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Abstract: Exosomes are extracellular vesicles released upon fusion of multivesicular bodies
(MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during
the process of MVB formation. Exosomes were shown to contain selectively sorted functional
proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the
physiology of the healthy and diseased organism. Challenges in the field include the identification
of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and
the understanding of the underlying processes directing MVBs for degradation or fusion with the
plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in
its early years. Although still controversial, exosomes can, in principle, incorporate any functional
factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.
This review initially focuses on the composition and biogenesis of exosomes. It then explores the
regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,
which is tightly regulated and able to respond to several stimuli that lead to alterations in the
composition of its sub-compartments. We discuss the current knowledge of how these changes
affect exosomal release. We then summarize how different viruses exploit specific proteins of
endocytic sub-compartments and speculate that it could interfere with exosome function, although
no direct link between viral usage of the endocytic system and exosome release has yet been
reported. Many recent reports have ascribed functions to exosomes released from cells infected
with a variety of animal viruses, including viral spread, host immunity, and manipulation of the
microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes
in viral infections, understanding what regulates their composition and levels, and defining their
functions will ultimately provide additional insights into the virulence and persistence of infections.
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1. Literature Review

Multivesicular bodies (MVBs) or late endosomes are components of the endocytic pathway
that range from 250 to 1000 nm in diameter. Within MVBs are vesicles called intraluminal vesicles
(ILVs) that range from 30 to 100 nm in diameter. MVBs can either be degraded or can fuse with the
plasma membrane, releasing the ILVs into the extracellular space. The ILVs are called exosomes
following their release from the MVB [1]. The formation of the ILVs within the MVB and the
budding of enveloped virions share many features. Both processes require induction of membrane
curvature, inclusion of specific cargo, and membrane fission for release. What is most striking is that
evolutionarily unrelated viruses, with dramatically different genomes, have converged in their use of
the host machinery for ILV formation to promote their own budding. Important human pathogens
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such as the human immunodeficiency virus (HIV), the Ebola virus, the rabies virus, and the herpes
simplex virus 1 (HSV1) all have well-characterized strategies to hijack members of the endosomal
sorting complexes required for the transport (ESCRT) pathway [2,3]. The ESCRT pathway is the
best understood mechanism underlying ILV biogenesis [4]. However, there are viruses that manage
to bud from cells via ESCRT-independent pathways. Classical examples include the influenza A
virus (IAV), the severe acute respiratory syndrome Corona virus, alphaviruses like chikungunya, and
pneumoviruses like respiratory syncytial virus (RSV). To add another layer of complexity, regardless
of whether ESCRT is involved in viral budding, recent publications have reported roles of exosomes
in viral infection far beyond assisting with the assembly of enveloped viruses. In this review we
explain how exosomes are part of the endocytic pathway and how their biogenesis is regulated.
We also discuss the different strategies used by viruses to subvert these regulatory mechanisms for
their own profit. Finally, we explore the roles of exosomes in viral spread, immune regulation and
tumor development.

2. Apoptotic Bodies, Microvesicles, and Exosomes

The cytoplasm of the eukaryotic cell contains several well-described compartments (trans-Golgi
network (TGN), mitochondria, peroxisomes, endoplasmic reticulum, etc.), each performing specific
and, in some cases, overlapping functions. Transport of materials (metabolites, lipids, carbohydrates,
and proteins) between organelles has been described to be mediated by vesicles of about 60–100
nm diameter, moving in a densely populated microenvironment [5,6] (reviewed in [7]). Vesicles
are also used for intercellular communication, to receive and send signals. These have different
sizes, distinct origins, and are formed using a multitude of mechanisms. It has long been known
that apoptotic cells shed large vesicles of about 500–2000 nm in diameter that can be taken up
by phagocytic or antigen-presenting cells, the latter being important regulators of the immune
system [8]. Subsequently, it was shown that healthy cells also release vesicles able to mediate
intercellular communication. Such vesicles are of two types: (1) microvesicles, 50–1000 nm in
diameter, are formed at the cell surface (Figure 1); and (2) exosomes, 30–100 nm in diameter, are
initially formed as ILVs inside the MVB (Figure 1), and are released upon fusion of the MVB with
the plasma membrane [9]. Exosomes, conserved structures formed in every cell type [10], were
identified over 25 years ago during the differentiation of erythrocytes [9,11]. Most bodily fluids
contain exosomes [12]. Their contents have been shown to change in various diseases including
viral infections, neurodegenerative diseases (prions, Alzheimer, Huntington disease), and cancer, and
hence exosomes are being intensively investigated as a source of novel biomarkers [13]. In recent
years, a plethora of reports and reviews has explored several functions of exosomes in mediating
intercellular communication, immune system functions, development and differentiation, neuronal
function, cell signaling, regeneration [1,14–21], and several steps in viral replication, the latter topic
explored in this review.

3. Endocytic Pathway and Exosomes

The endocytic pathway is a convoluted web of interconnected sub-compartments with distinct
cell localization, lipid and protein composition, and pH, which operates as follows: cells internalize
ligands by endocytosis concomitantly with membrane proteins and lipids [22,23]. Irrespectively of
the route of entry, internalized material is delivered to early endosomes and sorted to at least three
possible destinations, as shown in Figure 1. The internalized material can be sent for degradation
through maturation into MVBs and fusion with lysosomes, which are acidic compartments containing
hydrolytic enzymes able to digest complex macromolecules [24]. Alternatively, cargo can be re-routed
for recycling or secretion. Recycling processes are categorized into a quicker and a slower pathway,
according to the time that proteins (and lipids) take from internalization to exposure back at the cell
surface (or release to the extracellular media in case of luminal soluble factors), which is describedin
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more detail below [25]. Secretion of exosomes requires maturation of early endosomes into MVBs
(a process reviewed in [26]), with concomitant formation of ILVs, and fusion of MVBs with the cell
surface to release exosomes. At any point, material can be further internalized to the TGN and
integrated in canonical secretory pathways [26,27].
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Figure 1. The endocytic and secretory pathways. Cargo binds to the plasma membrane, is 

endocytosed by a plethora of processes and, independently of the entry route, is transported to early 

endosomes (EE). From this sub-compartment, cargo is sorted to one of three destinations: recycling, 

degradation, or secretion. These routes require maturation of the EE into recycling endosomes or 

multivesicular bodies (MVBs), which can either fuse with lysosomes (L) to generate endolysosomes 

(EL) or with the plasma membrane to release intraluminal vesicles to the milieu as exosomes. The 

membranes of the sub-compartments of the endocytic pathway have different compositions. Specific 

members of the Rab GTPase family, for example, are differentially enriched in each  

sub-compartment: Rab5 is enriched in EE; Rab7 in MVBs; Rab11, Rab25, Rab4, and Rab35 in the slow 

and rapid recycling routes; and Rab27a/b in MVBs. Rab9 is present in vesicles destined for retrograde 

transport to the trans-Golgi network (TGN). In uninfected cells, interfering with these Rabs affects 

exosome release. Many viruses use these Rabs in diverse steps of the viral life cycle, although whether 

this usage impacts in exosomal release has not been investigated. For example, at late stages of 

infection, viruses such as IAV, RSV, Sendai virus (SeV), and Andes virus (ANDV) were shown to 

hijack Rab11 vesicles to transport their progeny RNA to the cell surface. HIV, HSV1, and human 

cytomegalovirus (HCMV) were shown to require Rab27a/b vesicles for assembly. Human herpes 6 

(HHV-6) virions were shown to be secreted upon fusion of MVB with the plasma membrane, together 

with exosomes. 

3. Endocytic Pathway and Exosomes 

The endocytic pathway is a convoluted web of interconnected sub-compartments with distinct 

cell localization, lipid and protein composition, and pH, which operates as follows: cells internalize 

ligands by endocytosis concomitantly with membrane proteins and lipids [22,23]. Irrespectively of 

Figure 1. The endocytic and secretory pathways. Cargo binds to the plasma membrane, is
endocytosed by a plethora of processes and, independently of the entry route, is transported to
early endosomes (EE). From this sub-compartment, cargo is sorted to one of three destinations:
recycling, degradation, or secretion. These routes require maturation of the EE into recycling
endosomes or multivesicular bodies (MVBs), which can either fuse with lysosomes (L) to generate
endolysosomes (EL) or with the plasma membrane to release intraluminal vesicles to the milieu
as exosomes. The membranes of the sub-compartments of the endocytic pathway have different
compositions. Specific members of the Rab GTPase family, for example, are differentially enriched
in each sub-compartment: Rab5 is enriched in EE; Rab7 in MVBs; Rab11, Rab25, Rab4, and Rab35 in
the slow and rapid recycling routes; and Rab27a/b in MVBs. Rab9 is present in vesicles destined for
retrograde transport to the trans-Golgi network (TGN). In uninfected cells, interfering with these Rabs
affects exosome release. Many viruses use these Rabs in diverse steps of the viral life cycle, although
whether this usage impacts in exosomal release has not been investigated. For example, at late stages
of infection, viruses such as IAV, RSV, Sendai virus (SeV), and Andes virus (ANDV) were shown to
hijack Rab11 vesicles to transport their progeny RNA to the cell surface. HIV, HSV1, and human
cytomegalovirus (HCMV) were shown to require Rab27a/b vesicles for assembly. Human herpes 6
(HHV-6) virions were shown to be secreted upon fusion of MVB with the plasma membrane, together
with exosomes.

No underlying mechanism has yet been reported to differentiate MVB formation for degradation
or fusion with the cell membrane. There are, however, reports suggesting the existence of
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subpopulations of MVBs, depending on their fate. Using a biotinylated derivative of the
cholesterol-binding toxin perfringolysin O from Clostridium perfringens to localize cholesterol at
the subcellular level, Möbius et al. identified two types of MVBs of similar morphology, one
cholesterol-rich that was destined for secretion, and the other cholesterol-poor, which was destined
for degradation [28]. Conversely, two sub-populations of MVBs differing in the presence or absence
of lysobisphospatidic acid have been described. For example, EGF and its receptor (EGFR) are
only present in MVBs negative for lysobisphospatidic acid [29]. This supports the previously
described role of phosphatidyl inositol (PI) in the formation of MVBs containing EGFR [30], but
not lysobisphospatidic acid [31]. Another study showed that a full-length p75 receptor was only
released from sympathetic neurons and PC12 cells upon KCl-mediated cell depolarization. Under this
stimulus, p75-containing MVBs escaped endolysosomes and degradation [32]. Whether this reflects
distinct steps in MVB trafficking or even distinct mechanisms in MVB formation that mark them for
degradation or fusion with the membrane is still unclear.

ILV formation is characterized by inward budding of membranes, a process that starts in
early endosomes but greatly augments as endosomes mature [26]. Evidence indicates that exosomes
correspond to secreted ILVs of MVBs. Relative to the composition of the cytoplasm, exosomes
are enriched in components such as lipids, RNAs, and proteins. Lipids include cholesterol,
sphingomyelin, glycosphingolipids, and phosphatidylcholine with saturated fatty acids [33–35].
Enriched RNAs are specific miRNAs, non-coding RNAs, tRNAs, rRNAs, and mRNAs [36–39].
Finally, proteins found in higher concentration than in the cytosol include specific factors of the
immune system, those of the ESCRT apparatus, those involved in trafficking, and lipid-rafts
residents. The latter are, for example, cytokines, tetraspanins, Major Histocompability Complex
(MHC) class I and II molecules, glycosylphosphatidylinositol-anchored proteins, Rabs, SNARES, and
flotillin [1,20,38,40–42]. Importantly for the context of this review, cells infected with viruses were
shown to release exosomes containing viral proteins and RNAs [43–50] (reviewed in [49]). Some viral
proteins, including the HIV Nef, seem to have exosomal localization signals [46,51]. However, in
the majority of cases, it is unclear whether the inclusion of viral components in exosomes results
from direct sorting or from hijacking the machinery for exosome biogenesis, trafficking, and/or
release. Nevertheless, the specific composition of exosomes derived from cells, regardless of their
infectious state, suggests that soluble and membrane-bound cargo are selectively incorporated into
ILVs [1,20,36–42].

The formation of ILVs is accomplished by several molecular mechanisms. Proteins
belonging to the ESCRT family are, by far, the best characterized and have been extensively
reviewed [1,12,15,52–54]. There are, however, ubiquitin- and ESCRT-independent pathways [4],
including the oligomerization of the tetraspanin complexes [55], the sphingomyelinase pathway that
catalyzes ceramide synthesis [56], or phospholipase D2 and ADP rybosylation factor-6-mediated
ILV budding [57]. One way for viral modulation of exosome release is by directly interfering with
the machinery involved in exosome biogenesis; this has been reviewed elsewhere for the ESCRT
machinery [3]. However, in principle, anything that hinders MVB formation might impact, even if
indirectly, on exosome biogenesis. For a clearer exploration of the latter hypothesis, we will briefly
summarize some regulatory mechanisms operating in the endocytic pathway, the system in charge of
exosome formation.

4. Rabs as Regulators of the Endocytic Pathway and Exosome Formation

There has been much debate on whether vesicles that deliver material from a donor compartment
to a specific acceptor sub-organelle contain information on where to go [58,59]. In the 1990s, it was
found that different compartments, and the vesicles they produced, were populated by distinct Rab
GTPases. The Rab GTPases belong to a large family of highly conserved proteins with 60 members,
which were discovered to regulate vesicular trafficking in eukaryotes [60]. The description of the
endocytic pathway in Figure 1 can be explained with a set of Rabs as follows: after endocytosis,
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sorting in Rab5-positive early endosomes [61] delivers cargo to return to the plasma membrane along
fast (Rab4, Rab35) [62] or slow (Rab11a, Rab11b, Rab25) [63,64] recycling processes. Alternatively,
Rab5 endosomes acquire Rab7 and release Rab5 by a process called endosome maturation [65,66].
Rab7-containing endosomes sort material to ILV, decrease pH, and acquire hydrolytic proteases
able to degrade their internal contents [67], or instead acquire Rab27a/b and fuse with the plasma
membrane-releasing exosomes [68]. At any point, vesicles might acquire Rab9 to enter a retrograde
transport to the TGN [66].

In recent years, it has been shown that interfering with the levels and activation of Rab GTPases
influences exosome release. Depending on the cell type, Rab11, Rab27, Rab35, Rab5, and Rab7 were
all implicated in the release of vesicles. Rab5 overexpression was shown to inhibit progression of
endocytosed material from early endosomes, impacting negatively on exosomal release of markers
such as syndecan, CD63, and Alix, and this reduction was rescued by the overexpression of Rab7 [69].
In agreement, Rab7 depletion severely impaired exosomal release of the same factors [69]. The
lack of a functional active Rab11 reduced the secretion of exosomes in the erythroleukemia cell line
K568, Drosophila S2 cells, and retinal epithelial cells, as evaluated by the following exosomal proxies:
transferrin and HSC-70, Wingless and Evi, or flotillin and anthrax-toxin, respectively [70–73].Rab35
was identified in a screen performed in oligodendroglial cancer and primary cells to analyze
phospholipase D2-containing exosomes [23]. Rab27 has been found to facilitate the release of the
exosomal markers MHC II, CD63, and CD81 in many cancer types, including HeLa cells [68,74,75].
Interestingly, Rab27 and Rab35 did not influence the release of Wingless in Drosophila S2 cells [71]
and Rab27 did not affect the extracellular levels of flotillin or of anthrax toxin in retinal epithelial
cells [70]. The roles of these Rabs in the endocytic pathway allowed for speculation that there might
be extracellular vesicles derived from different routes such as recycling and MVB, but this awaits
confirmation [15].

In conclusion, altering the levels of any of the referred Rabs has the potential to interfere with the
progression of cargo at specific endocytic locations. Consistently, it has been shown that switching
off Rab5 and repopulating the endosome with other Rabs is a prerequisite for the maturation of
early endosomes into other types of endosomes [61,76]. Conversion to Rab7 forms MVBs and
endolysosomes. MVB acquisition of Rab27 is, in some cases, required for exosome release [67,68].
Additionally, exchanging Rab5 for Rab11 or Rab25 allows progression from early endosomes to
the slow recycling route and exchanging Rab5 for Rab35 or Rab4 allows progression from early
endosomes to the fast recycling route [22].

5. Viruses and Rab GTPases Involved in Exosome Formation

Many viruses were shown to use the Rabs mentioned above to assist several steps of their
replication. There is no evidence yet relating the viral usage of these proteins with exosome biogenesis
and function. The picture of the viral usage of endocytic proteins has been built during years of
research, making of viruses excellent tools to understand the crosstalk between different endocytic
sub-compartments. In this sense, we provide an overview of identified interactions between viruses
and endocytic proteins that regulate exosome biogenesis. Examples of viruses using these Rabs are
identified in red in Figure 1 and in Table 1.

The Orthomyxovirus IAV, the Paramyxoviruses SeV and RSV, and the Bunyavirus ANDV all
share negative strand RNA genomes, infect the lung epithelia, and use Rab11a pathway in their
infectious cycle [73,77–82]. In the case of SeV, RSV, and IAV, progeny RNA (in the form of viral
ribonucleoproteins, vRNPs) attach, facing the cytoplasm, to Rab11 vesicles as a way to facilitate their
transport to the apical side of the plasma membrane. For these three viruses and conversely to ANDV,
viral interaction with the recycling endosome occurs via activated (GTP-bound) Rab11a [73,77–82].

The impact of Rab11 viral hijacking in the recruitment and activation of other Rabs and exosome
biogenesis has not been investigated. However, as mentioned above, interfering with Rab11 levels
can inhibit or promote the release of exosomes containing transferrin, HSC-70, flotillin, and anthrax
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toxin [70–73]. During IAV infection, the total levels of Rab11 remain fairly constant, but it is
possible that the amount of the activated form suffers viral-induced fluctuations. Mechanistically, in
uninfected cells, vesicular transport is promoted by binding of molecular motors to activated Rab11.
Amongst many of the Rab11 effectors reported [83], the members of the Rab11-interacting family
proteins (FIPs) have been well characterized in facilitating vesicular movement [84]. Reduction in the
levels of some FIPs was reported to interfere with sorting of recycling vesicles [85,86]. For IAV, our
unpublished results suggest that the vRNP hijacking of the Rab11 pathway “slows down” recycling
efficiency. This system could then be used to assess the effects of impairing Rab11 in exosome
biogenesis. The effects in recycling efficiency might differ for RSV, as Utley et al. [82] have shown
that several members of the recycling machinery were required for RSV vRNP transport. In the case
of ANDV, viral replication and assembly is thought to occur in the lumen of a membranous delimited
sub-compartment, followed by budding to the cytoplasm and transport to the periphery. Rab11
depletion was shown to reduce over 10-fold the levels of produced virions [81]. In this case, the viral
structural protein N was shown to co-localize mainly with the GDP-bound Rab11 near the TGN, at a
perinuclear location, although it has not yet been addressed whether ANDV inhibits Rab11 activation
or affects MVB formation and exosome release [81]. Such analysis has also not been performed for
RSV and SeV.

Table 1. Established associations between viruses and sub-compartments from the endocytic system.
Viral and host proteins involved in these associations are shown. The status of Rab11 required for
the virus association is provided as activated (GTP-bound) or inactivated (GDP-bound). References
where alterations in exosome biogenesis were identified are provided, if available. Although ESCRT
members participate in exosome biogenesis and have clear roles in viral infection, we have not
mentioned their viral usage in this manuscript. Readers are directed to other reviews on the topic
[3,87].

Virus
Interaction with

Endocytic
Sub-compartment

Host Protein Viral Protein Ref Alteration in
Exosome Biogenesis Ref.

IAV Recycling endosome Rab11 (GTP) vRNP (possibly PB2) [77–80,88] No evidence

SeV Recycling endosome Rab11 (GTP) vRNP [89] No evidence

RSV Recycling endosome Rab11 (GTP) No evidence [82] No evidence

ANDV Recycling endosome Rab11 (GDP) N [81] No evidence

HIV MVB Rab27 Pr55Gag [90]

HIV Nef protein
increases the
production of

exosomes and is
secreted in exosomes

[46,91]

HCMV MVB Rab27 No evidence [92] No evidence

HSV1 MVB Rab27 GHSV-UL46 [93]

Glycoprotein B
Diverts HLA-DR into

the Exosome
Pathway

[94]

HHV-6
CD63

(association
not proven)

Virions inside MVBs
shown by electron

microscopy
[95] No evidence

Rab27a regulates secretion of lysosome-related organelles, including MVBs [68,74]. It was
reported that Rab27a levels increased in HCMV-infected cells [92], a DNA virus member of the
Betaherpesvirinae subfamily. This Rab was found in association with viral envelopes of HCMV in
an undefined compartment related to the TGN or in vesicles being transported between the TGN
and endosomes [92]. The molecular mechanisms leading to increased levels of Rab27a in HCMV
infection are still unclear, as well as their interference with exosome release. However, given the
positive role of Rab27a in extracellular MHC II-containing exosomes and the regulation of immune
responses in glial cells, this role of Rab27a in HCMV infection should be further evaluated [92].
Another virus that hijacks Rab27a to promote assembly is HIV (Figure 1), by a mechanism that is
described below [90]. HIV also uses the ESCRT pathway to facilitate budding [3] and additionally
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increases the transcription of genes involved in MVB formation and exosome release [46]. This viral
interference with many different steps of MVB/exosome formation suggests a high dependency on
the host ILV machinery. In conclusion, much work has been done in understanding how different
Rabs regulate particular steps in the life cycle of specific viruses. How the usage of various Rabs
impacts the overall regulation of the endocytic pathway, including exosome release and their still
controversial associated functions, remains to be evaluated.

6. Other Regulators of the Endocytic Pathway

As mentioned above, it was shown by many independent groups and using several models
that specific Rabs interfere with exosome release. However, Rabs are themselves subjected to tight
regulation and are not the only factors controlling membrane identity [96,97]. Figure 2 depicts the
complexity behind the composition of each sub-compartment membrane, with many factors required
to create the correct microenvironment. Of these, seven phosphoinositide phosphates (PIP) are crucial
to recruit specific Rabs, albeit indirectly (for a comprehensive review on PIP chemistry and biology
please refer to [98,99]). These phospholipid derivatives are enriched in specific cellular membranes.
For example, the plasma membrane contains mostly phosphoinositol-4,5-bisphosphate (PI(4,5)P2)
and phosphoinositol-3,4,5-triphosphate (PI(3,4,5)P3), whilst the membranes of the endocytic
pathway are decorated with phosphoinositol-3-phosphate (PI3P). During maturation of endosomes,
MVBs acquire phosphoinositol-3,5-bisphosphate (PI(3,5)P2), a form that becomes prevalent in
lysosomes [99]. The PIP isoforms are recruited by kinases and phosphatases that also occupy precisely
defined sub-compartments [99]. Viruses have been shown to alter this PIP equilibrium and by doing
so alter the content of Rabs involved in exosome formation. For example, phosphatidylinositol
4-phosphate (PI4P) was shown to be recruited by Flavivirus and Picornavirus to sites near the
endoplasmic reticulum. Mechanistically, such enrichment was shown to be mediated by specific
phoshoinositide (PI) kinases [100,101], one of them able to recruit Rab11 to the Golgi [102]. Another
recent paper explored the mechanisms of HIV-1 particles’ assembly at the plasma membrane, a
process that occurs in micro-domains enriched in PI(4,5)P2 and the viral protein Pr55Gag. It was
found that in T cells, Rab27a (and some of its effectors) boosted PI(4,5)P2 production by delivering the
MVB-associated kinase PI4KIIα to the cell surface [90]. Rab27a was also implicated in exosome release
in T cells; therefore, these HIV and exosome release could, in principle, be intertwined, although such
relation has not been investigated yet.

Other factors that control Rab delivery to specific membranes include the proteins that directly
activate/deactivate them. Being GTPases, Rabs suffer cycles of GTP/GDP binding, which are
a function of the protein families’ Rab guanine exchange factors (GEF) and guanine-activating
proteins (GAP), respectively (Figure 2) (reviewed in [58,59,96,103–105]). There is also a clear cross-talk
between Rab proteins and other regulators of vesicular trafficking called ADP-ribosylation factors
(ARFs) [106,107]. ARFs are also GTPases, recruited by GEFs and GAPs that reside in specific
membranes according to their PIP composition. The complete picture of the regulators controlling
the location and levels of the Rabs mentioned above is far from complete and these factors have
not been explored in the context of viral infection. However, it is widely accepted that cells
react to stimuli to adjust the distribution and levels of intracellular PIPs as well as their cycles
of degradation/secretion/recycling [29]. All the above considerations raise important questions
concerning the interplay between regulators of the endocytic process, exosome release and viral
usurpation of specific steps in the endocytic pathway. First, can viral modulation of any of these
regulators alter the content and levels of released exosomes? And second, would control of the levels
and composition of secreted exosomes have associated functions? These are interesting questions that
deserve more attention in the near future, especially given the ever-growing functions of exosomes
in viral infections.
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Figure 2. Regulators of membrane identity. Membrane composition is important to maintain
the integrity of endocytic process. Phosphoinositide (PI) kinases (and phosphatases) ensure the
levels of specific PIPs in distinct membranes. These operate as docking platforms for guanine
exchange and activator factors (GEFs and GAPs) able to recruit and turn on/off GTPases. GTPases
involved in membrane integrity and vesicular biogenesis are mainly of two kinds: ADP ribosylation
factors (ARFs) and ARF-like proteins (ARLs); and Rabs. ARFs and ARLs are involved in early steps
of vesicular biogenesis such as recruiting coating proteins and cargo, membrane curvature, and neck
formation. Rabs operate at later stages by recruiting effectors such as molecular motors, which are
able to generate pulling forces and move released vesicles. Vesicle scission and release are mediated
by highly specialized proteins that recognize, encircle, and cut the membrane neck, using GTP or ATP
hydrolysis to drive the reaction.

7. Other Functions of Exosomes in Viral Infections

7.1. Spread of Viral Infection

In normal circumstances, cells show remarkable processes to communicate with the exterior,
including the release of exosomes. As mentioned throughout this review, exosomes can transfer
functional proteins, lipids, and distinctive sets of RNAs from cell to cell in homeostatic
conditions [36,38,39]. In the last decades, exosomes were also shown to facilitate cell-to-cell transport
of disease-related proteins involved in neurodegenerative disorders, such as prions [108] and
beta-amyloid peptides [109]. This machinery could, in principle, also contribute to viral spread. For
this to happen, two prerequisites would be necessary. First, viral RNA and proteins would need
to access ILV. Indeed, vesicular stomatitis virus (VSV), dengue virus (and other Flavivirus members),
and hepatitis C virus (HCV) components were found in these sub-compartments [110,111]. A relevant
question is: how are soluble viral RNAs sorted into ILV? RNA incorporation into exosomes has been
suggested to operate via a selective and conserved mechanism linked to the lipid content of vesicles.
For a comprehensive review on specific mechanisms, readers are directed to [19]. Nevertheless,
the contribution of RNA-binding proteins has been recognized. The hnRNPA2B1 RNA binding
protein, for example, was shown to bind to a four triplet motif on miRNAs and transport them
into exosomes [112]. In the case of viral transmembrane proteins, the most common mechanism of
targeting molecules to ILVs is via ubiquitination and recruitment of the ESCRT machinery [4,53,54].
For HCV, it was shown that the ESCRT component Hrs is critical for release of nucleocapsid [113],
and for hepatitis A virus (HAV) the ESCRT protein VPS4B and the accessory proteins Alix [114] were
deemed crucial for ILV budding.

Second, exosomes would need to enter a recipient cell and release their infectious content into
the cytoplasm. This mechanism was recently reported for HCV [113], where exosomes derived
from infected human hepatoma cells containing full-length viral RNA, along with core and envelope
proteins [115], were shown to be infectious and a major route of transmission. Interestingly, the
non-enveloped virus HAV has been reported to acquire a host-derived membrane for cell-to-cell
transmission and the virus is still able to replicate in the recipient cell. The exosomes containing HCV
RNA and exosome-like vesicles containing whole HAV capsids were less susceptible to antibody
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neutralization, and consequently this transmission mechanism has been reported to operate as an
immune evasion strategy [113,114,116]. Upon reaching their destinations, exosomes containing viral
proteins and RNA would only be infectious provided they could enter target cells and reach the
cytoplasm. Exosomes containing VSV and other Flaviviruses seem to enter the cell by being taken up
by the endocytic pathway [110,111]. These two viruses were shown to escape late endosomes and
reach the cytosol by a “back-fusion” process, a phenomenon by which ILVs fuse with the external late
endocytic membranes [117]. Alternatively, exosomes containing viral antigens can induce signaling
cascades at the surface upon binding their receptors to control host immune responses [118]. Research
on exosome-mediated viral spread is still very limited; however, exosome modulation of the immune
responses has been explored in some detail and will be discussed next.

7.2. Modulation of Immunity

One of the main functions assigned to exosomes is the mediation of intercellular communication
during innate and adaptive immune responses. In fact, many different cells of the immune
system, including dendritic cells and B and T lymphocytes, have been shown to release exosome
vesicles with immune modulatory properties. These exosomes can be found in bodily fluids
(reviewed in [119–121]).

In 1996, Raposo et al. demonstrated that B lymphocytes infected with Epstein-Barr virus (EBV),
a human gammaherpesvirus associated with a variety of lymphoblastoid and epithelial cancers,
released exosomes containing MHC II molecules, and that these vesicles were capable of activating
specific CD4+ T cell clones in vitro [122]. Two years later, Zitvogel et al. published a study showing
that exosomes released by dendritic cells had the ability to suppress the growth of tumors in vivo.
This led to the interpretation that exosomes could be used as therapeutic agents modulating
immune responses [123].

Subsequent studies with EBV-infected lymphoblastoid and nasopharyngeal carcinoma cells
have shown that the exosomes secreted by these cells also harbor EBV-encoded latent phase
mRNAs [124], proteins [43,45,125–127], and mature miRNAs [128,129]. Accumulating evidence
suggests that these exosomes exert immune inhibitory effects on tumor-infiltrating lymphocytes.
Latent membrane protein 1 (LMP1), the major viral oncogene expressed in most EBV-associated
tumors, has been detected in exosomes and was shown to inhibit immune response, namely
T lymphocyte activation and proliferation, NK cytotoxicity, and the ability of cells to produce
interferon gamma [43,125,126]. Exosomes secreted by EBV-infected nasopharyngeal carcinoma cells
also contained high amounts of the immunoregulator protein galectin-9, which is able to induce
apoptosis of EBV-specific CD4+ T cells [126,130]. EBV miRNAs present in the exosomes are
internalized by DC where they downregulate specific immunoregulatory genes [129]. In contrast,
exosomes released from EBV-infected B lymphocytes were found to exert a stimulatory effect
on non-infected B lymphocytes, driving their proliferation, class-switch recombination, and
differentiation into plasmablast-like cells [131].

It was recently reported that exosomes also regulate innate immunity. This was illustrated with
the identification of important innate immune effectors (IFI16, caspase-1, interleukin 1b (IL-1b), IL-18,
and IL-33) in exosomes released from EBV-infected cells. Such a strategy removes these effectors from
infected cells to reduce innate immunity activation [132]. Another interesting approach was proposed
for HSV1 infection. In this case, cells export the innate immune sensor STING (stimulator of IFN
genes), viral miRNAs, and mRNAs through exosomes that are delivered to uninfected cells [118].
The functional significance of this strategy is still not clear, but the fact that some miRNAs are able
to suppress reactivation of latent virus suggests that, in specific circumstances, HSV1 has evolved
mechanisms to restrict, rather than expand, the spread of infection. Exosomes harboring HCV RNA
are transferred from infected cells to non-permissive plasmacytoid DCs, where viral RNA can trigger
a type I IFN response [116].
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It is clear that in viral infections, exosomes play a dual role in the modulation of the immune
system, both serving as a host program to induce innate and adaptive immunity and as a viral
strategy to evade those same responses.

7.3. Manipulation of Microenvironment

Viral infection is thought to be responsible for 10% to 15% of all human cancers, which makes the
understanding of how pathogens modulate host cell functions during their transformation program
seminal, both from a scientific and a clinical perspective [133]. Seven human tumor viruses have been
identified, human papillomavirus (HPV), Merkel cell polyomavirus (MCV), HCV and hepatitis B
virus (HBV), the members of the herpes family EBV and Kaposi’s sarcoma associated herpesvirus
(KSHV), and the Retrovirus human T-lymphotropic virus-1. HIV is also tumorigenic, although
indirectly, since the decrease of host immunity it provokes allows cell transformation, mostly by other
viruses such as KSHV.

It is now well established that tumor cells secrete exosomes [18,35,134], but the cancer types in
which exosomes are quantitatively, qualitatively, and functionally different from healthy tissues are
incompletely characterized. Many studies reported differential composition of exosomes in healthy
organisms versus those infected with several tumor viruses [127,131,135–142]. Nasopharyngeal
carcinoma cells infected with EBV produced exosomes containing LMP1 [124,126]. These exosomes
were shown to be taken up by neighboring cells [143] and the transcription profiles of the recipient
cell were subsequently altered [128,143]. The mechanism underlying transcriptional alterations
occurred via LMP1-mediated increase of EGFR release by exosomes that lead to activation of ERK
and PI3K/Akt pathways in epithelial, endothelial, and fibroblast cells [128]. ERK and PI3K/Akt
are renowned factors able to promote cell growth and migration. A specific miRNA composition
has been found in tumor viruses’ derived exosomes [38,48,113,134,138–142]. For example, there
are several types of HPV—some tumorigenic, each associated with a different miRNA exosomal
profile [139–141]. In the case of exosomes isolated from cancer patients infected with tumorigenic
HPV, the miRNA content was enriched for species controlling cell proliferation, senescence, and
apoptosis. The exosomal miRNA compositions were dependent on the expression of the viral
oncogene E6/E7, suggesting that this is one mechanism by which the oncogene contributes to the
growth of HPV-positive cancer cells [142].

Regardless of the infection status, the significance of exosomes in tumor development was
demonstrated in breast cancer, where normal cells became immortalized when incubated with
exosomes derived from tumor cells [134]. Another example was the injection of Rab27a depleted
breast carcinoma cell lines in immunocompetent mice. The lack of Rab27a was associated with
reduced release of exosomes [68] and poor tumor development when compared to cells containing
Rab27a, where tumor progression was normal and formed metastasis [74].

One of the major difficulties clinicians face is the lack of efficient methods to diagnose tumors,
especially in early stages. In the case of tumors that result from viral infection, the identification of
biomarkers for poor prognosis of infection would greatly benefit patients. Research needs to be done
to identify clear populations of exosomes involved in infection and tumors, and to clearly define
functions associated to exosomes in both conditions. These topics warrant investigation, as exosomes
show great promise as biomarkers for cancer and/or infection, as therapeutic agents, and have the
additional advantage of being accessible without the use of invasive techniques.

8. Future Perspectives

The mechanisms regulating the levels, content, and function of exosomes in viral infection
remain poorly characterized. There are four areas that need detailed investigation.

First, it is unclear how the endocytic system controls the percentage of MVBs that fuse with
the plasma membrane. We hypothesize that signaling events regulate the levels of activated Rabs at
each step of the endocytic pathway, and that this fluctuation allows for an adjustment of the levels of
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biomolecules sent for degradation and/or secretion. Viruses provide excellent tools to better answer
these questions as many efforts have been made to understand how each virus modifies distinct
endocytic compartments. The next challenge is to better understand how these changes affect the
endocytic process, including exosome release.

Second, little is known about the biological processes sorting material to ILVs of MVBs. The
inclusion of viral proteins and RNAs in exosomes offers a unique system to identify signals and
sorting mechanisms into ILVs.

Third, the functional relevance of exosomes in infection and disease remains incompletely
characterized. Although exosome modulation of adaptive immunity has been extensively researched,
its role in innate immunity remains largely unexplored. The recent identification of RNA transfer that
might affect host gene expression has been an important discovery that has renewed interest in this
field. The role of exosomes in viral spread is far less explored, namely its overall contribution to
viral infection. Interestingly, using exosomes could be a means to mitigate exposure of viral antigens
and operate as an immune evasion strategy. Clearly a lot has to be done in identifying viruses able
to use this pathway and the mechanisms leading to the inclusion of viral proteins/RNA/capsids in
ILVs—this also feeds into question two.

Finally, exosomes and many viruses share size, shape, and molecular characteristics. Technical
improvements in methods to separate and obtain pure exosomal fractions will facilitate the
understanding of their role in infection, namely in immune activation, viral spread, and persistence.
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