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Abstract: For many years, gene expression in the three cellular domains has been studied in an
attempt to discover sequences associated with the regulation of the transcription process. Some
specific transcriptional features were described in viruses, although few studies have been devoted
to understanding the evolutionary aspects related to the spread of promoter motifs through related
viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales
that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV),
raised new questions in the field. Some putative promoter sequences have already been described
for some NCLDV members, bringing new insights into the evolutionary history of these complex
microorganisms. In this review, we summarize the main aspects of the transcription regulation
process in the three domains of life, followed by a systematic description of what is currently known
about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter
sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible
common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios
and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’)
that could be evolved gradually by nucleotides’ gain and loss and point mutations.
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1. Introduction

For decades, viruses have been strictly considered intracellular parasites, filterable in membranes
of 0.22 nm, composed by genomes of DNA or RNA encoding only a few proteins, being entirely
dependent on the metabolic machinery of the host cell [1]. However, viruses show a large
diversity of genome size and organization, capsid architecture, mechanisms of replication, and
interactions with host cells. The extreme diversity of viruses suggests that they must have had
multiple evolutionary origins, thus being polyphyletic [2]. In 2001, a supposedly monophyletic
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group named nucleo-cytoplasmic large DNA viruses (NCLDV) was proposed, composed of families
Poxviridae, Asfarviridae, Iridoviridae and Phycodnaviridae [3]. This group gained notoriety two years
later with the discovery of Acanthamoeba polyphaga mimivirus [4] and it is currently composed of the
families mentioned above, as well as Ascoviridae, and the more recently incorporated Mimiviridae
and Marseilleviridae [5]. Moreover, other recently discovered giant viruses such as pandoraviruses,
faustoviruses and pithoviruses were classified as members of the NCLDV group [6–9]. This group has
single features such as large genomes and a diverse gene repertoire, which encode some proteins never
identified previously in viruses. Therefore, the creation of a new viral order named ‘Megavirales’,
encompassing all families of the NCLDV group was proposed [5].

This proposed order comprises viruses with large double-stranded DNA (dsDNA) genomes,
encoding hundreds of proteins and capable of infecting a wide-range of eukaryotic organisms. These
viruses replicate completely or partly, in the cytoplasm of eukaryotic cells and some of them are
able to synthesize RNA polymerases (RNA pol), helicases and transcription factors involved in the
transcription initiation and elongation steps with lower dependence of the host’s transcriptional
machinery [3]. The presence of a robust transcriptional apparatus in some Megavirales members,
along with a quasi-autonomous glycosylation and translational machinery, especially in mimiviruses,
boosted the discussion about the origin and evolution of giant viruses and their genome. Recent
evolutionary reconstructions mapped about 25–50 genes encoding essential genes for the probable
most recent common ancestor [10]. Concerning the origin of such giant genomes, different hypotheses
have been proposed. Some authors suggest a “genome degradation hypothesis”, wherein the giant
viruses are derived from a cellular ancestor through genome simplification linked to the adaptation
to some host lineage [11,12]. Other authors argue in favor of a “genome expansion hypothesis”,
wherein the giant viruses evolved from a smaller viral ancestor and the universal genes have been
independently acquired from their eukaryotic hosts by progressive gene accretion and duplication.
According to this theory, the genes of giant viruses have several origins and the origin of giant viruses
is probably from a simpler ancestor [13,14].

On the other hand, the accordion-like model of evolution proposes that there is no trend of genome
expansion or general tendency of genome contraction. Instead, viruses evolving by constant gene
gain and loss originated from an ancestor giant virus [10]. All these theories are often contradictory
and have stimulated discussion about the establishment of a fourth domain of life where the giant
viruses of the proposed order Megavirales were suggested to share a common ancestral origin based on
analyses of their sequences and gene repertoires and compose a new domain aside Bacteria, Archaea
and Eukarya [14–16].

During the last years, a huge effort has been made to better understand the virus–host interaction
on many levels. One of the most interesting research fields is how the viruses can explore host
transcriptional machinery to express their genes. Nevertheless, it is important also to look into the
transcription process of the cellular organisms. The upstream regions of eukaryotes and prokaryotes
genes have been studied in different organisms in an attempt to discover sequences associated with the
regulation of the transcription process. The same has been done for viruses, especially considering the
proposed Megavirales order, where some putative promoter sequences have already been described.
In this review, we summarize the main aspects of the transcription regulation process in the three
domains of life, followed by a systematic description of current knowledge of the promoter regions of
all members within Megavirales order. Finally, we discuss how the analysis of the promoter sequences
found in giant viruses provides new insights into the evolutionary history of these complex and
intriguing agents.

2. Gene Expression in Cells

In all cells, thousands of genes encoded in the DNA are transcribed into RNA and for the
efficient occurrence of this process, multiple events must be triggered. In eukaryotes, the genome is
coupled to histones and other proteins, forming the chromatin compact complex. Since wrapping
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DNA around histones blocks the access to the genetic information, decondensation of DNA is
required, to allow physical access to the the gene locus and the transcription initiation machinery
formation [17–19]. The transcription initiation machinery is formed over a region of the genome, the
promoter. The promoter is typically located 40 bp upstream and downstream of the transcription start
of a gene, called transcription start sites (TSS). Several transcription factors mediate the transcription
machinery assembly on the promoter region. There are thousands of transcription factors involved in
the transcription process, such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH that recognize and bind
the promoter region, called the core promoter, and recruit RNA polymerase (RNA pol) [20]. Eukaryotes
have five types of RNA pol (I to V). RNA pol I transcribes ribosomal RNA, whereas the type II is
the best characterized one and responsible for transcribing genes encoding proteins, and several
noncoding RNA classes [18,21,22]. RNA pol III transcribes genes encoding short, untranslated RNAs,
such as tRNAs, 5S ribosomal RNA (rRNA) and the spliceosomal U6 small nuclear RNA (snRNA) [23].
RNA pol IV and V transcribe siRNA in plants [24].

