Next Article in Journal
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates
Previous Article in Journal
Celecoxib Inhibits the Lytic Activation of Kaposi’s Sarcoma-Associated Herpesvirus through Down-Regulation of RTA Expression by Inhibiting the Activation of p38 MAPK
Article Menu

Export Article

Open AccessArticle
Viruses 2015, 7(5), 2288-2307; doi:10.3390/v7052288

Intracellular Trafficking of Baculovirus Particles: A Quantitative Study of the HearNPV/HzAM1 Cell and AcMNPV/Sf9 Cell Systems

Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia
*
Author to whom correspondence should be addressed.
Academic Editor: Eric O. Freed
Received: 12 February 2015 / Revised: 21 April 2015 / Accepted: 28 April 2015 / Published: 5 May 2015
(This article belongs to the Section Insect Viruses)
View Full-Text   |   Download PDF [1085 KB, uploaded 12 May 2015]   |  

Abstract

To replace the in vivo production of baculovirus-based biopesticides with a more convenient in vitro produced product, the limitations imposed by in vitro production have to be solved. One of the main problems is the low titer of HearNPV budded virions (BV) in vitro as the use of low BV titer stocks can result in non-homogenous infections resulting in multiple virus replication cycles during scale up that leads to low Occlusion Body yields. Here we investigate the baculovirus traffic in subcellular fractions of host cells throughout infection with an emphasis on AcMNPV/Sf9 and HearNPV/HzAM1 systems distinguished as “good” and “bad” BV producers, respectively. qPCR quantification of viral DNA in the nucleus, cytoplasm and extracellular fractions demonstrated that although the HearNPV/HzAM1 system produces twice the amount of vDNA as the AcMNPV/Sf9 system, its percentage of BV to total progeny vDNA was lower. vDNA egress from the nucleus to the cytoplasm is sufficient in both systems, however, a higher percentage of vDNA in the HearNPV/HzAM1 system remain in the cytoplasm and do not bud out of the cells compared to the AcMNPV/Sf9 system. In both systems more than 75% of the vDNA produced in the nuclear fraction go unused, without budding or being encapsulated in OBs showing the capacity for improvements that could result from the engineering of the virus/cell line systems to achieve better productivities for both BV and OB yields. View Full-Text
Keywords: baculovirus; HearNPV; AcMNPV; HzAM1; Sf9 baculovirus; HearNPV; AcMNPV; HzAM1; Sf9
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Matindoost, L.; Nielsen, L.K.; Reid, S. Intracellular Trafficking of Baculovirus Particles: A Quantitative Study of the HearNPV/HzAM1 Cell and AcMNPV/Sf9 Cell Systems. Viruses 2015, 7, 2288-2307.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top