the EVS protocol prohibited the
induction of posterior vitreous detachment and limited the extension of the vitrectomy to 50% of the
vitreous content, which meant that abundant purulent material remained in the posterior vitreous, in
contact with the retinal surface.

Kuhn et al. [72] support the execution of a “complete” vitrectomy in anterior or posterior direction,
with the use of temporal keratoprosthesis in cases of corneal opacity, clearing of the anterior chamber,
posterior capsulotomy and premature induction of posterior vitreous detachment. In the cases where
there is severe retinal damage, intraoperative retinal detachment or large areas of necrotic retina,
silicone oil could be injected as a vitreous substitute [73].

In vitrectomised eyes there is a faster clearance of the anti-infectives that are eliminated via the
posterior route. Besides, it has been claimed that the injection of anti-infectives into vitrectomised
eyes may increase the risk of retinal toxicity. This could be due to the fact that the anti-infective
gets deposited on the surface of the retina, causing it to come into contact with a high amount of
anti-infective, instead of with an even distribution of the entire dose in the vitreous humour [74].
A reduction on in the dose could be considered (some authors would suggest 50%) if a complete
vitrectomy has been performed, since the vitreous humour inhibits the rapid delivery of anti-infectives
to the retina. This is extremely important in the case of amikacin, since it has been proven to produce
retinal toxicity [75].

Moreover, it is important to consider that the use of sealants (gas/silicone oil), which is frequent in
complex vitreoretinal surgery, alters the dosage and pharmacodynamics of intravitreal anti-infectives.
Hegazy et al. [76] proved retinal toxicity at routinely used doses of intravitreal antibiotics in silicone
oil-filled eyes. Hypothetically, retinal toxicity would occur due to the reduction of the preretinal space;
the drug would be confined to the aqueous space surrounding the oil bubble, which would alter
its distribution and prolong its elimination period. Thus, these authors recommended a substantial
reduction of the dose (1/4–1/10 of the standard dose) of antibiotics in eyes containing gas or silicone
oil. Another option for cases in which sealing is required would be internal irrigation with antibiotic,
prior to the exchange [73].

3.1.4. Drug-Drug Interactions in the Vitreous Humour

The anti-infective treatment is normally applied before the detection of the microorganism causing
the endophthalmitis. Thus, an empiric treatment that covers Gram-positive and Gram-negative agents
is used. A combination of drugs capable of covering both types of microorganisms is commonly
administered and therefore, drug-drug interactions may occur within the vitreous humour. However,
there is limited data regarding drug-drug interactions in the intraocular tissues due to the challenging
conditions of these studies.

The standard treatment for bacterial endophthalmitis is the co-administration of 0.1 mg/0.1 mL
vancomycin and 2 mg/0.1 mL ceftazidime [2,77]. However, a physical incompatibility between
both drugs has been detected, as the concomitant administration of both causes ceftazidime
and vancomycin precipitation [78]. Both the difference in pH of the two formulations and the
presence of sodium bicarbonate have been reported to cause the precipitation [79]. Nevertheless,
the vancomycin-cefatizidime combination remains effective and precipitates are removed from the
vitreous humour approximately two months post-injection [79].

Ciprofloxacin is stable at a pH of around 4.5, but it starts precipitating if the pH increases to above
7. A study analysed the precipitation of ciprofloxacin in the vitreous humour due to concomitant
vancomycin treatment. However, the conclusion was drawn that ciprofloxacin precipitation was
not associated with the presence of vancomycin in the vitreous humour, and therefore a drug-drug
interaction did not occur [80].
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3.2. Elimination of Anti-Infectives from the Vitreous Humour

Another factor influencing intravitreal pharmacokinetics is drug clearance in the vitreous humour.
Here, the metabolism experienced by drugs inside the vitreous humour must be taken into account, as
well as the different existing elimination routes.

3.2.1. Drug Metabolism in the Vitreous Humour

Drug metabolism in the vitreous humour has not been analysed in detail. Most of the work
conducted in this field has focused on the identification of enzymes at the vitreous humour level,
without relating them to their possible influence on pharmacokinetics [81]. On the other hand, it
is worth mentioning the presence of enzymes such as esterases or peptidases in rabbit vitreous
humour [82], which have been used for developing prodrugs, such as ganciclovir esters, which, once
injected into the vitreous humour, biotransform into the drug ganciclovir [82].

Other ocular tissues, such as the retina, the ciliary body and the iris have also proven to contain
enzymes involved in drug metabolism [83], but, in this case, the metabolism of drugs would be
subsequent to their elimination from the vitreous cavity.

Cytochromes P450 are responsible for the biotransformation of most drugs in clinical use, making,
whether or not this enzyme family is present in the ocular tissues, an interesting finding. A study
demonstrated the presence of the CYP450 enzymes CYP2A6, CYP2C8, CYP2D6 and CYP2E1 in the
retina/choroid by means of an mRNA expression analysis in human ocular tissues [84]. The limited
mRNA expression levels found suggest that P450-mediated metabolism may contribute to the overall
metabolism in the eye, but not significantly [84]. However, new studies are needed if we are to know
the exact impact of CYP450 on the drug metabolism after intravitreal administration.

3.2.2. Vitreous Clearance of Drugs

Regarding elimination routes, drugs can leave the vitreous cavity through the anterior or
posterior route.

Although the anterior route is available for all drugs, hydrophilic molecules and compounds of
a large size are mainly eliminated through this route [81]. This is based on drug diffusion through the
vitreous humour towards the anterior chamber, where they access the aqueous humour. Drugs are
subsequently eliminated through the Schlemm’s canal onto the general circulation. Drugs eliminated
in this way have a half-life of less than 24 h [16,81].

The lens does not contribute to the elimination of drugs via the anterior route, but it does offer a
barrier against their movement towards the anterior chamber. Because of this, the half-lives of drugs
eliminated via the anterior route get reduced when the lens is removed [30,34].

The posterior route is based on the elimination of the drug from the posterior segment through
the retina and towards the capillaries, and from there onto the systemic circulation. Drugs that are
to be eliminated via this route must pass through a barrier which consists of the retinal capillaries
and the pigment epithelium. This transport is primarily executed by means of passive diffusion for
those compounds of a small size and with lipophilic properties, although an active transport also takes
place [81]. The active transport enables the elimination of compounds with a high molecular weight
through the retina [30].

Several pharmacokinetic studies in animal and human models have established that antibiotics
such as vancomycin, aminoglycosides, macrolides and rifampicin tend to get eliminated through the
anterior route [3,29,30]. However, antibiotics such as beta-lactams, clindamycin and fluoroquinolones
tend to get eliminated through the posterior route [3,29,30]. It can also be the case that drugs are
eliminated through both routes, and in this respect, antibiotics such as ceftriaxone, ceftazidime or
ciprofloxacin seem to experience this double elimination process [30]. Table 2 presents the results
of an extensive review which shows the preclinical pharmacokinetic parameters of some of the
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anti-infective drugs most commonly used in routine clinical practice, showing the elimination route as
well as pathological or surgical conditions, which might affect the half-life of each one of them.

Transporters in the Blood Retinal Barrier (BRB)

The vitreous chamber is surrounded by the blood-ocular barriers, which consist of the anterior
blood-aqueous barrier (BAB) and posterior blood-retinal barrier (BRB). The BAB is composed of the
non-pigmented ciliary capillaries and the tight endothelia around the iris and ciliary muscle capillaries.
The BRB is composed of the inner blood retinal barrier, which is in contact with the vitreous humour
and consists of capillary endothelial cells connected by tight junctions, and the outer blood retinal
barrier, also called retinal pigment endothelial (RPE) [16,31,85].

There is evidence of many influx and efflux transporters at the BRB level [31,85,86]. However,
their expression is sometimes controversial, as many studies have been performed on animal
models and its translation into humans is not always safe. Some of the detected transporters are
MDR1 (P-glycoprotein), BCRP, MRP and OATP [87,88]. Some drugs can be substrates of the active
transporters at the BRB level, but their contribution to drug pharmacokinetics is still unclear. However,
the contribution of the active transporters to the drug movement through the BRB is expected to be
quite low, as the concentration of the drug in the vitreous humour is very high and therefore the
transporters should be saturated [87].

P-glycoprotein (P-gp) or multi-drug resistant 1 protein (MDR1) is one of the most studied efflux
transporters at the blood brain barrier (BBB) level, and it is responsible for the poor penetration of many
therapeutic drugs into the brain [89]. P-gp has been detected both in the apical and basal cell layers of
human retinal pigment epithelium [90]. As it happens in the BBB, basolateral P-glycoprotein could
have a protective function regarding the neural retina, helping to clear out unwanted substances [90].
However, compared to the BBB, P-glycoprotein seems to have a lesser effect on the permeability of the
BRB [91–93].

Among the antibiotics recognised as substrates or modulators of P-gp, structurally unrelated
compounds as fluoroquinolones, macrolides, ansamycines, tetracyclines and anthracyclines can be
found [89]. Although there is some data on the effect of P-gp on these agents in different tissues,
information about how P-gp can affect intraocular pharmacokinetics of antibiotics is still needed.

Influence on the Clearance of the Status of Ocular Inflammation

Lastly, it is necessary to point out that the status of ocular inflammation can affect, in varying
degrees, drug clearance in the vitreous humour [45]. Drugs eliminated via the anterior route
can see their elimination increased, although the mechanism causing this effect is unclear [30,81].
By contrast, drugs eliminated via the posterior route can see their elimination either increased or
reduced, depending on whether they are eliminated by means of passive diffusion or active transport.
It is believed that the status of ocular inflammation can lead to an increase in retinal permeability and
vessel walls, which would explain the decrease in the half-life of drugs eliminated by means of passive
diffusion [30,81].

3.3. Repetition Rate of Intravitreal Injections

Another aspect that will affect pharmacokinetics is the administration frequency of intravitreal
anti-infectives. This frequency is generally based on average life and clinical response. The purpose of
repeating the injections is to prolong the time during which the anti-infective is found in a concentration
higher than the minimum inhibitory concentration (MIC). The administration of a single dose is usually
preferred to repeat doses, and that is why the doses selected for administration are the highest ones
possible within safe thresholds, so anti-infectives are above the MIC for as long as possible. However,
it must be taken into account that a higher concentration, or an increase in the frequency of injection
with a view to securing a concentration above the MIC for the whole period, could lead to an increase
in the risk of adverse effects.
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4. Conclusions

The understanding of the pharmacokinetics of the anti-infectives used in clinical practice may help
to treat intraocular infections. Maintaining effective intravitreal concentrations during a prolonged
period of time and avoiding side effects caused by high concentrations of anti-infective agents [79]
should improve the outcome of this condition.

The use of individualized doses adjusted to the clinical characteristics of each patient is customary
in the administration of drugs. For the estimation of these doses, factors such as renal function [94]
or metabolism type of the patient are taken into account [95]. However, this practice does not apply
to the field of ophthalmology, where standardized doses of anti-infectives are used, established in
the majority of cases by means of empirical methods. This is because the number of pharmacokinetic
studies available in this field is limited due to the fact that ophthalmological studies require
invasive techniques.

With this review, the pharmacokinetic parameters of the anti-infective drugs which are most
commonly used in routine clinical practice, as well as the factors that may have an effect on them, are
analysed. The objective is that this information, provided just as a small contribution to the increasingly
demanded personalized medicine, could serve to guide the clinician regarding the election of the best
therapeutic option, according to the characteristics of each patient.
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