One classical element of the core promoter is the TATA-box, which is a consensus sequence
(TATAAAT) located at −25 to −30 bp upstream of the TSS. Although the TATA-box sequence is a
well-known promoter core motif, it is present only in a minority of mammalian promoters. This
sequence is commonly associated with tissue-specific gene transcription and high conservation within
species [25,26]. Other eukariotic promoter elements are Initiator (Inr); Downstream Promoter Element
(DPE), Core Element Downstream (CED), TFIIB-Recognition Element (TRE), and Motif Ten Element
(MTE) [20,27,28]. Together, these components act synergistically to increase transcription efficiency by
providing recognition sites for transcription factors, and indicate the direction of transcription and also
the DNA strand to be transcribed [20]. The transcription starts with the binding of the TFIID to the
TATA-box region, the Inr sequence and/or other core promoter elements [27]. TFIID is a multiprotein
complex comprising the TATA-box binding protein (TBP) and more than 10 different TBP associated
factors (TAFs) [22]. After binding TBP to the TATA-box motif, the RNA pol II is recruited, and the
transcription is triggered (Figure 1A).

Nevertheless, the transcription in eukaryotes is a much more complex process than previously
thought and various strategies are used to increase the diversity of transcripts produced. Among
mammals, previous analysis has shown that a large proportion of protein-coding genes (58%) use
alternative promoters during transcription [25]. These alternative promoters may have different
combinations of core promoter elements to increase the variability of transcripts [20,29,30].

There are many differences between the transcription process of eukaryotic and bacteria cells.
The bacterial transcription is much simpler compared to the eukaryotic process since the transcription
occurs using a single type of RNA pol and there are no transcription factors [31]. This enzyme is
capable of synthesizing RNA from a DNA template, but it is unable to locate the promoter and
transcription initiation site. Thus, a key factor to transcription is the free subunit named σ (sigma),
which is responsible for recognizing the promoter region (Figure 1B) [32,33]. Although the majority
of nucleotides within bacteria promoters vary in sequence, several short motifs are conserved. These
include the hexamer (TATAAT), located 10 base pairs (bp) upstream of the TSS and is recognized by
domain 2 of RNA pol σ subunit. Another motif is the the hexamer (TTGACA), located 35 base pairs (bp)
upstream of the TSS and recognized by domain 4 of the RNA pol σ subunit [31,34,35]. In Archaea, there
is a mix of eukarya and bacteria translational apparatus. Just as in eukaryotes, the archaea RNA pol is
not able to recognize promoter sequences by itself and at least two transcription factors analogous
to TBP and TFIIB are required [36–38]. The archeal TBP also recognizes specifically an AT-rich
sequence, homologous to the TATA-box region of eukaryotes [39,40]. Although archaea transcription
machinery is similar to that of eukaryotes, the characterization of transcription regulators of some
archaeas showed that most of the transcriptional regulation in archaea is done by “bacterial-like”
regulators, as two homologues of bacterial leucine-responsive regulatory protein (Lrp)—Lrs14 and
Sa-Lrp and metal-dependent repressor 1 (MDR1) homologous to bacterial metal-dependent regulators
(Figure 1C) [41–43].
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Figure 1. Main features in the transcription initiation machinery presented in the canonical Domains of
Life. (A) In Eukarya, several components, called general transcription factors (represented as TFIIB,
TFIID, TFIIE, TFIIF, TFIIH and TBP), are responsible for assembling over a region called the promoter,
where they recruit an RNA polimerase to initiate the transcription process. A classical promoter
presented in this group is the TATA-BOX region, located at the positions −25 and −30 from the initial
transcription site; (B) In Bacteria, the sigma factor recognizes and recruits the RNA polimerase over
the promoter regions. These regions are well conserved over the positions −35 and −10 upstream
of the initial transcription site; (C) Archaea present a mixture of the transcription apparatus of
the two other Domains. While the machinery itself is similar to that found in eukaryotes (the
general transcription factors, a homologous TATA-BOX region and the RNA polimerase), the archaeal
transcription regulators, activators and repressors are homologous to the bacterial ones.

Hypotheses regarding the evolutionary history of translational machinery among the living
organisms have been raised during the last years, but the theme is still under debate [44]. Even
considering the most recent proposals, the translational process of viruses remains out of the discussion,
basically because these organisms are traditionally excluded from the canonical tree of life. However,
this scenario has been changing since the discovery of giant viruses [16]. Therefore, it becomes
interesting to examine if NCLDV members share similar transcription initiation strategies that could
bring insights about how this correlates to giant viruses’ evolution.

Gene Expression in NCLDVs

In contrast to cellular genomes, which are formed by dsDNA, viral genomes show a large diversity
genome composition, structures, replication and transcription strategies with great implications in
virus biology, as virus–host interactions [45]. The majority of the RNA viruses employ virus-coded
specific enzymes (RNA-dependent RNA polymerases) to synthesize and modify their mRNA. DNA
viruses showing small and intermediate size genomes such as the parvoviruses, papillomaviruses, and
adenoviruses, depend on host-cell enzymes for transcription, including the RNA pol [45]. However,
viruses with a large genome such as the giant viruses, mostly encode their transcriptional apparatus,
which make them relatively independent from their host transcription machinery [15,46].

