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Abstract

:

Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
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1. Introduction


Baculoviruses are insect specific viruses that are widely present in nature. They have a long research history [1,2] and a wide variety of data is available about their biology [2] and biosafety [3,4]. The insect specificity of baculoviruses has led in their use as natural insecticides against forestry and agriculture pests [1,5]. The large family of Baculoviridae includes over 600 known lepidoptera, hymenoptera and diptera infecting members [6,7,8]. The double-stranded circular supercoiled DNA genome (80–180 kbp) [9,10,11] of the virions is condensed into a nucleoprotein structure known as a core [12]. The core is within a rod-shaped capsid, that is an average of 30–60 nm in diameter and 250–300 nm in length [11,13,14,15] and it is capable of accommodating large DNA inserts [16]. The core and the capsid form the viral nucleocapsid. Membrane-enveloped nucleocapsids form virus particles or virions [17].



Traditionally baculoviruses were divided into two morphologically distinct genera: Nuclear polyhedrosis viruses (NPVs) and granulosis viruses (GVs). New classification divides baculoviruses into four genera: Alphabaculovirus (lepidopteran-specific NPV), betabaculovirus (lepidopteran-specific Granuloviruses), gammabaculovirus (hymenopteran-specific NPV) and deltabaculovirus (dipteran-specific NPV) [6,18]. NPVs are further divided on the basis how they are embedded into viral occlusion bodies (VOBs) comprised of enveloped nucleocapsids in a polyhedrin matrix [19]. They can be packaged as a single nucleocapsid or multiple nucleocapsids per envelope. GVs, on the contrary, have only a single virion within in a very small inclusion body [17].



In nature, baculoviruses have a biphasic infection cycle and two different forms of viruses have specific roles in different stages of the viral life cycle. Occlusion derived virions (ODVs) are responsible for the horizontal transmission of infection between insects by contaminating the soil and plants [20], whereas the budded viruses (BVs) are responsible for the systemic spread of the virus within the insect. The primary infection cycle begins when VOBs enter the insect from a virus-contaminated plant [21,22]. The polyhedrin matrix dissolves in the alkaline environment of the insect midgut [23] and leads to the release of the ODVs. ODVs fuse with the columnar epithelial cells of the digestive tract and enter the midgut cells [24]. While in the cell, the nucleocapsids are transported into the nucleus where the transcription and virus replication take place. During the later lytic cycle of infection, BVs are produced which exit the cell from its basolateral side [25]. These viruses then further spread the infection within the insect through the tracheal system and hemolymph [25,26,27,28,29]. VOBs are produced later on during the infection and the insect dies releasing the VOBs into the environment. ODV and BV do not only have different roles during the infection cycle but they are also structurally different. Though the nucleocapsids of ODV and BV are similar, the virions have different lipid and protein profiles within their envelopes [30]. This is based on the origin of the envelopes. The ODV envelope is derived from the nuclear membrane of the insect cell, whereas the BV envelope is acquired from the host cell membrane [31]. The virions have also different entry mechanisms that they use to enter the host cells. BVs enter cells via endocytosis [32], whereas ODVs enter the midgut epithelial cells by directly fusing with the cell surface membrane [32,33,34,35].




2. Autographa californica Multiple Nucleopolyhedrovirus


Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the most extensively studied baculovirus, represents a prototype of the family Baculoviridae. The genome of the virus (~134 kbp) has been sequenced and predicted to contain 156 open reading frames, 218 transcription start sites and 120 polyadenylation sites [36,37]. The major capsid protein of the virus is vp39 whereas the major envelope glycoproteins are gp64 (BV) and p74 (ODV). gp64 is involved in the formation of peplomer structures at one end of the rod-shape virion [38]. The basic DNA-binding protein of the virus, p6.9, is responsible for packaging the viral DNA in insect cells [31,39,40]. AcMNPV has been shown to enter insect cells by endocytosis [32,41] in which gp64 has an essential role. The glycoprotein gp64 mediates virus attachment [38] to the cell surface as well as internalization [38] and pH-dependent escape of the virus nucleocapsid from the endosomes [42]. gp64 is also necessary for the production of infective viruses and is important in the virus egress from the cells [43].



The BV of AcMNPV has been broadly used in biotechnology [2,41,44] and the baculovirus expression vector system (BEVS) has become one of the most commonly used methods to produce recombinant proteins [17,45]. Proteins produced with this system include e.g., FDA and EMA accepted vaccine products Cervarix®, Provenge® and FluBlok® [46,47,48]. The production of the proteins generally takes place in insect cells derived from Spodoptera furgiperda (Sf9 and Sf21AE) and Trichoplusia ni (BTI-Tn-5B1-4) [49,50]. These insect cells are able to perform most of the necessary post-translational modifications excluding the N-glycosylation pathway which is more simpler in insect cells [45,51,52]. However recently, an insect cell line SfSWT-5 was developed in which an inducible mammalianized protein N-glycosylation pathway can take place [53]. The BEVS system enables fast and easy production of recombinant proteins, and due to the scalability of the system, the production of large quantities of desired proteins is possible requiring that the genes of interest are placed under the control of strong AcMNPV promoters, such as polyhedrin or p10 promoter [17,54]. In addition to production of various proteins [45], the BEVS has been applied for eukaryotic surface display [55], vaccination [56], drug screening [57], and as well as in production of viral like particles [58] and other gene transfer vectors, such as adeno-associated viruses (AAV) [59] and lentiviruses [60].




3. Baculovirus Applications in Vertebrate Cells


Despite being highly insect specific, AcMNPV was well shown to enter human cells already in the 1980s [61]. It however took until 1990s when AcMNPV was shown to efficiently transfer genes into vertebrate cells, especially hepatocytes, if containing an expression cassette including a target cell functional promoter [62,63]. From there on the virus has been successfully utilized in various different types of in vitro and ex vivo gene transfer applications in many types of dividing and nondividing [15,64,65] vertebrate cell lines, primary cells, progenitor cells, induced pluripontent (iPS) and stem cells [66,67,68]. These comprise a broad spectrum of cells of human, monkey, porcine, bovine, rabbit, rat, mouse, hamster, fish, sheep and avian origin [69,70,71,72,73,74,75,76,77,78] and the list of permissive cells is constantly expanding [69]. Known well-permissive targets for the baculovirus-mediated gene transfer includes cells of the hepatic, kidney and osteosarcoma origin while the poorest are those of hematopoietic origin [70].



The outcome of baculovirus transduction in vitro is dependent on several factors and can be enhanced by optimizing transduction conditions and vector design [79,80,81,82,83]. Modifications in the transduction protocol, such as extended incubation time and transduction at temperatures under 37 °C have been shown to lead to enhanced gene expression [61,84,85,86,87,88]. On the other hand, multiple re-additions (supertransduction) of the virus can be used to extend the transient transgene expression [87,89]. Although AcMNPV can enter a variety of cells from different origin, efficient uptake does not necessarily guarantee efficient gene expression [90,91]. One of the important aspects, which has a role in the efficiency of transduction, is the choice of cell culture medium. Commonly used Dulbeccos’s modified Eagle’s medium (DMEM) has been shown to hinder baculovirus-mediated gene delivery [79,80,92] whereas the use of RPMI 1640 medium can yield remarkably better results [80]. Several medium supplements have also been reported to aid in baculovirus-mediated gene delivery and lead to increased gene expression. These include, e.g., histone deacetylase inhibitors like sodium butyrate or trichostatin A [71,93]. Microtubule interfering substances, such as nocodazole or vinblastine, can aid virus-mediated gene delivery as intact microtubule network has been shown to hinder the cytoplasmic transport and nuclear entry of baculoviral nucleocapsid [15,94]. Protein kinase activator Phorbol 12-myristate 13-acetate and DNA methyltransferase inhibitors have also been shown to boost the transgene expression [90,95]. The toxicity of these substances, however, needs to be taken into account in their use [96].



Yet another way to achieve enhanced gene delivery and increase virus tropism is to modify the baculoviral envelope. The major baculoviral envelope glycoprotein, gp64, has been most commonly engineered for this purpose [55,97]. Given the essential role of gp64 in the infection of insect cells and transduction of mammalian cells [98], addition of extra copies of gp64 on the viral envelope has been shown to lead to better transduction efficiency [99]. In addition, gp64 has been engineered to house different peptides or proteins [55,100]. Also, the use of vesicular stomatitis virus envelope G-protein (VSVG) [101] and its truncated version (VSV-GED) has not only led to broadened virus tropism but also to enhanced transduction both in vitro as well as in vivo [75,99,102,103,104,105]. Additional ways to improve transduction efficiency have included the use of expression targeting ligands [55,106,107,108,109,110,111] and other surface modifications such as avidin [111], biotin [112], lymphatic homing peptide [113], polymer coating with polyethyl glycol [114,115,116,117] and polyethylenimine [118].



In order to achieve most optimal gene expression efficiency, the choice of suitable promoter requires careful selection. CMV and Chicken β-actin promoters are considered as good choices to drive baculovirus-mediated transgene expression in vertebrate cells [73,119]. Baculoviral vectors equipped with cell-type and tissue specific promoters have been successfully used to target transgene expression to certain tissues and cells [120,121,122,123] whereas inducible promoters [123,124] have been used to control the state of the expression. The incorporation of Woodchuck hepatitis virus posttranscriptional regulatory element into the expression cassette has been shown to lead to improved transgene expression in various cell lines [79]. With the aim of prolonging the transient nature of baculovirus-mediated expression, elements enabling long term expression from AAV [125,126], Epstein-Barr virus (EBV) [127] and transposon Sleeping Beauty [128] have been incorporated in the virions.



Baculoviruses have been shown to promote cytokine production and thus stimulate host antiviral immune responses in mammalian cells [129,130,131,132,133,134,135,136,137]. The virus exposure results in the activation of tumor necrosis factor α, interleukin 1 α, and interleukin 1 β expression along with interferon production [130,131]. The involvement of toll-like receptors has also been suggested since AcMNPV was shown to induce the secretion of tumor necrosis factor α and interleukin 6 along with increased expression of activation ligands in macrophages [129]. The role of toll-like receptor 9 and MyD88-dependent signaling pathway on activation of immune cells via baculoviral DNA has also been demonstrated [132]. However, other viral components and recognition pathways such as toll-like receptor 3 [135] and toll-like receptor-independent routes (interferon regulatory factors 3 and 7) [129,138] seem to be also involved. The induction of antiviral effects in mammalian cells appears to be dependent on cell type [124,136,139] and is transient [140].




4. Baculoviral Entry and Trafficking


The efficient entry of AcMNPV into mammalian cells requires multiple successful steps. The process begins with virus binding to the surface of the cells followed by cellular entry, vesicular transport, endosomal escape, cytosolic movement, nuclear entry, capsid disassembly and finally gene expression. The actual entry processes and the exact mechanisms leading to successful infection of insect cells or transduction of mammalian cells are still vaguely understood and somewhat controversial [41,69,70]. Though clathrin-mediated endocytosis is suggested to be involved in the virion uptake into mammalian cells [15,32,141,142,143,144], also the involvement of macropinocytosis, caveolae route or even apoptotic mimicry have been suggested [142,143,144,145]. Among all entry mechanisms, clathrin-independent phagocytosis-like uptake [146] seems to be the most logical since it fits baculovirus biology best. However, the endocytic route used by the virus can also depend on the cell type as well as culture conditions [147].



The wide tropism of the virus suggests that baculovirus utilizes non-specific electrostatic interactions and attaches to the surface of mammalian cells via general cell surface molecule, such as a phospholipid or a heparan sulfate proteoglycan (HSPG) [102,148,149,150]. The involvement of HSPGs is supported by the fact that treatment of HSPGs with heparinase leads to reduction in baculovirus binding [150]. Also, a heparin binding motif was recently detected within gp64 [148]. In addition, it was shown that N- and 6-O-sulfation of HS is vital for baculovirus binding and transduction of mammalian cells. Furthermore Syndecan-1, a ubiquitous proteoglycan, acts as a baculovirus receptor [151]. However, gp64 has also been shown to interact with cell surface phospholipids, such as phosphatidic acid or phosphatidylinositol [102,144,149,152] suggesting that the baculovirus entry and binding are a multistep processes which possibly require several cell surface factors.



The internalization of baculovirus has been shown to be mediated by lipid rafts [144,149] and take place within cholesterol rich areas [144,146,149]. Extensive membrane ruffling has also been associated with virus internalization [146]. The virus uptake has been shown to rely on actin and the trafficking further regulated by Ras homolog gene family member A, ADP-ribosylation factor 6 and dynamin [146]. Differential activation of PKC subtypes α and ε as well as the status of intermediate filament vimentin have all been recently shown to have an effect on baculovirus transduction [80,90]. Following the entry, the virus is transported within vesicles until the pH-dependent fusion of the viral envelope with the endosome releases the capsid to the cytoplasm [41,142,146]. The release is mediated by the major baculoviral type III envelope fusion protein, gp64 [42,153]. The escaped nucleocapsid is then transported in the cell with the aid of actin polymerization and the nucleocapsid enters the nucleus via nuclear pores [154,155,156]. When the virus is in the nucleus, the nucleocapsid disassembles and the viral DNA is released [15,65,91,156]. In the nucleus, baculovirus localizes into discrete foci in the nuclei and induces accumulation of promyelocytic leukemia nuclear bodies [65].




5. Animal Studies


Baculovirus offers several advantages as a gene delivery vector compared to other viral vectors in terms of safety, high capacity of carrying foreign DNA, and ease of production. Although the virus does not suffer from pre-existing immunity in vertebrates [157], it is, however, quickly inactivated by serum complement components [62]. This is a result of the classical [158,159] and the alternative [160] pathway activation. This delayed the first successful in vivo applications of baculoviruses into late 1990s when the first gene transfer attempt was performed in rats and mice [161]. Today, several different successful gene transfer studies performed in mouse, rat, rabbit and pig animal models have been reported. Logically, the best in vivo targets are the immunoprivileged tissues such as the eye [162], the brain [163,164], testis [99,165] or central nervous system [166,167,168]. Approaches to bypass the complement have included the use of complement inactivators, such as soluble complement receptor type 1 [160], cobra venom factor [169] and compstatin [159], which have all proven their usefulness in virus protection. Shielding the viruses with complement interfering factors, such as decay acceleration factor [170], factor H like protein, C4b-binding protein and membrane cofactor have also aided in the battle against the immune system [171].



The first in vivo gene transfer attempts with baculovirus were performed in the liver parenchyma of rats and mice but direct systemic and intraportal circulation delivery resulted in undetectable transgene expression [161]. The speculation of the involvement of the immune system in the unsuccessful gene transfer resulted in multiple studies in immune-compromised animals. A direct baculovirus-mediated gene transfer into the liver parenchyma of immunocompromised mice led to detectable transduction of hepatocytes around the injection site [77]. Within the same study, baculovirus injected into nude mice bearing human derived hepatocarcinomas resulted also in low gene transfer efficiency [77]. A systemically performed gene delivery into complement deficient tumor-bearing mice led to transgene expression primarily in liver, spleen, and kidney, but expression was also detected in the tumor [172].



Delivery methods that allow gene transfer in the absence of serum or complement have given better results in immune-competent animals. Direct injection of baculovirus into brain striatum of mice and rats [163,169] led to marker gene expression in the striatum, the corpus callosum, and the ependymal layer. After local delivery of baculovirus into the brain of rats, AcMNPV was found to efficiently transduce cuboid epithelium of the choroid plexus cells. Transgene expression was detected also in endothelial cells of brain microvessels throughout the forebrain [163]. AcMNPV’s tendency to transduce especially well choroid plexus cells has also been verified by other studies performed in rat brain [103,173,174]. Transgene expression could also be detected in the walls of lateral ventricles and in subarachnoid membranes when (VSV-GED) pseudotyped AcMNPV was used [103]. Systemic injection through tail vein with pegylated baculovirus led to enhanced transduction of brain in mice but the transgene expression was also detected in liver, spleen, lung, heart, and kidney [114]. Additionally, a tissue-specific hybrid promoter has been utilized to drive efficient neuron-specific gene expression in rat brain [121,175], as well as glial fibrillary acidic protein promoter for astrocyte-specific gene expression [122]. When transcriptional targeting was used, baculovirus transduction was detectable not only in neurons near the injection sites but also in remote target regions, probably because of axonal transport [176]. Baculovirus containing an expression cassette flanked with the ITRs of AAV extended transgene expression in rat brain [126].



The immunoprivileged nature of the ocular tissue makes it an attractive target for baculovirus-mediated gene therapy. In a direct subretinal administration of baculovirus into mouse eye, a strong expression of the marker gene in retinal pigment epithelial cells followed [177]. Intravitreal injection resulted in marker gene expression in the corneal endothelium, lens, retinal pigment epithelial cells, and retina. When intravitreal gene transfer was performed in rabbits, it resulted in gene expression in the inner retina, photoreceptor cells and in retinal pigment epithelium cells [162]. With the aid of a Sleeping Beauty hybrid vector, a long term expression was achieved in mouse eye [178]. In rat retinal vasculature, gene expression has been targeted with human transmembrane fms-like tyrosine kinase promoter [179].



Though immunoprivileged areas seem to suit best for baculovirus-mediated gene delivery, direct injection of recombinant baculoviruses into quadriceps femoris muscle of mice resulted in a transient expression of the marker gene [105]. In rats, intramuscularly injected baculovirus was used to treat hyperammonemia [180]. In rabbits, VEGF-D gene transfer was able to efficiently induce angiogenesis in semimembranosus muscle [181]. Baculovirus-mediated enhanced angiogenesis has also been detected in a rat model of ischemic stroke [182] and acute myocardial infarction [183,184], as well as after use of baculovirus based biotherapeutic stent in canine femoral artery [185]. In induced mouse model of liver cirrhosis, intraperitoneal (i.p.) injection of AcMNPV lead to alleviated symptoms via interferon induction [186]. The use of avidin-displaying virus was able to demonstrate extensive expression in rat kidney and spleen after i.p. administration [187]. Hydrodynamic transduction via renal vein resulted in gene expression in kidney [188]. By using a different approach, adventitial cells of carotid arteries of rabbits were successfully transduced by recombinant baculoviruses by using a collar device which allowed minimal exposure to complement [93].



Towards baculoviral applications in cancer gene therapy, an astrocyte-specific baculovirus was successfully used to treat malignant glioma. A virus expressing A-chain of diphtheria toxin effectively suppressed tumor development in a rat xenograft model [189]. When glioblastoma specific promoter (HMGB2) was used to control Herpex simplex thymidine kinase (tk), targeted glioblastoma expression was detected in mouse xenograft model [190]. In the same cancer model, incorporation of miRNA regulation into a GFAP driven tk expression improved safety [164]. By combining sodium butyrate with p53 tumor suppressor gene, synergistic results were detected in nude mice bearing human glioma tumors [191]. Several other malignancies which have also been treated with the aid of baculovirus are prostate [128,192,193], ovarian [128], cervical [194], epidermal [117], gastric [195], liver [196,197] and liver metastasis [198], lung [199], melanoma [199,200], and nasopharyngeal cancer [201]. In addition, baculovirus transduced stem cells have functioned ex vivo as a targeted delivery vehicles to control tumors [202]. Human embryonic stem cell-derived mesenchymal [203] and neural [204] stem cells as well as mouse [205] and human [206,207] iPS derived neural cells were able to keep cancers in control.



AcMNPV has also demonstrated therapeutic possibilities in other indications besides cancer. For example, efficient transduction of rabbit intervertebral disc has been reported [167]. In another study, lumbar intrathecal injection into the cerebrospinal fluid was used to transduce rat dorsal root ganglia cells [166]. The potential of baculovirus for ex vivo cartilage and bone engineering has also been demonstrated in several studies [70]. Transduction of de-differentiated chondrocytes with a baculovirus expressing bone morphogenetic protein-2 (BMB-2) or BMB-2/transforming growth factor β combination was able to restore differentiation status of cells but also increase cartilage-specific extracellular matrix formation [208,209,210]. The cells were able to grow into cartilage when seeded in polymeric scaffold in a bioreactor [211]. In addition, osteochondral defects have been healed with produced cartilage implants in rabbits [212]. BMB-2 transduced and implanted BMSCs were able to induce bone formation in mice and promote bone repair in rats [213]. Implantation of BMB-2 and VEGF expressing BMSC cells into segmental bone defects in rabbits led to accelerated bone healing [214]. Adipocyte stem cells (ASCs) can also serve as promising cells in bone regeneration [215,216,217,218]. The safety of baculovirus in tissue engineering has been supported by several studies which have shown that baculovirus neither altered HLA-II expression nor impaired the immunosuppressive nature of BMSCs and induced only mild and transient immune response without disrupting the karyotype [219]. When Hybrid BV-AAV vectors were used to transduce rat-derived BM-MSCs, high transgene expression was achieved and no cytotoxicity was reported [220].



The unfortunate side effects of gene transfer include the risk of insertional mutagenesis and cancer with retroviruses [221], and humoral and cellular immune responses in the case of adenoviruses [222]. Compared to these viral vectors, baculoviruses are safer since they are unable to replicate and cause diseases outside non-vertebrate hosts [4], there is no pre-existing immunity in vertebrates [157] and the viruses are unable to integrate into host cell genome. In addition, the viruses have the capacity to transfer large genes [17] and the scalability of the production makes them an attractive tool for gene transfer. Although baculoviruses have been extensively studied throughout the years, no clinical data is yet available of their therapeutic use. However, the BV system has already been approved to be clinically suitable for vaccine and AAV vector production (Glybera) purposes by FDA and EMA and encouraging results in cancer treatment are expected to lead to the first clinical trial in the near future [223].




6. Baculovirus and RNAi


Though RNA interference (RNAi) is a relatively new discovery, it has already become a potent and specific method for gene regulation. Gene silencing by RNA interference can be used when loss-of-function studies with sequence specific knock-down of gene expression are needed in different biological situations [224,225]. It also enables a new and promising approach to treat common diseases and thus provides a convenient tool for analysis of gene function, as well as gene therapy [226,227]. Baculoviruses are highly viable alternatives for RNAi delivery since they are very inert and versatile [228,229] with possibilities of high throughput preparation [173,230].



RNAi has been shown to have an important regulatory role in insects [231] in which various gene silencing studies have already been carried out [232,233]. Thus far, four Bombyx mori nucleopolyhedrosis virus (BmNPV)-encoded miRNAs have been identified which are evolutionarily conserved among many baculoviruses [234]. In S. frugiperda, differential expression of several miRNAs upon baculovirus infection has been detected [235]. The miRNA profile of Helicoverpa armigera larvae has also been shown to alter upon H. armigera single nucleopolyhedrovirus (HaSNPV) infection [236]. The RNAi-approach has been successfully used to prevent AcMNPV infection in vitro and in vivo [237] as well as in the prevention of BmNPV infection in B. mori cells and in the silkworm B. mori [238,239,240]. BmNPV has been shown to encode miRNAs which modulate the small-RNA-mediated defense as well as regulate the expression of DNA binding protein (P6.9) and other late genes vital for the late stage of viral infection in its host Bombyx mori [241,242].



AcMNPV encodes miRNAs that lead to a reduction of BVs and accelerated formation of ODVs [243]. The RNAi has been shown to persists for four to eight days in baculovirus-infected as well as uninfected Sf9 cells [232].The RNAi-approach has been also used to increase recombinant protein production in a Trichoplusia ni derived cell line (BTI-TN-5B1-4-High Five) [244].



The first RNAi application in mammalian cells was demonstrated in a study where baculovirus-delivered U6-driven short hairpin RNA (shRNA) designed against lamin A/C led to effective knockdown of the corresponding mRNA and protein levels in Saos2, HepG2, Huh7, and primary human hepatic stellate cells [245]. In another study, a shRNA under the control of hybrid CMV enhancer-H1 promoter was capable of suppressing the expression of the target luciferase gene by 95% in cultured rat glioma C6 cells, up to 80% in human NT2 neural precursor cells and 82% in rat brain in vivo [246]. In addition, baculovirus delivered miRNA has been shown to repress efficiently the overexpression of endogenous TNF-α in arthritic synoviocytes. In the same study, a hybrid baculovirus vector containing miRNA combined with Sleeping Beauty transposon was shown to effectively repress the transgene expression for prolonged periods in HEK293 cells [247]. Sleeping Beauty transposon containing baculovirus was also recently coupled with PTENP1 long non-coding RNA (lncRNA) which inhibited cell proliferation in hepatocellular carcinoma cells (HCC) in vitro and HCC tumors in mice [248]. Sleeping Beauty hybrid vector was also used to deliver miRNAs 122 and 155 into HCC cells in vitro and into HCC tumor in vivo with the result of HCC growth inhibition [197]. Silencing of miRNA-10b by baculoviral decoy vectors in vitro in U87-M21 glioma cell line led to reduced growth, invasion and angiogenesis of the cells. In vivo, the inhibition of miRNA-10b in human glioma mouse model diminished the invasiveness, angiogenicity, and growth of the tumor [249]. Recently, baculovirus was harnessed for miRNA-26a, -29b, -148b and -196a delivery and resulted in improved hASCs osteogenesis [250].



Several baculoviral vectors have been engineered to inhibit the replication of multiple pathogenic viruses. These include a baculovirus expressing shRNAs against peste des petits ruminants virus. Within the study, a successful inhibition of the generation of infectious progeny was observed in vitro in Vero cells [251]. A VSVG pseudotyped baculovirus containing U6 promoter driven shRNA targeting arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) genome resulted in the inhibition of viral replication in Marc145 cells [252]. In addition, a baculovirus based shRNA against the highly conserved core region of the hepatitis C virus (HCV) genome was able to inhibit the expression of the HCV core protein and thus virus replication in NNC#2 cells [253]. Long-term expression of shRNA against the highly conserved core-protein region of HCV was achieved with hybrid baculovirus containing EBV EBNA1 and OriP sequences. Inhibition of HCV core protein lasted for at least 14 days [254]. When HepG2 cells were transduced with baculovirus bearing shRNA against hepatitis B virus (HBV), a reduction in the formation of HBV covalently closed circular DNA was detected [255]. Baculovirus-delivered bispecific shRNA has also markedly inhibited the production of influenza viruses A and B [256]. Interestingly, a VSVG pseudotyped baculovirus vector carrying a ribozyme-synthesizing cassette under the tRNA(i)(Met) promoter was constructed. Transduction of HeLa CD4(+) cells with the HIV-1 U5 gene-specific ribozyme suppressed HIV-1 expression within the cells [257].



In conclusion, this review summarizes the wide applications of baculovirus (AcMNPV) in gene transfer. The current knowledge of the efficacy and safety along with numerous advantages as gene delivery vehicles support AcMNPV use also for RNAi applications Table 1).
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Table 1. Summary of baculovirus mediated preclinical RNAi studies in vertebrate cells.







Table 1. Summary of baculovirus mediated preclinical RNAi studies in vertebrate cells.







	
Cell/Tissue

	
Promoter

	
RNAi/Target

	
In Vitro/In Vivo

	
Ref., Year






	
Saos2, HepG2, Huh7, primary hepatic stellate cells

	
U6

	
shRNA; Lamin A/C

	
In vitro

	
[245], 2005




	
C6, NT2, rat brain

	
CMV enhancer/H1 promoter

	
shRNA; Luciferase

	
In vitro, in vivo

	
[246], 2005




	
Marc145

	
U6

	
shRNA; PRRSV nucleoprotein

	
In vitro

	
[252], 2006




	
HeLa CD4+

	
tRNAiMet

	
Ribozyme; U5 region of HIV LTR

	
In vitro

	
[257], 2006




	
NNC#2

	
U6

	
shRNA; HCV core protein

	
In vitro

	
[253], 2008




	
NNC#2

	
U6

	
shRNA; HCV core protein. EBNA1 and OriP for prolonged expression.

	
In vitro

	
[254], 2009




	
MDCK

	
U6

	
shRNA; influenza nucleoproteins

	
In vitro

	
[256], 2009




	
HepG2

	
U6

	
shRNA; HBV genome

	
In vitro

	
[255], 2009




	
HEK293, synoviocytes

	
CMV

	
miRNA; EGFP, TNF-α. Sleeping Beauty for prolonged expression.

	
In vitro

	
[247], 2011




	
Vero

	
U6

	
shRNA; nucleoprotein of PPRV.

	
In vitro

	
[251], 2011




	
U87-M21, U87-M21 tumor in mice

	
CMV

	
miRNA-10b for inhibition of growth, invasion and angiogenesis.

	
In vitro, in vivo

	
[249], 2012




	
ASC, calvarial bone defects in mice

	
CMV

	
miRNA-26a, -29b, -148b, -196a for promoting osteogenic differentiation.

	
In vitro, in vivo

	
[250], 2014




	
HCC Mahlavu, HCC tumor in mice

	
CMV

	
lncRNA; PTENP1. Sleeping Beauty for prolonged expression.

	
In vitro, in vivo

	
[248], 2015




	
HCC Mahlavu, HCC tumor in mice

	
CMV

	
miRNA-122, -151 to combat HCC tumorigenity/metastasis. Sleeping Beauty for prolonged expression.

	
In vitro, in vivo

	
[197], 2015













Acknowledgments


This work was supported by Finnish Academy, Kuopio University Hospital, ERC and Sigrid Juselius Foundation.




Author Contributions


K.-E.M. and K.A. wrote and S.Y.-H. participated in the final writing of the manuscript.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Summers, M.D. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv. Virus Res. 2006, 68, 3–73. [Google Scholar] [PubMed]

	



Miller, L.K. The Baculoviruses; Plenum Press: New York, NY, USA, 1997. [Google Scholar]

	



Kost, T.A.; Condreay, J.P. Innovations-Biotechnology: Baculovirus vectors as gene transfer vectors for mammalian cells: Biosafety considerations. J. Am. Biol. Saf. Assoc. 2002, 7, 167–169. [Google Scholar]

	



Burges, H.; Croizier, G.; Huger, J. A rewiew of safety tests on baculoviruses. Entomaphaga 1980, 25, 329–339. [Google Scholar] [CrossRef]

	



Black, B.C.; Brennan, L.A.; Dierks, P.M.; Gard, I.E. Commercialization of baculoviral insecticides. In The Baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; p. 341. [Google Scholar]

	



Herniou, E.; Arif, B.; Becnel, J.; Blissard, G.; Bonning, B.; Harrison, R.; Jehle, J.; Theilmann, D.; Vlak, J. Virus Taxonomy: Classification and Nomenclature of Viruses Ninth Report of the International Committee on Taxonomy of Viruses; King, A., Adams, M., Carstens, E., Lefkowitz, E., Eds.; Elsevier: London, UK, 2012. [Google Scholar]

	



Martignoni, M.; Iwai, P. A Catalog of Viral Diseases of Insects, Mites and Ticks, 4th ed.US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1986.

	



Gröner, A. Specificity and Safety of Baculoviruses; Granados, R., Federici, B., Eds.; CRC Press: Boca Raton, FL, USA, 1977. [Google Scholar]

	



Summers, M.D.; Anderson, D.L. Granulosis virus deoxyribonucleic acid: A closed, double-stranded molecule. J. Virol. 1972, 9, 710–713. [Google Scholar] [PubMed]

	



Burgess, S. Molecular weights of lepidopteran baculovirus DNAs: Derivation by electron microscopy. J. Gen. Virol. 1977, 37, 501–510. [Google Scholar] [CrossRef]

	



Herniou, E.A.; Arif, B.M.; Becnel, J.J.; Blissard, G.W.; Bonning, B.; Harrison, R.; Jehle, J.A.; Theilmann, D.A.; Vlak, J.M. Baculoviridae. In Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses; Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.; Elsevier/Academic Press: London, UK, 2005; pp. 177–185. [Google Scholar]

	



Tweeten, K.A.; Bulla, L.A.; Consigli, R.A. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J. Virol. 1980, 33, 866–876. [Google Scholar] [PubMed]

	



Williams, G.V.; Faulkner, P. Cytological changes and viral morphogenesis during baculovirus infection. In The Baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 61–107. [Google Scholar]

	



Harrap, K.A. The structure of nuclear polyhedrosis viruses. II. The virus particle. Virology 1972, 50, 124–132. [Google Scholar] [CrossRef] [PubMed]

	



Van Loo, N.D.; Fortunati, E.; Ehlert, E.; Rabelink, M.; Grosveld, F.; Scholte, B.J. Baculovirus infection of nondividing mammalian cells: Mechanisms of entry and nuclear transport of capsids. J. Virol. 2001, 75, 961–970. [Google Scholar] [CrossRef] [PubMed]

	



Fraser, M.J. Ultrastructural observations of virion maturation in Autographa califomica nuclear polyhedrosis virus-infected Spodoptera frugiperda cell cultures. J. Ultrastruct. Mol. Struct. Res. 1986, 95, 189–195. [Google Scholar] [CrossRef]

	



O’Reilly, D.R.; Miller, L.K.; Luckov, V.A. Baculovirus Expression Vectors: A Laboratory Manual; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]

	



Jehle, J.A.; Blissard, G.W.; Bonning, B.C.; Cory, J.S.; Herniou, E.A.; Rohrmann, G.F.; Theilmann, D.A.; Thiem, S.M.; Vlak, J.M. On the classification and nomenclature of baculoviruses: A proposal for revision. Arch. Virol. 2006, 151, 1257–1266. [Google Scholar] [CrossRef] [PubMed]

	



Miller, L.K. Baculoviruses as gene expression vectors. Annu. Rev. Microbiol. 1988, 42, 177–199. [Google Scholar] [CrossRef] [PubMed]

	



Granados, R.R.; Federici, B.A. The Biology of Baculoviruses; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]

	



Herniou, E.A.; Olszewski, J.A.; Cory, J.S.; O’Reilly, D.R. The genome sequence and evolution of baculoviruses. Annu. Rev. Entomol. 2003, 48, 211–234. [Google Scholar] [CrossRef] [PubMed]

	



Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo de Souza, M. Baculoviruses—Re-emerging biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef] [PubMed]

	



Harrap, K.A.; Longworth, J.F. An evaluation of purification methods for baculoviruses. J. Invertebr. Pathol. 1974, 24, 55–62. [Google Scholar] [CrossRef] [PubMed]

	



Granados, R.R.; Lawler, K.A. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 1981, 108, 297–308. [Google Scholar] [CrossRef] [PubMed]

	



Keddie, B.A.; Aponte, G.W.; Volkman, L.E. The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 1989, 243, 1728–1730. [Google Scholar] [CrossRef] [PubMed]

	



Federici, B. Baculovirus pathogenesis. In The baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 33–59. [Google Scholar]

	



Ohkawa, T.; Washburn, J.O.; Sitapara, R.; Sid, E.; Volkman, L.E. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac. J. Virol. 2005, 79, 15258–15264. [Google Scholar] [CrossRef] [PubMed]

	



Washburn, J.O.; Lyons, E.H.; Haas-Stapleton, E.J.; Volkman, L.E. Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni. J. Virol. 1999, 73, 411–416. [Google Scholar] [PubMed]

	



Engelhard, E.K.; Kam-Morgan, L.N.; Washburn, J.O.; Volkman, L.E. The insect tracheal system: A conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 1994, 91, 3224–3227. [Google Scholar] [CrossRef] [PubMed]

	



Braunagel, S.C.; Summers, M.D. Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: Structural proteins, antigens, lipid and fatty acid profiles. Virology 1994, 202, 315–328. [Google Scholar] [CrossRef] [PubMed]

	



Funk, C.; Braunagel, S.; Rohrmann, G. Baculovirus structure. In The baculoviruses; Miller, L.K., Ed.; Plenum Press: New York, NY, USA, 1997; pp. 33–59. [Google Scholar]

	



Wang, P.; Hammer, D.A.; Granados, R.R. Binding and fusion of Autographa californica nucleopolyhedrovirus to cultured insect cells. J. Gen. Virol. 1997, 78, 3081–3089. [Google Scholar] [PubMed]

	



Granados, R.R. Early events in the infection of Hiliothis zea midgut cells by a baculovirus. Virology 1978, 90, 170–174. [Google Scholar] [CrossRef] [PubMed]

	



Summers, M.D. Electron microscopic observations on granulosis virus entry, uncoating and replication processes during infection of the midgut cells of Trichoplusia ni. J. Ultrastruct. Res. 1971, 35, 606–625. [Google Scholar] [CrossRef]

	



Volkman, L.E.; Goldsmith, P.A. Mechanism of neutralization of budded Autographa californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology 1985, 143, 185–195. [Google Scholar] [CrossRef] [PubMed]

	



Ayres, M.D.; Howard, S.C.; Kuzio, J.; Lopez-Ferber, M.; Possee, R.D. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994, 202, 586–605. [Google Scholar] [CrossRef] [PubMed]

	



Chen, Y.-R.; Zhong, S.; Fei, Z.; Hashimoto, Y.; Xiang, J.Z.; Zhang, S.; Blissard, G.W. The transcriptome of the baculovirus Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) in Trichoplusia ni cells. J. Virol. 2013, 87, 6391–6405. [Google Scholar] [CrossRef] [PubMed]

	



Hefferon, K.L.; Oomens, A.G.; Monsma, S.A.; Finnerty, C.M.; Blissard, G.W. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 1999, 258, 455–468. [Google Scholar] [CrossRef] [PubMed]

	



Wilson, M.E.; Consigli, R.A. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 1985, 143, 516–525. [Google Scholar] [CrossRef] [PubMed]

	



Wilson, M.E.; Consigli, R.A. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 1985, 143, 526–535. [Google Scholar] [CrossRef] [PubMed]

	



Blissard, G.W. Baculovirus-insect cell interactions. Cytotechnology 1996, 20, 73–93. [Google Scholar] [CrossRef] [PubMed]

	



Blissard, G.W.; Wenz, J.R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J. Virol. 1992, 66, 6829–6835. [Google Scholar] [PubMed]

	



Oomens, A.G.; Blissard, G.W. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 1999, 254, 297–314. [Google Scholar] [CrossRef] [PubMed]

	



Rohrmann, G.F. Baculovirus structural proteins. J. Gen. Virol. 1992, 73, 749–761. [Google Scholar] [CrossRef] [PubMed]

	



Kost, T.A.; Condreay, J.P.; Jarvis, D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 2005, 23, 567–575. [Google Scholar] [CrossRef] [PubMed]

	



Hitchman, R.B.; Possee, R.D.; King, L.A. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat. Biotechnol. 2009, 3, 46–54. [Google Scholar] [CrossRef] [PubMed]

	



Lin, S.-Y.; Chen, G.-Y.; Hu, Y.-C. Recent patents on the baculovirus systems. Recent Pat. Biotechnol. 2011, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]

	



McPherson, C.E. Development of a novel recombinant influenza vaccine in insect cells. Biologicals 2008, 36, 350–353. [Google Scholar] [CrossRef] [PubMed]

	



Vaughn, J.L.; Goodwin, R.H.; Tompkins, G.J.; McCawley, P. The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 1977, 13, 213–217. [Google Scholar] [CrossRef] [PubMed]

	



Ikonomou, L.; Schneider, Y.-J.; Agathos, S.N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 2003, 62, 1–20. [Google Scholar] [CrossRef] [PubMed]

	



Harrison, R.L.; Jarvis, D.L. Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv. Virus Res. 2006, 68, 159–191. [Google Scholar] [PubMed]

	



Mabashi-Asazuma, H.; Shi, X.; Geisler, C.; Kuo, C.-W.; Khoo, K.-H.; Jarvis, D.L. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Glycobiology 2013, 23, 199–210. [Google Scholar] [CrossRef] [PubMed]

	



Aumiller, J.J.; Mabashi-Asazuma, H.; Hillar, A.; Shi, X.; Jarvis, D.L. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2012, 22, 417–428. [Google Scholar] [CrossRef] [PubMed]

	



Hu, Y. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 2005, 26, 405–416. [Google Scholar] [CrossRef] [PubMed]

	



Oker-Blom, C.; Airenne, K.J.; Grabherr, R. Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Brief. Funct. Genomic Proteomic. 2003, 2, 244–253. [Google Scholar] [CrossRef] [PubMed]

	



Hu, Y.-C.C.; Yao, K.; Wu, T.-Y.Y. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev. Vaccines 2008, 7, 363–371. [Google Scholar] [CrossRef] [PubMed]

	



Kost, T.A.; Condreay, J.P.; Ames, R.S.; Rees, S.; Romanos, M.A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today 2007, 12, 396–403. [Google Scholar] [CrossRef] [PubMed]

	



Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef] [PubMed]

	



Urabe, M.; Ding, C.; Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 2002, 13, 1935–1943. [Google Scholar] [CrossRef] [PubMed]

	



Lesch, H.P.; Turpeinen, S.; Niskanen, E.A.; Mähönen, A.J.; Airenne, K.J.; Ylä-Herttuala, S.; Mahonen, A.J.; Yla-Herttuala, S. Generation of lentivirus vectors using recombinant baculoviruses. Gene Ther. 2008, 15, 1280–1286. [Google Scholar] [CrossRef] [PubMed]

	



Volkman, L.E.; Goldsmith, P.A. In Vitro survey of autographa californica nuclear polyhedrosis virus interaction with nontarget vertebrate host cells. Appl. Environ. Microbiol. 1983, 45, 1085–1093. [Google Scholar] [PubMed]

	



Hofmann, C.; Sandig, V.; Jennings, G.; Rudolph, M.; Schlag, P.; Strauss, M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 1995, 92, 10099–10103. [Google Scholar] [CrossRef] [PubMed]

	



Boyce, F.M.; Bucher, N.L. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 1996, 93, 2348–2352. [Google Scholar] [CrossRef] [PubMed]

	



Lee, H.-P.; Chen, Y.-L.; Shen, H.-C.; Lo, W.-H.; Hu, Y.-C. Baculovirus transduction of rat articular chondrocytes: Roles of cell cycle. J. Gene Med. 2007, 9, 33–43. [Google Scholar] [CrossRef] [PubMed]

	



Laakkonen, J.P.; Kaikkonen, M.U.; Ronkainen, P.H.A.; Ihalainen, T.O.; Niskanen, E.A.; Häkkinen, M.; Salminen, M.; Kulomaa, M.S.; Ylä-Herttuala, S.; Airenne, K.J.; et al. Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell. Microbiol. 2008, 10, 667–681. [Google Scholar] [CrossRef] [PubMed]

	



Pan, Y.; Liu, S.; Wu, H.; Lv, J.; Xu, X.; Zhang, Y. Baculovirus as an ideal radionuclide reporter gene vector: A new strategy for monitoring the fate of human stem cells in vivo. PLOS ONE 2013, 8, e61305. [Google Scholar] [CrossRef] [PubMed]

	



Takata, Y.; Kishine, H.; Sone, T.; Andoh, T.; Nozaki, M.; Poderycki, M.; Chesnut, J.D.; Imamoto, F. Generation of iPS cells using a BacMam multigene expression system. Cell Struct. Funct. 2011, 36, 209–222. [Google Scholar] [CrossRef] [PubMed]

	



Lei, Y.; Lee, C.-L.; Joo, K.-I.; Zarzar, J.; Liu, Y.; Dai, B.; Fox, V.; Wang, P. Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol. Ther. 2011, 19, 942–950. [Google Scholar] [CrossRef] [PubMed]

	



Chen, C.-Y.; Lin, C.-Y.; Chen, G.-Y.; Hu, Y.-C. Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol. Adv. 2011, 29, 618–631. [Google Scholar] [CrossRef] [PubMed]

	



Airenne, K.J.; Hu, Y.-C.; Kost, T.A.; Smith, R.H.; Kotin, R.M.; Ono, C.; Matsuura, Y.; Wang, S.; Ylä-Herttuala, S. Baculovirus: An insect-derived vector for diverse gene transfer applications. Mol. Ther. 2013, 21, 739–749. [Google Scholar] [CrossRef] [PubMed]

	



Condreay, J.P.; Witherspoon, S.M.; Clay, W.C.; Kost, T.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 1999, 96, 127–132. [Google Scholar] [CrossRef] [PubMed]

	



Kost, T.A.; Condreay, J.P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 2002, 20, 173–180. [Google Scholar] [CrossRef] [PubMed]

	



Shoji, I.; Aizaki, H.; Tani, H.; Ishii, K.; Chiba, T.; Saito, I.; Miyamura, T.; Matsuura, Y. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol. 1997, 78, 2657–2664. [Google Scholar] [PubMed]

	



Yap, C.C.; Ishii, K.; Aoki, Y.; Aizaki, H.; Tani, H.; Shimizu, H.; Ueno, Y.; Miyamura, T.; Matsuura, Y. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology 1997, 231, 192–200. [Google Scholar] [CrossRef] [PubMed]

	



Barsoum, J.; Brown, R.; McKee, M.; Boyce, F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 1997, 8, 2011–2018. [Google Scholar] [CrossRef] [PubMed]

	



Ping, W.; Ge, J.; Li, S.; Zhou, H.; Wang, K.; Feng, Y.; Lou, Z. Baculovirus-mediated gene expression in chicken primary cells. Avian Dis. 2006, 50, 59–63. [Google Scholar] [CrossRef] [PubMed]

	



Hofmann, C.; Wolfgang, L.; Strauss, M. The baculovirus vector system for gene delivery into hepatocytes. Gene Ther. Mol. Biol. 1998, 1, 231–239. [Google Scholar]

	



Matsuo, E.; Tani, H.; Lim, C.K.; Komoda, Y.; Okamoto, T.; Miyamoto, H.; Moriishi, K.; Yagi, S.; Patel, A.H.; Miyamura, T.; et al. Characterization of HCV-like particles produced in a human hepatoma cell line by a recombinant baculovirus. Biochem. Biophys. Res. Commun. 2006, 340, 200–208. [Google Scholar] [CrossRef] [PubMed]

	



Mähönen, A.J.; Airenne, K.J.; Purola, S.; Peltomaa, E.; Kaikkonen, M.U.; Riekkinen, M.S.; Heikura, T.; Kinnunen, K.; Roschier, M.M.; Wirth, T.; et al. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J. Biotechnol. 2007, 131, 1–8. [Google Scholar] [CrossRef] [PubMed]

	



Mähönen, A.J.; Makkonen, K.-E.E.; Laakkonen, J.P.; Ihalainen, T.O.; Kukkonen, S.P.; Kaikkonen, M.U.; Vihinen-Ranta, M.; Ylä-Herttuala, S.; Airenne, K.J.; Mahonen, A.J.; et al. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J. Biotechnol. 2010, 145, 111–119. [Google Scholar] [CrossRef] [PubMed]

	



Airenne, K. Optimization of baculovirus-mediated gene delivery into vertebrate cells. BioProcess J. 2009, 8, 54–59. [Google Scholar]

	



Dukkipati, A.; Park, H.H.; Waghray, D.; Fischer, S.; Garcia, K.C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 2008, 62, 160–170. [Google Scholar] [CrossRef] [PubMed]

	



Airenne, K.J.; Laitinen, O.H.; Mähönen, A.J.; Ylä-Herttuala, S. Safe, simple, and high-capacity gene delivery into insect and vertebrate cells by recombinant baculoviruses. In Gene Transfer: Delivery and Expression of DNA and RNA; Friedmann, T., Rossi, J., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2007; pp. 313–325. [Google Scholar]

	



Leisy, D.J.; Lewis, T.D.; Leong, J.-A.C.; Rohrmann, G.F. Transduction of cultured fish cells with recombinant baculoviruses. J. Gen. Virol. 2003, 84, 1173–1178. [Google Scholar] [CrossRef] [PubMed]

	



Hsu, C.-S.; Ho, Y.-C.; Wang, K.-C.; Hu, Y.-C. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol. Bioeng. 2004, 88, 42–51. [Google Scholar] [CrossRef] [PubMed]

	



Ramos, L.; Kopec, L.A.; Sweitzer, S.M.; Fornwald, J.A.; Zhao, H.; McAllister, P.; McNulty, D.E.; Trill, J.J.; Kane, J.F. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 2002, 38, 37–41. [Google Scholar] [CrossRef] [PubMed]

	



Hu, Y.-C.; Tsai, C.-T.; Chang, Y.-J.; Huang, J.-H. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: Focuses on strategic infection and feeding. Biotechnol. Prog. 2003, 19, 373–379. [Google Scholar] [CrossRef] [PubMed]

	



Cheng, T.; Xu, C.-Y.; Wang, Y.-B.; Chen, M.; Wu, T.; Zhang, J.; Xia, N.-S. A rapid and efficient method to express target genes in mammalian cells by baculovirus. World J. Gastroenterol. 2004, 10, 1612–1618. [Google Scholar] [PubMed]

	



Wang, K.-C.; Wu, J.-C.; Chung, Y.-C.; Ho, Y.-C.; Chang, M.D.-T.; Hu, Y.-C. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol. Bioeng. 2005, 89, 464–473. [Google Scholar] [CrossRef] [PubMed]

	



Turkki, P.; Makkonen, K.-E.; Huttunen, M.; Laakkonen, J.P.; Ylä-Herttuala, S.; Airenne, K.J.; Marjomäki, V. Cell susceptibility to baculovirus transduction and echovirus infection is modified by PKC phosphorylation and vimentin organization. J. Virol. 2013, 87, 9822–9835. [Google Scholar] [CrossRef] [PubMed]

	



Kukkonen, S.P.; Airenne, K.J.; Marjomaki, V.; Laitinen, O.H.; Lehtolainen, P.; Kankaanpaa, P.; Mahonen, A.J.; Raty, J.K.; Nordlund, H.R.; Oker-Blom, C.; et al. Baculovirus capsid display: A novel tool for transduction imaging. Mol. Ther. 2003, 8, 853–862. [Google Scholar] [CrossRef] [PubMed]

	



Shen, H.-C.; Lee, H.-P.; Lo, W.-H.; Yang, D.-G.; Hu, Y.-C. Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J. Gene Med. 2007, 9, 470–478. [Google Scholar] [CrossRef] [PubMed]

	



Airenne, K.J.; Hiltunen, M.O.; Turunen, M.P.; Turunen, A.M.; Laitinen, O.H.; Kulomaa, M.S.; Yla-Herttuala, S.; Ylä-Herttuala, S. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther. 2009, 7, 1499–1504. [Google Scholar] [CrossRef]

	



Salminen, M.; Airenne, K.J.; Rinnankoski, R.; Reimari, J.; Välilehto, O.; Rinne, J.; Suikkanen, S.; Kukkonen, S.; Ylä-Herttuala, S.; Kulomaa, M.S.; et al. Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J. Virol. 2005, 79, 2720–2728. [Google Scholar] [CrossRef] [PubMed]

	



Wang, X.; Yin, J.; Huang, X.; Zhong, J. DNA methyltransferase inhibitors increase baculovirus-mediated gene expression in mammalian cells when applied before infection. Anal. Biochem. 2010, 396, 322–324. [Google Scholar] [CrossRef] [PubMed]

	



Hunt, L.; Batard, P.; Jordan, M.; Wurm, F.M. Fluorescent proteins in animal cells for process development: Optimization of sodium butyrate treatment as an example. Biotechnol. Bioeng. 2002, 77, 528–537. [Google Scholar] [CrossRef] [PubMed]

	



Mäkelä, A.R.; Oker-Blom, C. Baculovirus display: A multifunctional technology for gene delivery and eukaryotic library development. Adv. Virus Res. 2006, 68, 91–112. [Google Scholar] [PubMed]

	



Liang, C.; Song, J.; Chen, X. The GP64 protein of Autographa californica multiple nucleopolyhedrovirus rescues Helicoverpa armigera nucleopolyhedrovirus transduction in mammalian cells. J. Gen. Virol. 2005, 86, 1629–1635. [Google Scholar] [CrossRef] [PubMed]

	



Tani, H.; Limn, C.K.; Yap, C.C.; Onishi, M.; Nozaki, M.; Nishimune, Y.; Okahashi, N.; Kitagawa, Y.; Watanabe, R.; Mochizuki, R.; et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J. Virol. 2003, 77, 9799–9808. [Google Scholar] [CrossRef] [PubMed]

	



Boublik, Y.; Di Bonito, P.; Jones, I.M. Eukaryotic virus display: Engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology 1995, 13, 1079–1084. [Google Scholar] [CrossRef] [PubMed]

	



Chapple, S.D.J.; Jones, I.M. Non-polar distribution of green fluorescent protein on the surface of Autographa californica nucleopolyhedrovirus using a heterologous membrane anchor. J. Biotechnol. 2002, 95, 269–275. [Google Scholar] [CrossRef] [PubMed]

	



Tani, H.; Nishijima, M.; Ushijima, H.; Miyamura, T.; Matsuura, Y. Characterization of cell-surface determinants important for baculovirus infection. Virology 2001, 279, 343–353. [Google Scholar] [CrossRef] [PubMed]

	



Kaikkonen, M.U.; Räty, J.K.; Airenne, K.J.; Wirth, T.; Heikura, T.; Ylä-Herttuala, S.; Raty, J.K.; Yla-Herttuala, S. Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther. 2006, 13, 304–312. [Google Scholar] [CrossRef] [PubMed]

	



Kitagawa, Y.; Tani, H.; Limn, C.K.; Matsunaga, T.M.; Moriishi, K.; Matsuura, Y. Ligand-directed gene targeting to mammalian cells by pseudotype baculoviruses. J. Virol. 2005, 79, 3639–3652. [Google Scholar] [CrossRef] [PubMed]

	



Pieroni, L.; Maione, D.; La Monica, N. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum. Gene Ther. 2001, 12, 871–881. [Google Scholar] [CrossRef] [PubMed]

	



Matilainen, H.; Mäkelä, A.R.; Riikonen, R.; Saloniemi, T.; Korhonen, E.; Hyypiä, T.; Heino, J.; Grabherr, R.; Oker-Blom, C. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J. Biotechnol. 2006, 125, 114–126. [Google Scholar] [CrossRef] [PubMed]

	



Mäkelä, A.R.; Matilainen, H.; White, D.J.; Ruoslahti, E.; Oker-Blom, C. Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J. Virol. 2006, 80, 6603–6611. [Google Scholar] [CrossRef] [PubMed]

	



Ojala, K.; Mottershead, D.G.; Suokko, A.; Oker-Blom, C. Specific binding of baculoviruses displaying gp64 fusion proteins to mammalian cells. Biochem. Biophys. Res. Commun. 2001, 284, 777–784. [Google Scholar] [CrossRef] [PubMed]

	



Ojala, K.; Koski, J.; Ernst, W.; Grabherr, R.; Jones, I.; Oker-Blom, C. Improved display of synthetic IgG-binding domains on the baculovirus surface. Technol. Cancer Res. Treat. 2004, 3, 77–84. [Google Scholar] [CrossRef] [PubMed]

	



Riikonen, R.; Sc, M.; Matilainen, H.; Rajala, N.; Pentikäinen, O.; Johnson, M.; Heino, J.; Oker-blom, C.; Pentikainen, O. Functional Display of an α 2 Integrin-Specific Motif ( RKK ) on the Surface of Baculovirus Particles. Technol. Cancer Res. Treat. 2005, 4, 437–445. [Google Scholar] [CrossRef] [PubMed]

	



Räty, J.K.; Airenne, K.J.; Marttila, A.T.; Marjomäki, V.; Hytönen, V.P.; Lehtolainen, P.; Laitinen, O.H.; Mähönen, A.J.; Kulomaa, M.S.; Ylä-Herttuala, S. Enhanced gene delivery by avidin-displaying baculovirus. Mol. Ther. 2004, 9, 282–291. [Google Scholar] [CrossRef] [PubMed]

	



Kaikkonen, M.U.; Viholainen, J.I.; Närvänen, A.; Ylä-Herttuala, S.; Airenne, K.J. Targeting and purification of metabolically biotinylated baculovirus. Hum. Gene Ther. 2008, 19, 589–600. [Google Scholar] [CrossRef] [PubMed]

	



Mäkelä, A.R.; Enbäck, J.; Laakkonen, J.P.; Vihinen-Ranta, M.; Laakkonen, P.; Oker-Blom, C. Tumor targeting of baculovirus displaying a lymphatic homing peptide. J. Gene Med. 2008, 10, 1019–1031. [Google Scholar] [CrossRef] [PubMed]

	



Kim, Y.-K.; Park, I.-K.; Jiang, H.-L.; Choi, J.-Y.; Je, Y.-H.; Jin, H.; Kim, H.-W.; Cho, M.-H.; Cho, C.-S. Regulation of transduction efficiency by pegylation of baculovirus vector in vitro and in vivo. J. Biotechnol. 2006, 125, 104–109. [Google Scholar] [CrossRef] [PubMed]

	



Kim, Y.-K.; Choi, J.Y.; Jiang, H.-L.; Arote, R.; Jere, D.; Cho, M.-H.; Je, Y.H.; Cho, C.-S. Hybrid of baculovirus and galactosylated PEI for efficient gene carrier. Virology 2009, 387, 89–97. [Google Scholar] [CrossRef] [PubMed]

	



Kim, Y.-K.; Choi, J.Y.; Yoo, M.-K.; Jiang, H.-L.; Arote, R.; Je, Y.H.; Cho, M.-H.; Cho, C.-S. Receptor-mediated gene delivery by folate-PEG-baculovirus in vitro. J. Biotechnol. 2007, 131, 353–361. [Google Scholar] [CrossRef] [PubMed]

	



Kim, Y.-K.; Kwon, J.-T.; Choi, J.Y.; Jiang, H.-L.; Arote, R.; Jere, D.; Je, Y.H.; Cho, M.-H.; Cho, C.-S. Suppression of tumor growth in xenograft model mice by programmed cell death 4 gene delivery using folate-PEG-baculovirus. Cancer Gene Ther. 2010, 17, 751–760. [Google Scholar] [CrossRef] [PubMed]

	



Yang, Y.; Lo, S.-L.; Yang, J.; Yang, J.; Goh, S.S.L.; Wu, C.; Feng, S.-S.; Wang, S. Polyethylenimine coating to produce serum-resistant baculoviral vectors for in vivo gene delivery. Biomaterials 2009, 30, 5767–5774. [Google Scholar] [CrossRef] [PubMed]

	



Spenger, A.; Ernst, W.; Condreay, J.P.; Kost, T.A.; Grabherr, R. Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expr. Purif. 2004, 38, 17–23. [Google Scholar] [CrossRef] [PubMed]

	



Park, S.W.; Lee, H.K.; Kim, T.G.; Yoon, S.K.; Paik, S.Y. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem. Biophys. Res. Commun. 2001, 289, 444–450. [Google Scholar] [CrossRef] [PubMed]

	



Li, Y.; Yang, Y.; Wang, S. Neuronal gene transfer by baculovirus-derived vectors accommodating a neurone-specific promoter. Exp. Physiol. 2005, 90, 39–44. [Google Scholar] [CrossRef] [PubMed]

	



Wang, C.Y.; Wang, S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther. 2006, 13, 1447–1456. [Google Scholar] [CrossRef] [PubMed]

	



Guo, R.; Tian, L.; Han, B.; Xu, H.; Zhang, M.; Li, B. Feasibility of a novel positive feedback effect of 131I-promoted Bac-Egr1-hNIS expression in malignant glioma via baculovirus. Nucl. Med. Biol. 2011, 38, 599–604. [Google Scholar] [CrossRef] [PubMed]

	



McCormick, C.J.; Challinor, L.; Macdonald, A.; Rowlands, D.J.; Harris, M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J. Gen. Virol. 2004, 85, 429–439. [Google Scholar] [CrossRef] [PubMed]

	



Palombo, F.; Monciotti, A.; Recchia, A.; Cortese, R.; Ciliberto, G.; La Monica, N. Site-specific integration in mammalian cells mediated by a new hybrid baculovirus-adeno-associated virus vector. J. Virol. 1998, 72, 5025–5034. [Google Scholar] [PubMed]

	



Wang, C.-Y.; Wang, S. Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain. Hum. Gene Ther. 2005, 16, 1219–1226. [Google Scholar] [CrossRef] [PubMed]

	



Shan, L.; Wang, L.; Yin, J.; Zhong, P.; Zhong, J. An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. J. Gene Med. 2006, 8, 1400–1406. [Google Scholar] [CrossRef] [PubMed]

	



Luo, W.-Y.; Shih, Y.-S.; Hung, C.-L.; Lo, K.-W.; Chiang, C.-S.; Lo, W.-H.; Huang, S.-F.; Wang, S.-C.; Yu, C.-F.; Chien, C.-H.; et al. Development of the hybrid Sleeping Beauty: Baculovirus vector for sustained gene expression and cancer therapy. Gene Ther. 2012, 19, 844–851. [Google Scholar] [CrossRef] [PubMed]

	



Abe, T.; Takahashi, H.; Hamazaki, H.; Miyano-Kurosaki, N.; Matsuura, Y.; Takaku, H. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol. 2003, 171, 1133–1139. [Google Scholar] [CrossRef] [PubMed]

	



Beck, N.B.; Sidhu, J.S.; Omiecinski, C.J. Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther. 2000, 7, 1274–1283. [Google Scholar] [CrossRef] [PubMed]

	



Gronowski, A.M.; Hilbert, D.M.; Sheehan, K.C.; Garotta, G.; Schreiber, R.D. Baculovirus stimulates antiviral effects in mammalian cells. J. Virol. 1999, 73, 9944–9951. [Google Scholar] [PubMed]

	



Abe, T.; Hemmi, H.; Miyamoto, H.; Moriishi, K.; Tamura, S.; Takaku, H.; Akira, S.; Matsuura, Y. Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. J. Virol. 2005, 79, 2847–2858. [Google Scholar] [CrossRef] [PubMed]

	



Abe, T.; Kaname, Y.; Wen, X.; Tani, H.; Moriishi, K.; Uematsu, S.; Takeuchi, O.; Ishii, K.J.; Kawai, T.; Akira, S.; et al. Baculovirus induces type I interferon production through toll-like receptor-dependent and -independent pathways in a cell-type-specific manner. J. Virol. 2009, 83, 7629–7640. [Google Scholar] [CrossRef] [PubMed]

	



Boulaire, J.; Zhao, Y.; Wang, S. Gene expression profiling to define host response to baculoviral transduction in the brain. J. Neurochem. 2009, 109, 1203–1214. [Google Scholar] [CrossRef] [PubMed]

	



Chen, G.-Y.; Shiah, H.-C.; Su, H.-J.; Chen, C.-Y.; Chuang, Y.-J.; Lo, W.-H.; Huang, J.-L.; Chuang, C.-K.; Hwang, S.-M.; Hu, Y.-C. Baculovirus transduction of mesenchymal stem cells triggers the toll-like receptor 3 pathway. J. Virol. 2009, 83, 10548–10556. [Google Scholar] [CrossRef] [PubMed]

	



Han, Y.; Niu, M.; An, L.; Li, W. Upregulation of proinflammatory cytokines and NO production in BV-activated avian macrophage-like cell line (HD11) requires MAPK and NF-kappaB pathways. Int. Immunopharmacol. 2009, 9, 817–823. [Google Scholar] [CrossRef] [PubMed]

	



Wilson, S.; Baird, M.; Ward, V.K. Delivery of vaccine peptides by rapid conjugation to baculovirus particles. Vaccine 2008, 26, 2451–2456. [Google Scholar] [CrossRef] [PubMed]

	



Abe, T. Analysis of the application of host innate immune response to control and prevent infection. Uirusu 2012, 62, 103–112. [Google Scholar] [CrossRef] [PubMed]

	



Suzuki, T.; Chang, M.O.; Kitajima, M.; Takaku, H. Baculovirus activates murine dendritic cells and induces non-specific NK cell and T cell immune responses. Cell. Immunol. 2010, 262, 35–43. [Google Scholar] [CrossRef] [PubMed]

	



Li, K.-C.; Chang, Y.-H.; Lin, C.-Y.; Hwang, S.-M.; Wang, T.-H.; Hu, Y.-C. Preclinical safety evaluation of ASCs engineered by FLPo/Frt-based hybrid baculovirus: In Vitro and large animal studies. Tissue Eng. A 2015. [Google Scholar] [CrossRef]

	



Wickham, T.J.; Shuler, M.L.; Hammer, D.A.; Granados, R.R.; Wood, H.A. Equilibrium and kinetic analysis of Autographa californica nuclear polyhedrosis virus attachment to different insect cell lines. J. Gen. Virol. 1992, 73, 3185–3194. [Google Scholar] [CrossRef] [PubMed]

	



Matilainen, H.; Rinne, J.; Gilbert, L.; Marjomäki, V.; Reunanen, H.; Oker-Blom, C. Baculovirus entry into human hepatoma cells. J. Virol. 2005, 79, 15452–15459. [Google Scholar] [CrossRef] [PubMed]

	



Long, G.; Pan, X.; Kormelink, R.; Vlak, J.M. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol. 2006, 80, 8830–8833. [Google Scholar] [CrossRef] [PubMed]

	



Kataoka, C.; Kaname, Y.; Taguwa, S.; Abe, T.; Fukuhara, T.; Tani, H.; Moriishi, K.; Matsuura, Y. Baculovirus GP64-mediated entry into mammalian cells. J. Virol. 2012, 86, 2610–2620. [Google Scholar] [CrossRef] [PubMed]

	



Moller-Tank, S.; Kondratowicz, A.S.; Davey, R.A.; Rennert, P.D.; Maury, W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J. Virol. 2013, 87, 8327–8341. [Google Scholar] [CrossRef] [PubMed]

	



Laakkonen, J.P.; Makela, A.R.; Kakkonen, E.; Turkki, P.; Kukkonen, S.; Peranen, J.; Yla-Herttuala, S.; Airenne, K.J.; Oker-Blom, C.; Vihinen-Ranta, M.; et al. Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLOS ONE 2009, 4, e5093. [Google Scholar] [CrossRef] [PubMed]

	



Marsh, M.; Helenius, A. Virus entry: Open sesame. Cell 2006, 124, 729–740. [Google Scholar] [CrossRef] [PubMed]

	



Wu, C.; Wang, S. A pH-sensitive heparin-binding sequence from baculovirus gp64 protein is important for binding to mammalian cells but not to Sf. J. Virol. 2012, 86, 484–491. [Google Scholar] [CrossRef] [PubMed]

	



O’Flynn, N.M.J.; Patel, A.; Kadlec, J.; Jones, I.M. Improving promiscuous mammalian cell entry by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. Biosci. Rep. 2013, 33, 23–36. [Google Scholar]

	



Duisit, G.; Saleun, S.; Douthe, S.; Barsoum, J.; Chadeuf, G.; Moullier, P. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J. Gene Med. 1999, 1, 93–102. [Google Scholar] [CrossRef] [PubMed]

	



Makkonen, K.-E.; Turkki, P.; Laakkonen, J.P.; Ylä-Herttuala, S.; Marjomäki, V.; Airenne, K.J. 6-O sulfated and N-sulfated Syndecan-1 promotes baculovirus binding and entry into mammalian cells. J. Virol. 2013, 87, 11148–11159. [Google Scholar] [CrossRef] [PubMed]

	



Kamiya, K.; Kobayashi, J.; Yoshimura, T.; Tsumoto, K. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Biochim. Biophys. Acta 2010, 1798, 1625–1631. [Google Scholar] [CrossRef] [PubMed]

	



Backovic, M.; Jardetzky, T.S. Class III viral membrane fusion proteins. Adv. Exp. Med. Biol. 2011, 714, 91–101. [Google Scholar] [PubMed]

	



Goley, E.D.; Ohkawa, T.; Mancuso, J.; Woodruff, J.B.; D’Alessio, J.A.; Cande, W.Z.; Volkman, L.E.; Welch, M.D. Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 2006, 314, 464–467. [Google Scholar] [CrossRef] [PubMed]

	



Ohkawa, T.; Volkman, L.E.; Welch, M.D. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J. Cell Biol. 2010, 190, 187–195. [Google Scholar] [CrossRef] [PubMed]

	



Au, S.; Panté, N.; Pante, N. Nuclear transport of baculovirus: Revealing the nuclear pore complex passage. J. