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Abstract: Co-evolution of viruses and their hosts has reached a fragile and dynamic
equilibrium that allows viral persistence, replication and transmission. In response, infected
hosts have developed strategies of defense that counteract the deleterious effects of viral
infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic
subunits proteins 3 (APOBEC3s) is a well-conserved mechanism of mammalian innate
immunity that mutates and inactivates viral genomes. In this review, we describe the
mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent
APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and
host genome integrity. Understanding the mechanisms involved reveals new prospects for
therapeutic intervention.

Keywords: viral replication; quasi-species; hypo-mutation; hyper-mutation; APOBEC3;
cytidine deaminase

1. APOBEC3s Edit Single-Stranded DNA

The APOBEC3 enzymes are deaminases that edit single-stranded DNA (ssDNA) sequences by
transforming deoxycytidine into deoxyuridine [1–3]. APOBEC3s are involved in the mechanisms
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of innate defense against exogenous viruses and endogenous retroelements [3]. The human genome
codes for seven APOBEC3 genes clustered in tandem on chromosome 22 (namely A3A, A3B, A3C,
A3DE, A3F, A3G, and A3H) and surrounded by the CBX6 and CBX7 genes. All APOBEC3 genes
encode a single- or a double-zinc-coordinating-domain protein. Each zinc-domain belongs to one
of the three distinct phylogenic clusters termed Z1, Z2 and Z3. The seven APOBEC3 genes arose
via gene duplications and fusions of a key mammalian ancestor with a CBX6-Z1-Z2-Z3-CBX7 locus
organization. Aside from mice and pigs, duplications of APOBEC3 genes have occurred independently
in different lineages: humans and chimpanzees (n = 7), horses (n = 6), cats (n = 4), and sheep and cattle
(n = 3) [4,5]. Read-through transcription, alternative splicing and internal transcription initiation may
further extend the diversity of APOBEC3 proteins.

APOBEC3s are interferon-inducible genes [6] that are highly expressed in immune cells despite being
present in almost all cell types [7,8]. The sub-cellular localization differs between the APOBEC3s
isoforms: A3DE/A3F/A3G are excluded from chromatin throughout mitosis and become cytoplasmic
during interphase, A3B is nuclear and A3A/A3C/A3H are cell-wide during interphase [9].

APOBEC3s exert an antiviral effect either dependently or independently of their deaminase activity.
The deaminase activity involves the removal of the exocyclic amine group from deoxycytidine to
form deoxyuridine. This process can generate different types of substitutions. First, DNA replication
through deoxyuridine leads to the insertion of a deoxyadenosine, therefore causing a C to T transition.
Alternatively, Rev1 translesion synthesis DNA polymerase can insert a C in front of an abasic site
that is produced through uracil excision by uracil-DNA glycosylase (UNG2) leading to a C-to-G
transversion [10]. In addition to inducing deleterious mutations in the viral genome, deamination
of deoxycytidine can also initiate degradation of uracilated viral DNA via a UNG2-dependent
pathway [11,12]. On the other hand, deaminase-independent inhibition requires binding of APOBEC3s
to single-stranded DNA or RNA viral sequences at various steps of the replication cycle [13–23].

2. APOBEC3 Edition during Viral Replication Cycles

The mechanism of APOBEC3s inactivation is dependent on the type of virus and its mode
of replication.

2.1. Retroviruses

Retroviruses are plus-strand single-stranded RNA viruses replicating via a DNA intermediate
generated in the cytoplasm by reverse transcription. Human retroviruses notably include HIV (human
immunodeficiency virus) and HTLV (human T-lymphotropic virus).

2.1.1. HIV-1

Historically, the first member of the APOBEC3 family was discovered in a groundbreaking study on
HIV-1 [24]. A3G has indeed been shown to inhibit HIV infection and to be repressed by the viral Vif
protein. Later on, a similar function was also attributed to other APOBEC3 proteins, namely A3DE, A3F
and A3H [25–27]. Figure 1 illustrates the different mechanisms of HIV-1 inhibition by APOBEC3s.
After binding of the HIV virion to the host cell membrane, the viral single-stranded RNA (ssRNA)
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genome is released into the cytoplasm and converted into double-stranded DNA (dsDNA) by reverse
transcription. This dsDNA is then inserted into the host genome as an integrated provirus.
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Figure 1. APOBEC3s interfere with several key steps of the HIV infectious cycle. After
binding of the HIV virion to the cell membrane, the single-stranded RNA genome (in blue)
is released into the cytoplasm together with APOBEC3G and 3F (orange). APOBEC3
proteins expressed by the host cell concentrate in P-bodies and stress granules. A3G and
A3F inhibit reverse transcription, mutate viral DNA and perturb proviral integration into
the host genome. In the absence of HIV Vif, A3G and A3F will be incorporated into the
budding virions.

A3DE, A3F, A3G and A3H are expressed by CD4+ T cells upon HIV infection, are packaged into
virions and lead to proviral DNA mutations [27]. A3G and A3F notably concentrate in cytoplasmic
microdomains (non-membrane structures) called mRNA-processing bodies or P-bodies [28–30].
P-bodies are sites of RNA storage, translational repression and decay [31]. A3G exerts its anti-HIV
effect mainly via its deaminase function inducing abundant and deleterious mutations within the HIV
provirus, whereas A3F acts more preferentially through its deaminase-independent activity [32]. This
deaminase-independent effect involves inhibition of reverse transcription priming and extension [14–17]
and interference with proviral integration [21–23].

APOBEC3-induced mutations are almost always G-to-A transitions of the plus-strand genetic code.
Moreover, the mutation load is not homogeneous along the HIV provirus but presents two highly
polarized gradients, each peaking just 5′ to the central polypurine tract (cPPT) and 5′ to the LTR (long
terminal repeat) proximal polypurine tract (3′PPT) [33]. As illustrated in Figure 2, this mutational
signature is due to the mechanism of HIV reverse transcription. Binding of the human tRNALys3 to the
primer binding sequence (PBS) initiates the minus strand DNA synthesis by the virus-encoded reverse
transcriptase protein (RT). The RT-associated ribonuclease H activity (RNAse H) selectively degrades
the RNA strand of the RNA:DNA hybrid leaving the nascent minus-strand DNA free to hybridize with
the complementary sequence at the 3′ end of the viral genomic ssRNA. After minus strand transfer,
the viral RNA is reverse-transcribed into DNA. Whilst DNA synthesis proceeds, the RNAse H function
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cleaves the RNA strand of the RNA:DNA. Two specific purine-rich sequences (polypurine tracts cPPT
and 3′PPT) that are resistant to RNAse H remain annealed with the nascent minus strand DNA. The
reverse transcriptase uses the PPTs as primers to synthesize the plus-strand DNA. Finally, another strand
transfer allows the production of the 5′ end of the plus-strand DNA (reviewed in [34]). From this
complex multistep process, it appears that only the minus strand can be single-stranded (light red in
Figure 2). Thus, G to A mutations observed on the plus strand (dark red in Figure 2) originate from
C-to-T mutations on the minus strand. The gradient of mutational load actually correlates with the time
that the minus strand remains single-chain [33].
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Figure 2. Hotspots of APOBEC3 editing in the HIV genome. Host cell tRNALys3 (dark
blue) hybridizes to the primer binding sequence (PBS) of the single stranded plus-strand
RNA genome (light blue) and initiates minus strand DNA synthesis (light red). After
strand transfer, reverse transcription proceeds up to the PBS yielding minus-strand DNA.
RNAse H then hydrolyses the RNA (dotted light blue) of the RNA:DNA hybrid leaving
the minus-strand DNA single-stranded. APOBEC3 G and F (orange) have now access
the ssDNA genome, deaminate deoxycytidine and inhibit plus strand DNA synthesis (dark
red). RNAse H activity of SAMHD1 promotes exposure of the minus-strand DNA (red
pacman) whereas HIV nucleocapsid (green) limits APOBEC3-edition. Deoxycytidine
deamination of the minus strand generates G-to-A mutations on the plus strand. Since
plus-strand DNA synthesis starts from the PolyPurine Tracts (cPPT, 3′PPT), ssDNA located
distant to these sites will be accessible to APOBEC3 edition over a longer period of
time. Therefore, the APOBEC3-related mutational load will also be higher (brown curve,
schematic representation of the data from [33]).



Viruses 2015, 7 3003

To counteract inactivation, HIV-1 encodes the Vif protein that inhibits APOBEC3s. Vif prevents A3G,
A3F and A3H from being packaged into the virion by recruitment to a cullin5-elonginB/C-Rbx2-CBFβ
E3 ubiquitin ligase complex, resulting in their polyubiquitination and subsequent proteasomal
degradation [35–37]. Other mechanisms can limit APOBEC3 access to the single-chain minus-strand
DNA generated during reverse transcription. By stabilizing the viral core, the glycosylated Gag protein
of the murine leukemia virus renders the reverse transcription complex resistant to APOBEC3 and
to other cytosolic viral sensors [38]. The HIV nucleocapsid protein (NCp) is able to bind ssDNA
in a sequence aspecific manner and prevents A3A from mutating genomic DNA during transient
strand separation [39]. Degradation of the RNA strand from the RNA:DNA hybrid by the RNAse H
activity of the reverse transcriptase contributes to expose the minus strand as a single-chain nucleic
acid. Interestingly, the host factor SAMHD1 (sterile alpha motif and histidine-aspartic acid domain
containing protein 1) restricts HIV via its RNAse H function, activity that may facilitate the access of
the APOBEC3s to the transiently single-stranded minus strand [40,41].

2.1.2. HTLV-1

Another human retrovirus, human T-lymphotropic virus 1 (HTLV-1), is also a target of A3G [42,43].
As in HIV-1 infection, A3G induces G-to-A transitions on the plus strand via deamination of
deoxycytidines on the minus strand. HTLV-1 proviruses contain A3G-related base substitutions,
including non-sense mutations [43]. Because HTLV-1 proviral loads mainly result from clonal expansion
of infected cells, non-sense mutations are stabilized and amplified by mitosis, provided that viral factors
stimulating proliferation are functional [44–47]. Although HTLV-1 does not seem to encode for a
Vif-like protein, the frequencies of G-to-A changes in HTLV-1 proviruses are low, likely due to the
mode of replication of HTLV-1 by clonal expansion [43,48]. This phenotype has also been associated
with the ability of the viral nucleocapsid to limit A3G encapsidation [49].

2.1.3. HERVs

Human endogenous retroviruses (HERV) are transposable elements which were evolutionary
integrated into human lineage after infection of germline cells. HERVs are abundant in the human
genome (about 8%) and exert important regulatory functions such as control of cellular gene
transcription [50]. HERVs contain canonical retroviral gag, pol and env genes surrounded by two
LTRs. Nevertheless, most HERVs are defective for replication because of inactivating mutations or
deletions [51]. These mutations are likely associated with A3G activity because of a particular signature
with a mutated C present in a 5′GC context instead of 5′TC for other APOBEC3s [52–54]. Interestingly,
A3G is still able to inhibit a reconstituted functional form of HERV-K in cell culture [52].

2.1.4. Simian Foamy Virus

SFV (simian foamy virus) is a retrovirus that is widespread among non-human primates and can be
transmitted to humans [55]. A3F and A3G target SFV genome in vitro, leading to G-to-A transitions on
the plus strand [56]. SFV genomes found in humans also display G-to-A mutations [57–59]. SFV codes
for the accessory protein Bet, limiting APOBEC3 action [60–63].
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2.2. Retroelements

About half of the human genome is constituted by repetitive elements. Among them, non-LTR
retroelements LINE-1 (long interspersed nuclear element-1), SINE (short interspersed nuclear elements)
and Alu are capable of retrotransposition, i.e., inserting a copy of themselves elsewhere in the genome.
Since retrotranpositions can be harmful for genome integrity, these events are tightly controlled.
In fact, only a small proportion of endogenous retroelements remains active in the germline cells
because APOBEC3s protect the host genome from unscheduled retrotransposition (Figure 3). LINE-1
retrotransposition is initiated by transcription of a full-length LINE-1 RNA and translation of ORF1p
and ORF2p. These two proteins associate with LINE-1 RNA to form the LINE-1 RiboNucleoProtein
(L1 RNP) complex. Upon translocation of L1 RNP into the nucleus, LINE-1 is reverse transcribed
and integrated into a new site of the host genome. A3C restricts LINE-1 retrotransposition in a
deaminase-independent manner by redirecting and degrading the L1 RNP complex in P-bodies [20].
Within the nucleus, A3C also impairs LINE-1 minus strand DNA synthesis [20]. A3A prevents LINE-1
retrotransposition by deaminating the LINE-1 minus strand DNA [64]. Consistently, RNAse H treatment
increases deamination of the LINE-1 minus strand [64].
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Figure 3. LINE-1 retrotransposons are targeted by APOBEC3s. After transcription,
the LINE-1 mRNA is transported into the cytoplasm. After translation, the ORF1- and
ORF2-encoded proteins associate with the LINE-1 RNA and form a ribonucleoprotein
(RNP) complex. The LINE-1 RNP enters the nucleus, where the ORF2p endonuclease
domain cleaves the chromosomal DNA. After cleavage, the 3′-hydroxyl is used by the
LINE-1 reverse transcriptase to synthesize a cDNA of LINE-1. This target-site-primed
reverse transcription typically results in the insertion of a 5′-truncated LINE-1 element
into a new genomic location. Different APOBEC3s-dependent mechanisms control LINE-1
retrotransposition: (1) in the cytoplasm, A3C interacts with and redirects the L1-RNP into
P-bodies for degradation; (2) in the nucleus, A3C inhibits reverse transcriptase processing
while A3A mutates the minus strand LINE-1 DNA.
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2.3. Hepadnaviruses

Since their genome is partially single-strand, hepadnaviruses, such as human hepatitis B virus
(HBV), are susceptible to APOBEC3 editing. Except A3DE, all APOBEC3s are able to edit the HBV
genome in vitro, A3A being the most efficient [65,66]. APOBEC3 editing of HBV DNA has also been
validated in vivo [67,68]. Since both minus and plus strands are susceptible to APOBEC3 editing,
the mutational signature is more complex than in retroviruses [65–67]. HBV viral particles contain
a partially double-stranded circular DNA genome (relaxed circular DNA or rcDNA; Figure 4). After
uncoating of the viral particle, the rcDNA migrates into the nucleus, where minus-strand DNA synthesis
is completed to generate the covalently closed circular double-stranded DNA genome (cccDNA).
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Figure 4. APOBEC3s interfere with several steps of the HBV replication cycle. The HBV
viral particle contains a partially double-stranded DNA genome (relaxed circular DNA or
rcDNA) that can be edited by A3G and A3F. Unlike HIV, HBV does not appear to encode
Vif-like protein. Upon transfer into the nucleus, the plus strand of the rcDNA is replicated to
form the covalently closed circular DNA genome (cccDNA). A3A and A3B deaminate the
cccDNA genome leading to uracil excision and subsequent degradation.

In the nucleus, A3A and A3B deaminate HBV cccDNA (Figure 4). Since APOBEC3s require a
ssDNA substrate, it is predicted that cccDNA melts during transcription. APOBEC3 deamination of
deoxycytidine introduces deleterious mutations in the viral genome and initiates its catabolism via the
uracil DNA glycosylase dependent pathway [12].
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After transcription of the cccDNA, the pregenomic RNA (pgRNA) translocates into the cytoplasm and
is reverse-transcribed into circular partially double-stranded DNA. This mechanism involves priming by
the viral P protein, a strand transfer directed by DR1 annealing and degradation of the RNA template
by the RNAse H activity of the reverse transcriptase (Figure 5, dotted light blue). The 5′ end of the
pgRNA anneals with DR2, directs a second strand transfer and primes plus-strand DNA synthesis,
yielding rcDNA. The minus strand DNA is deaminated proportionally to its exposure to APOBEC3s
(Figure 5, orange curve) [68]. Since different subcellular compartments are involved (cytoplasm,
nucleus, extracellular viral particles), multiple nuclear and cytoplasmic APOBEC3s (i.e., A3A, A3B,
A3C, A3F and A3G) edit the HBV genome [65].
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Figure 5. Profile of APOBEC3 editing of the HBV genome. The viral P protein initiates
reverse transcription at the stem loop structure ε. The pregenomic RNA (pgRNA) contains
two direct repeat sequences (DR1) at the 5′ and 3′ end of the viral genome, allowing strand
transfer to the 5′ end of the viral genome. While synthesis of the minus-strand DNA
proceeds, the RNAse H activity of the reverse transcriptase degrades the pgRNA except
at the 5′ end. After a second strand transfer, the undigested pgRNA anneals with the direct
repeat sequence DR2 and primes plus-strand gDNA synthesis, yielding relaxed circular DNA
(rcDNA). Mutational load correlates with the time of exposure of ssDNA (orange curve,
schematic representation of data extracted from reference [68]). Abbreviations within grey
boxes read as follow: RT, Reverse Transcriptase; RN, RNAse; TP, Terminal Protein; SP,
Spacer Domain; S, short surface gene; X, X gene, C, Core gene.
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Compared to HIV, additional APOBEC3 proteins (A3A, A3B and A3C) target the HBV genome in the
nucleus. Incorporation of HIV into chromatin instead of an episome for HBV may protect the provirus
from APOBEC3s editing by a mechanism involving Tribbles 3 proteins [69].

2.4. Herpesviruses

Herpesviruses such as herpes simplex virus-1 (HSV-1) and Epstein-Barr virus (EBV) have a linear
double-stranded DNA genome that is edited by APOBEC3 on both strands [70]. After infection, the
HSV-1 capsid is transported to the nuclear pores and delivers the double-stranded linear DNA into the
nucleus. After circularization of the viral genome, bidirectional DNA synthesis is initiated at the origins
of replication [71,72]. This process requires DNA denaturation by the origin binding protein (UL9).
The helicase/primase (UL5/UL8/UL52) and single-stranded DNA binding proteins (ICP8 coded by the
UL29 gene) then associate with the origin of replication and recruit the DNA polymerase/UL42 complex
(Figure 6). During DNA synthesis and transcription, nuclear APOBEC3s have access to single-stranded
viral DNA. APOBEC3-edition of HSV-1 and EBV genomes is higher in the minus strand (G to A as
opposed to C to T) [70]. It is hypothesized that, due to discontinued replication, the lagging strand
exposes more viral ssDNA than the leading strand. HSV-1 and EBV encode orthologs of uracil-DNA
glycosylases (UDG) that excise uridine at the replication fork. The HSV-1 UDG (UL2) binds to UL30,
associates with the viral replisome and directs replication-coupled BER (base excision repair) to ensure
genome integrity [73]. The viral UDG might therefore protect against APOBEC3 editing.

Viruses 2015, 7 9 

 

Compared to HIV, additional APOBEC3 proteins (A3A, A3B and A3C) target the HBV genome in 

the nucleus. Incorporation of HIV into chromatin instead of an episome for HBV may protect the 

provirus from APOBEC3s editing by a mechanism involving Tribbles 3 proteins [69]. 

2.4. Herpesviruses 

Herpesviruses such as herpes simplex virus-1 (HSV-1) and Epstein-Barr virus (EBV) have a linear 

double-stranded DNA genome that is edited by APOBEC3 on both strands [70]. After infection, the 

HSV-1 capsid is transported to the nuclear pores and delivers the double-stranded linear DNA into the 

nucleus. After circularization of the viral genome, bidirectional DNA synthesis is initiated at the 

origins of replication [71,72]. This process requires DNA denaturation by the origin binding protein 

(UL9). The helicase/primase (UL5/UL8/UL52) and single-stranded DNA binding proteins (ICP8 

coded by the UL29 gene) then associate with the origin of replication and recruit the DNA 

polymerase/UL42 complex (Figure 6). During DNA synthesis and transcription, nuclear APOBEC3s 

have access to single-stranded viral DNA. APOBEC3-edition of HSV-1 and EBV genomes is higher in 

the minus strand (G to A as opposed to C to T) [70]. It is hypothesized that, due to discontinued 

replication, the lagging strand exposes more viral ssDNA than the leading strand. HSV-1 and EBV 

encode orthologs of uracil-DNA glycosylases (UDG) that excise uridine at the replication fork. The 

HSV-1 UDG (UL2) binds to UL30, associates with the viral replisome and directs replication-coupled 

BER (base excision repair) to ensure genome integrity [73]. The viral UDG might therefore protect 

against APOBEC3 editing. 

 

Figure 6. HSV-1 replication fork and hypothetical model of APOBEC3 editing. In the  

nucleus, replication of HSV-1 is initiated by the origin binding protein (UL9) that melts 

double-stranded DNA. The helicase/primase complex (UL5/UL8/UL52) unwinds and  

anneals RNA primers, allowing DNA replication by the UL30/UL42 complex. The viral  

protein ICP8 covers the transiently exposed single-stranded DNA and competes with the 

APOBEC3 binding. The viral UL2 is a uracil-DNA glycosylase (UDG) that favors  

replication-coupled base excision DNA repair. 

Figure 6. HSV-1 replication fork and hypothetical model of APOBEC3 editing. In
the nucleus, replication of HSV-1 is initiated by the origin binding protein (UL9) that
melts double-stranded DNA. The helicase/primase complex (UL5/UL8/UL52) unwinds
and anneals RNA primers, allowing DNA replication by the UL30/UL42 complex. The
viral protein ICP8 covers the transiently exposed single-stranded DNA and competes with
the APOBEC3 binding. The viral UL2 is a uracil-DNA glycosylase (UDG) that favors
replication-coupled base excision DNA repair.
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2.5. Papillomavirus

Human papillomaviruses (HPVs) are circular double-stranded DNA viruses. A3A, A3C and A3H are
able to deaminate both strands of the 8Kb viral genome [74–76]. APOBEC3-edited HPV DNA is found
in benign and precancerous cervical lesions [74]. Replication of the HPV genome occurs in the nucleus
and is primarily based on the host replication machinery. The HPV protein E1 recruits ssDNA-binding
protein RPA (replication protein A) during replication to cover the transiently exposed viral ssDNA [77].

2.6. TT Virus

Transfusion-transmitted virus (TTV) is a non-enveloped virus causing a persistent and asymptomatic
infection. Having a circular single-stranded DNA genome, TTV is a prototypical substrate of
APOBEC3s and shows APOBEC3-related mutations [78].

Together, these data show that viruses are targeted by particular isoforms of APOBEC3 depending
on their modes of replication (Table 1) and have developed strategies to dampen ssDNA edition. A3G
and A3F are restricted to the cytoplasm whereas A3A, A3B and A3C preferentially act in the nucleus.
Importantly, the mutational load is proportional to the duration of single-stranded DNA exposure
to APOBEC3s.

Table 1. Summary of the anti-viral activity of the different APOBEC3 isoforms. * It has
been recently shown that A3A can also edit RNA transcripts [79].

Sub-cellular
localization

Substrate
edited

Retro viruses
Retro

elements
Hepadna
viruses

Herpes
viruses

HIV-1 HTLV-1 HERVs SFV

A3A cell wide
single stranded
DNA, RNA *

+ + +

A3B nuclear
single stranded

DNA
+

A3C cell wide
single stranded

DNA
+ + +

A3DE cytoplasmic
single stranded

DNA
+

A3F cytoplasmic
single stranded

DNA
+ + +

A3G cytoplasmic
single stranded

DNA
+ + + + +

A3H cell wide
single stranded

DNA
+ + +

3. Therapeutic Strategies by Perturbation of the Viral Mutation Rate

Viral quasi-species refer to a population of distinct but closely related viral genomes that differ only
by a limited number of mutations. The distribution of variants is dominated by a master sequence
that displays the highest fitness within a given environment (Figure 7A). High mutation rates during
viral replication are the driving force for quasi-species generation. Lethal mutations or inappropriate
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adaptation to the environmental conditions (e.g., anti-viral therapy, immune pressure) will clear unfit
genomes. When conditions change, the fittest quasi-species may differ from the master sequence.
Providing that the distribution contains an adequate variant, a new population will grow (Figure 7B).
The rate of mutation and the selection pressure will dictate the wideness of the distribution. If the
environmental changes are too drastic or the quasi-species distribution too narrow, the viral population
will be unable to recover [80].
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Figure 7. Antiviral strategy by hypo- or hyper-mutation. (A) Viral quasi-species refer to
as a population of distinct but closely related viral genomes that only differ by a limited
number of mutations. The frequency of these quasi-species spreads around a master
sequence. The boundary of this population is dictated by the selection forces acting against
the viral diversification. At equilibrium, quasi-species generated outside the fitness range
will not persist. (B) If selection criteria are modified, the fittest sequence will change. If
the original distribution contained this sequence, the population will first shrink and then
re-grow around a new master sequence (from light to dark blue corresponding to the time
evolution). (C) Excess of APOBEC3-directed mutations will affect fitness of the newly
created quasi-species up to complete disappearance. (D,E) Hypo-mutation will restrict the
range of quasi-species and limit adaptability to new environmental conditions.
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Emergence of quasi-species is thus a major issue that limits antiviral therapy. Viral populations
can indeed accommodate environmental changes due to improved immunity (vaccination) or
pharmacological inhibition. It is possible to affect quasi-species adaptability by modulating the
frequencies of mutation [81,82].

The first approach, referred to as lethal mutagenesis or the hyper-mutation strategy, aims to introduce
an excess of mutations in the viral genomes. If the mutational load per viral genome is too high, a
substantial proportion of the new viruses will be defective or inadequately adapted to their environment.
Introducing mutations in viruses would therefore decrease viral load (Figure 7C). In principle, exogenous
induction of APOBEC3 expression could achieve this goal. This strategy has recently been exemplified
for HBV, where forced expression of A3A and A3B induced HBV cccDNA hypermutation with no
detectable effect on genomic DNA [12]. Nevertheless, this approach raises serious safety issues
because APOBEC3 mutations could also drive cancer development [83–85]. Indeed, A3A and A3B
over-expression in yeast creates mutational clusters and genomic rearrangements similar to those
observed in human cancers, the mutational burden being magnified by DNA strand breaks [86–89].
Because the processing of double-strand break repair transiently exposes single-stranded nucleic acids,
DNA repair could provide a substrate for nuclear deaminases. What would, for example, happen if an
HBV-infected liver cell is being forced to express deaminases and at the same time has to repair DNA
strand breaks generated by reactive oxygen species produced during alcohol catabolism [90]?

Therefore, it would be safer to promote hyper-mutation by targeting the viral factors that inhibit
APOBEC3s. In that respect, Vif inhibitors are being developed [91,92]. Inhibition of viral
ssDNA-binding proteins (like HSV-1 ICP8) might lead to increased access for endogenously expressed
APOBEC3s to the viral ssDNA (Figure 6). Promotion of RNAse H activity during retrotranscription
might facilitate the binding of the APOBEC3s to the viral ssDNA (Figure 2). Because reverse
transcription is thought to start within the virion, promotion of APOBEC3s loading in to the viral particle
will increase editing (MLV glyco-Gag shields the reverse transcription complex from APOBEC3 and
cytosolic sensors [38]). Alternatively, it would be possible to target viral DNA repair mechanisms (e.g.,
via inhibitors against the viral UDG UL2 of HSV-1, Figure 6). In these cases, safety issues are related to
the emergence of sub-lethal APOBEC3-mutations and promotion of drug resistant quasi-species.

The reverse strategy would be to reduce mutation rate by inhibiting APOBEC3, thereby narrowing the
quasi-species spectrum and limiting viral adaptability to new environmental conditions (Figure 7D,E).
APOBEC3s inhibitors are currently being developed and evaluated [93,94]. This approach, which
paradoxically targets a well-conserved mechanism of mammalian innate immunity, would preserve host
genome integrity. Potential risks of this therapy pertain to adequate control of endogenous retroelements
and opportunistic infections.

4. Conclusions

Single-strand DNA editing by APOBEC3 proteins is a very powerful mechanism of mammalian
innate immunity that mutates and inactivates viral genomes. The outcome of infection is the result of a
finely tuned balance between onset of mutations, generation of quasi-species and APOBEC inhibition by
viral factors. Understanding the mechanisms involved reveals new prospects for therapeutic strategies
that interfere with APOBEC3 deamination of cytosine residues in nascent viral DNA.
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