The transcription of a typical large DNA virus occurs in a temporal pattern in the host cytoplasm
(Figure 2). At the start of infection, a subset of immediate early viral proteins is required for DNA
replication and host cell manipulation [47,48]. The early mRNAs also encode enzymes and factors
needed for transcription of the intermediate genes. Concomitantly with the expression of intermediate
genes, the expression of the early genes is often repressed. Finally, late genes are transcribed, directing
the synthesis of structural proteins, non-structural proteins and enzymes present in the mature particle
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required for viral assembly [45,48]. The efficient transcription of late mRNA usually depends on
intermediate gene products, as well as cellular transcription factors that may differ from those used by
the early promoters. The products of the late genes include the immediate early transcription factors,
which are packaged along with RNA pol and other enzymes within the virus progeny [47–50].Viruses 2017, 9, x FOR PEER REVIEW    6 of 21 
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Figure 2. Representative scheme of the temporal gene expression in NCLDVs. During initial times of
infection, the expression of genes related to the metabolism of nucleic acids is primarily activated (early
and intermediate genes). After DNA replication, the activation of late genes is initiated. Those genes
are involved in the production of viral structural proteins, in transcription factors used for early gene
expression and also in proteins that facilitate the initial step of infection of the viral progeny in the next
round of multiplication. Purple boxes represent the promoters described for giant viruses according to
each gene category (early, intermediate and late genes). Yellow boxes exemplify the biological functions
involved in each category, with some genes represented inside the parentheses.

This ability to regulate temporally the transcription of genes is characterized as an evolutionary
advantage. This strategy is possible due to the presence of promoter codes that dictate when, where,
and at what level the classes of early, intermediate, and late genes are transcribed [45,48]. These
promoter sequences are different between the three genes classes, but there is a pattern of conservation
within the same group. This indicates that during the evolution the gene promoters were selected to
ensure the temporal gene expression, and therefore ensure the gene expression in the host cell during
its replication [45,47,48,50].

In the following sections, we look closer at how the gene transcription is carried out in each family
of the proposed Megavirales order, focusing on the current knowledge about the promoter sequence
of these viruses.

3. Poxviridae Family

Among NCLDVs, the Poxviridae family is one of the most studied. These viruses have enveloped
ovoid particles of around 200 nm in diameter and 300 nm in length and present a linear dsDNA genome
of approximately 200 kbp coding nearly 200 open reading frames (ORFs). Poxviruses can infect a
wide range of hosts, such as insects, birds, and mammals [48,51]. Extensive study of the poxvirus
genome and replication cycle allowed a detailed identification of its promoters, as well as important
transcription factors. Poxviruses possess their own DNA-dependent RNA polymerase (RNA pol) that
is very similar to the eukaryotic protein, regarding size and subunit complexity. In the case of Vaccinia
virus (VACV), a poxvirus prototype, the enzyme subunits are encoded by eight viral VACV genes
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which, in most cases, are homologous to cellular RNApol [52,53]. Gene transcription in poxviruses
follows a typical temporal profile regulated by well-conserved promoters of early, intermediate and
late genes (Figure 2) [47,48].

The transcription of early genes is characterized by an A/T-rich motif upstream of transcriptional
start site with a critical core region located from −13 to −25 to that region. Figure 3 illustrates the
promoter motifs described in megavirales members. The representative consensus sequence of the
early promoter region is ‘AAAANTGAAAA’. Mutagenesis in this promoter region of VACV causes
a drastic negative effect on VACV gene transcription [54]. The intermediate genes are transcribed
after DNA replication, before the transcription of the late genes. The intermediate core promoter is
similar to the early promoter due to the A/T-rich content, but its specific sequence is given by the
tetranucleotide ‘TAAA’. Furthermore, the intermediate promoter sequence has a bipartite structure
presenting a core and an initiator region with similar sequences (TAAA) [55–57]. Three (A1L, A2L,
and G8R) of the 53 genes that compose the set of intermediate genes encode transcription factors that
are directly related to the late stage of the replication cycle, important to DNA binding/packaging
processes and to core-associated proteins [58].
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Figure 3. Schematic representation of the promoter’s sequences described for different NCLDVs.
Compilation of the described promoters for some viral families belonging to the proposed order
Megavirales: Poxviridae (A); Asfarviridae (B); Phycodnaviridae (C); Iridoviridae (D); Ascoviridae (E) and
Mimiviridae (F). Each promoter was related to the expression of immediate early, early, delayed early,
intermediate and late genes, or related to the expression of genes independent of temporal expression
(several genes). The distances between the transcription start site or translate start site (ATG) until the
promoters are also indicated by brackets.
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The transcription of late genes persists until the end of the replication cycle. Around 38 late
genes have already been identified, with their main functions related to the codification of membrane
proteins in the virion, morphogenesis steps, and also to the production of immediate early transcription
factors [57,59]. Most of them are clustered in the central region of the poxviruses genome and also
have A/T-rich sequence promoters. These regions consist of a core sequence of about 20 bp with
some ‘T’ residues, separated by a region of about 5–7 bp of a conserved ‘TAAAT’ motif, which
regulates the transcription initiation. Usually, G or A follows the late promoter sequence, performing
a ‘TAAAT (G/A)’ transcription initiation sequence. This sequence is conserved among VACV late
promoters, overlapping the site of transcription initiation that is absent in 5’ untranslated regions
(5’-UTR) [48,54]. Mutations within this conserved element were demonstrated to cause complete
inactivation of the promoter, and almost 25% of the ‘AAA’ sequences are used as transcription
initiation sites in VACV. Along with other factors, the viral RNA pol directs the synthesis of late
mRNAs, finishing the transcription process [54,60–62].

The presence of complete transcriptional machinery in poxviruses allows a lower dependency
of these viruses on their hosts. It permits that the mRNA transcription totally occurs in the host’s
cytoplasm, right after the virus entry. Addionally, the presence of well conserved promoter regulatory
sequences in different poxviruses suggests a conserved evolutionary pattern among them. It is likely
that such a complete transcriptional set was already present in their ancestor and was maintained over
time. Alternatively, the presence of a robust transcriptional apparatus in all members of the Poxivirdae
family might be a result of evolutive convergence. Although less parcimonious, the different poxviruses
might have had different evolutionary histories regarding the transcription process, including both
protein-related elements and promoter sequence regions, but in the course of evolution, they became
more similar to each other. It is not yet possible to determine which hypothesis is the correct, or even if
other possibilities correspond to the real history of these complex viruses, and this discussion shall
continue for a while.

4. Asfarviridae

African swine fever virus (ASFV), a large (~200 nm), icosahedral, and enveloped virus is currently
the single member of the Asfarviridae family, infecting members of the Suidae family (pigs, hogs
and boars) [63]. The genome is composed of a linear dsDNA molecule of approximately 170
kbp with terminal inverted repeats. It encodes approximately 150 ORFs separated by short
intergenic regions [64,65]. ASFV encodes its own RNA pol and all ASFV genes are transcribed by its
enzyme [66,67].

Similar to poxviruses, the ASFV gene transcription follows a temporal profile, where immediate
early and early genes are expressed before the DNA replication that is followed by the expression
of intermediate, late and immediate early genes. Transcription initiation and termination occurs
at very precise positions in the genome, encoding a several genes involved in the transcription
and modification of viral mRNAs. The transcriptional machinery of ASFV provides an accurate
temporal control of gene expression regulated by cis-DNA elements, enhancers, and promoters
together with a structural complexity of transcription factors [68]. Analysis of the base composition
of the intergenic regions shows that they are rich in A/T sequences, similar to that observed in
poxviruses [69–71]. A/T-rich regions located at approximately−30 bp upstream of the ATG translation
start site are essential for the expression of the K9L gene, which encodes a protein with similarity to
mammalian transcription elongation factor IIS [72]. Furthermore, upstream sequences presented in
two intermediate genes exhibit highly conserved sequences at positions −25 to −15, and −9 to +9 to
the translational start codon [70]. Experiments involving genetic deletions, linker scan substitutions
and point mutations in the promoter sequence of the p72 gene (major capsid protein) revealed that
the replacement of the A/T-rich region by G/C residues strongly reduced the transcription rate,
demonstrating the importance of this sequence for efficient late viral transcription [71].
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Two other major essential regions for promoter activity are described: one region is located at
position−15 to−11 upstream of the transcription start site (TATTT); and the second region at positions
−1 to +5 (TATATA) [71]. Mutants presenting the ‘TATATA’ motif replaced by a G/C-rich sequence
had the promoter activity completely abolished, suggesting that ASFV transcription is dependent on
such sequence at (or near) the region of transcriptional initiation, similar to what is found in other
large viruses [71]. The replacement of the equivalent ‘TATATA’ sequence on the late genes K78R,
EP402R and A137R by the ‘GCGC’ motif was also demonstrated to be deleterious, suggesting that
the A/T-rich sequence could be a motif for late promoter function as well [68,71]. Interestingly, the
bipartite structure seen in the late promoter of ASFV is similar to the late and intermediate promoters
in poxviruses that contain a core and an initiator region [54,55,62,71]. The similarities found in the
transcriptional strategies reinforce the genetic data, indicating a close relationship between poxviruses
and asfavirus, pointing to a common ancestor for both viral families.

5. Phycodnaviridae

The phycodnaviruses are large and icosahedral viruses (~100–220 nm), with dsDNA genomes
ranging from 180 to 560 kbp [73]. Since they infect a diverse group of eukaryotic algae, they are one of
the most important groups of organisms regulating the oxygen cycle in the Earth [74,75]. The family
Phycodnaviridae consists of six genera, named according to the hosts that they infect: Chlorovirus,
Coccolithovirus, Prasinovirus, Prymnesiovirus, Phaeovirus, and Raphidovirus [76]. As demonstrated by
other giant viruses, the phycodnaviruses exhibit a temporal transcription profile. Early genes are
transcribed within 5 to 60 min post-infection (p.i), and transcripts of late genes begin to appear around
60–90 min p.i. However, some early genes can also be detected in later stages of infection [77,78].

The presence of A/T-rich promoters was also observed in phycodnaviruses. Analysis of
the kcv gene, encoding a potassium ion channel protein in chlorella viruses, revealed a highly
conserved 10-nt sequence (AAAAATANTT) in the promoter region of this gene, present in 16 out of
17 chlorellaviruses [77]. This sequence is located at 10–31 nucleotides upstream of the ATG translation
start codon in all of the analyzed viruses, and it was associated with late gene transcription, since,
apparently, kcv transcripts are produced during the late steps of infection. Furthermore, the region that
precedes seven genes expressed at later times during the Paramecium bursaria chlorella virus 1 (PBCV-1)
replication cycle (a85r, a237r, a248r, a260r, a292l, a430l, and a530r) contain the same sequence or at least
a subset of this sequence located at 6–30 nucleotides upstream of the ATG start codon [77]. The study of
immediate early genes expressed in chlorovirus infections also revealed A/T-rich sequences as putative
promoter regions. Two sequences determined by ‘ATGACAA’ and ‘TATAAAT’ (such as the eukaryotic
“TATA-box”) were located in a 150 bp region from the translation start codon in the upstream regions
of almost all immediate early genes (20 of 23 studied) [78]. These elements, especially ‘ATGACAA’,
were absent in all genes so far examined, expressed after 40 min p.i, including A122R (Vp260) [79],
A181-182R (chitinase), A292L (chitosanase) [80], A430L (major capsid protein) [81], vAL-1 [82].

Bioinformatics analysis revealed highly conserved nucleotide sequences in putative promoter
regions involving three different chlorella viruses: PBCV-1, virus MT325 [83], and Paramecium
bursaria chlorella virus NY-2A [84]. Three putative AT-rich sequence promoters, comprising seven
to nine nucleotides (ARNTTAANA, AATGACA and GTNGATAYR), located at 150-nt upstream of
the translation start codon of many ORFs were observed [85]. The ‘ARNTTAANA’ sequence is found
between nucleotides −15 and −45 relative to the ATG translation start codon. This sequence occurs in
the promoter region of 25% of PBCV-1 genes, 22% of NY-2A genes and 12% of MT325 genes. Regarding
the entire genome, this sequence is present within the 200-nt promoter region during 44% of the time
in PBCV-1, 49% of the time in NY-2A, and 37% of the time in MT325. The hotspot for the presence of
the ‘AATGACA’ sequence is located between nucleotides −60 and −90 from the translational start
codon. This sequence occurs in the promoter region of 16% of the PBCV-1 genes, 18% of NY-2A genes
and 8% of MT325 genes. Regarding the entire genome, this sequence is present within the 200-nt
promoter region in 54% of the PBCV-1 genes, 53% of the NY-2A genes, and 25% of the MT325 genes [85].
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The ‘AATGACA’ sequence in PBCV-1 is associated with early genes during the replication cycle [85].
This sequence is very similar to a motif previously identified in some chlorella viruses (ATGACAA),
which is also correlated with early transcripts [78]. Finally, the ‘GTNGATAYR’ sequence is mainly
located at nucleotide positions −50 to −80 from the ATG initiation codon, occurring in the promoter
region of 13% of PBCV-1 genes, 14% NY-2A genes, and in 11% of MT325 genes. Regarding the entire
genome, this sequence is found specifically within the 200-nt promoter region in 28% of the PBCV-1
genes, 22% of the NY-2A genes, and 21% of the MT325 genes [85].

Unlike other members of the NCLDVs, phycodnaviruses do not encode their own RNA pol and
need to appropriate the host’s RNA pol to properly make their transcripts [86]. However, uniquely
for the Phycodnaviridae family, Emiliania huxleyi virus 86 (EhV-86), a coccolithovirus that infects the
marine calcifying microalga Emiliania huxleyi, contains a total of six RNA pol subunits, which suggests
that this virus partially encodes its own transcription machinery [87]. Although these viruses present
some important elements for the mRNA synthesis, it is not possible to state that they have their
own transcriptional complete apparatus, at least for the majority of them. Therefore, concerning the
transcriptional process, the phycodnaviruses seem to present a different evolutionary history.

6. Iridoviridae

The Iridoviridae family is composed by five genera: Ranavirus, Megalocytivirus and Lymphocystivirus
that infect vertebrates; Iridovirus and Chloriridovirus that infect invertebrates [88]. Iridoviruses have
a linear dsDNA genome varying from 105 to 212 kbp, coding between 92 and 211 putative proteins.
They present a non-enveloped icosahedral particle of 300 nm in size [89–92]. These large viruses also
display a pattern of temporal gene expression regulation, wherein the genes are divided into three
classes: immediate-early (IE or α), delayed-early (DE or β), and late (L or γ) genes [93–95]. Iridoviruses
are typical nucleo-cytoplasmic viruses. They begin the replication cycle in the nucleus, followed by the
second phase of genome replication in the cytoplasm [90].

Gene transcription and promoter sequences studies have been performed for only a few genes in
members of the Iridoviridae family. The study of promoter sequences in iridovirus is focused mainly in
the Ranavirus genus (using type species Frog virus 3 (FV3)) and Iridovirus genus (using type species
Invertebrate iridescent virus 6 (IIV-6)), the type species of the Iridovirus genus. Notwithstanding, both
the gene expression and promoter sequences studies have been performed for only a few genes in
the Iridoviridae family. The most complex studies were performed with immediate-early ICR-169 and
ICR-489 genes of FV3 [96,97]. Those studies revealed the importance of a 78 bp sequence before the
transcription start site of an IE gene of the FV3 promoter. It was shown that an FV3 protein acts in
trans to induce the transcription of the major FV3 IE gene, ICR-169, and is dependent on the 78 bp
sequence located at the 5′ position from the start site of the transcription of this gene [98]. Two years
later, the same group demonstrated that a 23 bp sequence was possibly a critical cis-regulatory element
for the occurrence of FV3 trans-activation, since a significant reduction of transcription occurred after
its deletion, located at the 5′ region, showing the sequence ‘ATATCTCACAGGGGAATTGAAAC’ [96].
Despite the importance of the approximately 23-nt sequence upstream of the transcription start site
in the IE ICR-169 gene of FV3, this sequence had no similarity with the promoter region of the
intermediate gene ICR489. This lack of similarity indicated that the contemporary regulation of these
two promoters is not controlled by sequences upstream of the start point of transcription [97]. It is
worthy to note that in the ICR489 gene, in an upstream region, ‘TATA’, ‘CAAT’, and ‘GC’ motifs were
identified, which are similar to those of typical eukaryotic promoters [97].

Another study analyzed three genes—two early (ICP-18 and ICP-46) and a late one [major capsid
protein (MCP)] of Bohle iridovirus (another Ranavirus member)—looking for conserved regions to be
considered as regulatory elements [99]. The authors demonstrated that all gene promoters included
sequences located 127 to 281 bases upstream of the transcription initiation site (127 pb or ICB-18, 281 pb
for ICP46, and 169 pb for MCP), but also sequences located from 21 to 26 bases downstream of this site
(26 bases for ICP-18, 21 bases for ICP 46 and 25 bases for MCP) [99].
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Moreover, a detailed study conducted in the following years identified an essential ‘AAAAT’
motif in a DE gene of IIV-6 (Iridovirus) [100]. The authors described a sequence of 19 bp
(AAAATTGATTATTTGTTTT), located between −19 and −2 relative to the mRNA transcription
start site, which is the putative region responsible for promoter activity of the DNApol gene. Deletions
and point mutations in the DNApol promoter of IIV-6 showed that each of the 5-nt of ‘AAAAT’
motif located between −19 and −15 were equally essential for promoter activity. Mutations at the
downstream side had a lower effect, but the role of individual nucleotides positioned at −14 to −5
was not analyzed in this study [100].

It is noteworthy that the same critical ‘AAAAT’ motif was found in the 100-nt upstream of the
putative translational start codons of several other putative DE IIV-6 genes [91]. In Invertebrate iridescent
virus 3 (IIV-3), many homologues of these genes also presented the ‘AAAAT’ motif in proximity to
their start codon. A great similarity was also found between the region upstream of the DNApol
ORF and the corresponding region in 12 iridovirus genomes [101]. Eight of these genomes showed a
similar ‘AAAAT’ motif in the DNApol upstream region and three sequenced ranavirus genomes also
shared the related ‘TAAAT’ motif in their DNA pol promoter region, which may indicate a conserved
regulation of DE promoter activity in iridoviruses [101].

A study that targeted a IE gene (012L) of IIV-6 showed that the transcription start site is located
30-nt upstream of the ATG translational start codon. Analyzing mutants (produced by deletion), it
was established that the intergenic region located between −21 and −10 (GGATCATATT) upstream
of the transcription start site comprised the promoter sequence promoter 012L gene. This type of
sequence was not observed in upstream regions of other IE genes of IIV-6, such as 468R, 006L and
010R. The ‘TATA’ and ‘CAAT’ sequences were also identified in the intergenic region of this gene, as
well as sequences similar to the ‘AAAAT’ motif described to the DNA pol gene, but this sequence had
no promoter activity for the 012L, differently than demonstrated for the DNA pol gene. The 037L and
012L genes of IIV-6, both early genes, do not share conserved key promoter motifs. However, DNA
pol is considered a DE gene and 012L an IE gene [100,102].

Despite the presence of homologs of RNA pol subunits in the iridoviruses genome, host RNA pol
II is required for the synthesis of Ranavirus IE transcripts, and it is likely that the same is true from
Iridovirus IE genes, contrasting to pox- and asfaviruses [103–106]. It has been proposed that the RNA
pol subunits found in members of the Iridoviridae family are probably involved in the cytoplasmic phase
of transcription in later stages of infection [91,107]. Such a paradox may reflect the long co-evolution
period that these viruses had been through. It is possible that the ancestor of iridoviruses presented
a complete transcription apparatus, but some elements were lost due to the adaptation to a more
parasitic lifestyle. Other possibilities are the occurrence of events of horizontal gene transfer (HGT)
between the viruses and their hosts. However, the lack of information about such events involving
members of the Iridoviridae family prevents further insights into this alternative for the evolution of the
transcription apparatus of these viruses.

7. Ascoviridae

The Ascoviridae family has two genera that include Ascovirus, with three species including
Spodoptera frugiperda ascovirus 1a (SfAV-1a), the prototype of the genus, Trichoplusia ni ascovirus 2a
(TnAV-2a), and Heliothis virescens ascovirus 3a (HvAV-3a), and the Toursvirus genus, with only one
representative, Diadromus pulchellus ascovirus 4a (DpAV-4a) [108,109]. Ascoviruses are enveloped
viruses, 300–400 nm long by 100–150 nm in diameter, with a circular dsDNA genome with sizes
ranging from 116 to 185 kb, infecting arthropods, mainly lepidopterans [110–112].

The studies regarding the ascoviruses are still in their infancy. Information about the replication
and more specifically, the transcription process, are extremely scarce. The current knowledge about
transcription in ascoviruses come from the analyses of the Ascovirus genus [110,113]. A study
performed using a possible variant of HvAV-3, the Spodoptera exigua ascovirus 5a (SeAV-5a) showed
that the 5’-UTR region of the SeAV-5a MCP gene is composed of 25-nt [114]. The upstream region



Viruses 2017, 9, 16 11 of 20

of this gene does not present a typical eukaryotic class II promoter motif sequence ‘TATAAAT’
(TATA box). However, the putative 5’ transcription control region of the SeAV-5a MCP gene shares
similarities with other ascoviruses and iridoviruses, containing a conserved TATA-box like motif
(TAATTAAA) and an ‘ATTTGATCTT’ motif within 40-nt upstream of the translation initiation codon
ATG [114]. The ‘TAATTAAA’ and ‘ATTTGATCTT’ motifs are located downstream and upstream of the
transcription initiation site, respectively. Furthermore, the ORF p27 presents a similar 5’ downstream
transcription promoter region, suggesting that such a region might be a truly regulatory sequence
within ascoviruses [114].

Sequences from the promoter regions of the MCP genes from ascoviruses and IIV-6 (late genes),
showed that ascoviruses and iridoviruses are closely related in this aspect, suggesting that the
transcription regulation could be maintained during the viral evolution process in closely related
viruses [115,116]. Furthermore, phylogenetic studies showed that ascoviruses probably evolved from
the iridoviruses [116–118]. It is possible that the same pattern of temporary gene expression exhibited in
iridoviruses (and the other members of proposed Megavirales order) was conserved in the ascoviruses
lineage, and that such a mechanism might have been present in their common ancestor.

8. Mimiviridae and Other Amoebal Giant Viruses

The discovery of mimiviruses in 2003 and the establishment of the Mimiviridae family astonished
the scientific community, making the term ‘giant virus’ more appropriated than ever. These viruses
have particles visible in light microscopy, with sizes of ~700 nm in diameter. Viral particles have
characteristics never described before in the virosphere, such as long proteic fibrils (~125 nm in
length) immersed in a peptidoglycan matrix, and a star-shaped face, named stargate, responsible
for the releasing of the genome inside the cytoplasm of their host (Acanthamoeba genus) [4,119–121].
The genome is a linear dsDNA molecule of about 1.2 Mbp, coding more than 1000 proteins, including
a large set of transcriptional elements [15,122].

Similar to other NCLDVs members, mimiviruses genes can be divided into early, intermediate
and late categories according to three major temporal classes of transcription determined by mRNA
deep sequencing [49]. The analysis of the intergenic regions of Acanthamoeba polyphaga mimivirus,
the prototype species of Mimivirus genus, showed a conserved ‘AAAATTGA’ motif in nearly 50%
of genes [50]. The intergenic regions of the genome of mimiviruses have an average size of 157-nt.
In silico analyses showed that the conserved ‘AAAATTGA’ motifs are present within the 150-nt
upstream regions of the translation start codon in 45% of all predicted mimivirus genes [50]. This
motif is mainly associated to early (or the late-early) genes during the viral infectious cycle, and it
is absent from the upstream regions of mimivirus late genes, such as DNA replication and particle
morphogenesis and assembly. It is noteworthy that similar sequences were described regulating the
early genes in other giant viruses, such as iridoviruses and phycodnaviruses, as described in the topics
above. Besides the early promoter sequence, another A/T-rich motif (two 10-nt informative segments
separated by a highly degenerated 4-nt sequence) was identified as a putative late promoter within
mimiviruses, which is present in 24.2% of the considered late class genes. To the best of our knowledge,
an intermediate promoter sequence has not already been described in mimiviruses [49,50].

In a distant relative, the Cafeteria roenbergensis virus [CroV (Cafeteria genus)], Mimiviridae family;
the same early promoter motif was identified in the upstream region of 35% of genes [123]. However,
considering the late promoter motif, this virus exhibits a different putative regulatory sequence
compared to other mimiviruses, wherein the ‘TCTA’ tetramer flanked by A/T-rich regions on either
side was found in the 5’ upstream of 124 late genes [123]. Moreover, CroV present eight RNA pol II
subunits, six transcription factors, several helicases, among others, indicating the presence of nearly
complete transcriptional machinery. This feature seems to be a mark to all members of the Mimiviridae
family, which suggests that such a robust transcriptional apparatus was already present in the last
common ancestor.



Viruses 2017, 9, 16 12 of 20

After the discovery of mimiviruses, other giant viruses infecting amoebae were described, such as
marseilleviruses, which is currently classified in the family Marseilleviridae [124]. Other viruses have
also been isolated but still not properly classified, namely faustoviruses [125], pandoraviruses [8,126],
phitoviruses [127,128] and mollivirus [129]. Although these viruses are not yet officially recognized
by the ICTV, they are genuine members of the NCLDVs [6,7,9]. In all of these giant viruses, a
set of transcriptional elements has already been identified, including many RNA pol subunits,
indicating a nearly autonomous process in these viruses. However, analysis of promoters and studies
aiming to understand how gene expression is regulated in those newly discovered viruses remain to
be performed.

9. MEGA-Box: A Putative Promoter Region in the Common Ancestor of Megavirales

The proposed Megavirales order comprises viral families that exhibit some unique features
that allow their clustering into a monophyletic group [5]. In addition to some core genes that are
shared among these viruses, they present other similarities, such as a temporal transcription profile.
As described above, all viruses present elements to the transcriptional apparatus, most of them reaching
up to the independence from their host in this step of the viral life cycle. Also, the presence of an
A/T-rich promoter sequence has been described in many representatives of each family, even in those
in which the genome presents a high G/C content. More interesting is the fact that some promoter
sequences found in one family are very similar to others found in their relatives (Figure 3). This fact
suggests that a possible common ancestor of the Megavirales order likely had an A/T-rich promoter
sequence. More interesting is the fact that some promoter sequences found in one family are very
similar to others found in their giant relatives. This fact suggests that such a common ancestor of
Megavirales likely had an A/T-rich promoter sequence.

The origin of the members of the Megavirales order is still under debate, but the evolutionary
history of some of its members is already being told, at least concerning genome evolution. The first
members to be analyzed were the poxviruses. It has been demonstrated by phylogenetic analysis based
on the presence/absence of genes that genomes from this family have been subject to frequent events
of gene duplication, deletion, and HGT from their hosts. Many of these genes can interfere with host
immune signaling, such as homologues of cytokines receptors which could confer some advantages in
the interaction with the hosts [130–132]. By analyzing the poxviruses’ closest relative, ASFV, it seems
that it has been through the same pattern of evolution, at least considering the multigene and p22 gene
families [133,134].

The “accordion-like” pattern of evolution was also identified in different members of the
Iridoviridae family. It is particularly interesting the fact that iridoviruses infecting the same host-range
exhibited a similar pattern of gene gain and loss, but this was slightly different when the viruses
infected different hosts (fish vs. insect-infecting viruses), suggesting that such a pattern was
driven by host–virus co-evolution [135]. Finally, the same evolutionary model for members of the
families Phycodnaviridae and Mimiviridae has recently been described. The genomic comparisons of
closely related viruses belonging to the Mimiviridae and Phycodnaviridae families show that genomes
accumulating genomic mutations occur on successive cycles of genome expansion and reduction.
In addition, there is no general tendency of genome expansion or contraction. Each family exhibits
a specific pattern for gene acquisition, which might be a reflex of interaction with distinct hosts [10].
Since these viruses seem to exhibit a similar pattern of genome evolution, it is possible that a similar
scenario has also happened with their promoter sequences. In the same way, it is reasonable to consider
that NCLDVs’ common ancestor evolved by the same “accordion-like” pattern, and thus it presented a
promoter region that underwent an analogous mechanism.

Considering a common origin for the NCLDVs, a possible scenario is that the Megavirales’
common ancestor presented a ‘TATATAAAATTGA’ promoter motif, which we named here as the
“MEGA-box” (an allusion to the conserved TATA-box promoter found in cellular organisms). Over
time, with the Megavirales’ order radiation, the MEGA-box has been gradually evolved by nucleotides’
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gain and loss, analogously to that reported for the entire genome, which evolved through gene gain
and loss. The MEGA-box was slightly modified in the poxviruses lineage, at least concerning the early
promoter motif. Considering the intermediate and the late promoter motifs of poxviruses, if they truly
came from the MEGA-box, this could have happened through a series of nucleotide loss. However, it
is also possible that the emergence of other promoters, rather than the early one, have emerged after
the establishment of the poxvirus’ lineage, thus not originating from the ancestral promoter sequence.
The same might be true for mimiviruses, phycodnaviruses and iridoviruses. Considering asfavirus and
ascoviruses, their promoter sequences might have originated from the MEGA-box through successive
gain and loss of nucleotides. However, another scenario is also possible, wherein their promoter motifs
emerged from the poxviruses and iridoviruses lineages respectively (closest evolutionary groups).
This scenario is in agreement with the proposition that the Megavirales’ ancestor was already a giant
virus with a large genome [10]. In this aspect, the giant ancestor also had a large promoter sequence
that evolved through constant nucleotide gain and loss, a pattern analogous to the accordion-like
model of genome evolution. However, other scenarios are also possible, although less probable,
considering the evolutionary data currently available for these viruses. One is that the ancestor had a
very short promoter sequence, like a poxvirus intermediate promoter (TAAA), that underwent massive
nucleotide gain over time, leading to very large promoter sequences in the majority of the giant viruses.
Another one is just the opposite; wherein the ancestor had a very large promoter region that had been
losing nucleotides during evolution. A third pathway, equally unlikely, would be the acquisition of
promoter sequences by horizontal/lateral transfer. Similar to different genes, the MEGA-box promoter
evolutionary pattern during the radiation of NCLDVs members could be related to the co-evolution
with different hosts over time.

Whether the NCLDVs came from a simple entity [14,136], or from an already complex
organism [10,16,137], is still under debate. Despite this, increasing evidence that they originated
from a common ancestor is emerging, and it suggests that such an ancestor evolved through an
“accordion-like” pattern. By analyzing the promoter regions currently known for different giant
viruses, we provide another piece of evidence to support this statement. Further, we propose how a
conserved A/T-rich promoter sequence was present in the possible common ancestor, which might
have evolved by continuous gain and loss of nucleotides, in addition to some point mutations in
the MEGA-box original sequence. Other scenarios could also be discussed for the evolution of the
promoter sequences of the NCLDVs, including selective sweep or convergence. However, these
alternatives run off the diffused hypothesis of a common origin for the putative Megavirales order.

10. What Comes Next?

Most of the giant viruses have a powerful genetic arsenal, encoding several proteins necessary
for the transcription system which provides a relative independence of their hosts for this process.
In addition, the transcription of this high gene content is temporally regulated by promoter regions
that exhibit some similarities, indicating a common origin of these regulatory elements. Although
many studies have already been done in relation to almost all viral families of the Megavirales order,
most of them remain without biological confirmation; i.e., the promoter motifs in many giant viruses
were predicted, but not experimentally validated. Therefore, the performance of biological studies to
confirm the existence and the effect of all promoter motifs described so far in giant viruses is imperative.
This analysis will truly establish the common temporal regulation pattern predicted in these viruses,
and will also corroborate (or even refute) the hypothesis of an A/T-rich promoter in the Megavirales
common ancestor. Moreover, the deep analysis of the genome of the recently described giant viruses
(Marseilleviruses, Pandoraviruses, Pithoviruses, Faustoviruses and Mollivirus), and also the discovery
of new complex viruses, will strongly contribute to complete the puzzle of the origin and evolution
of Megavirales.

On the other hand, the biotechnology field will also be boosted by the advance in the studies of
promoters and gene expression in giant viruses. Among the NCLDVs, the poxviruses are by far the best
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characterized group regarding the genome expression, especially the VACV. These viruses have been
used as expression vectors for the synthesis of proteins and as vaccine candidates to prevent infectious
diseases and treat cancer, mainly due to their high gene expression levels [69,138]. This attribute is
clearly shared with other giant viruses that were recently described, and the real comprehension of
their gene regulation and expression will bring uncountable possibilities for biotechnology purposes.
Finally, the impact of the giant viruses on the basic comprehension of the origin and evolution of life
is undeniable, as well as for their ecological, medical and technological importance. The discovery
of even more complex viruses associated with the advance of many techniques used for genomic
studies will certainly answer those remaining questions around the NCLDVs, and will surely bring
new exciting challenges for the whole scientific community.
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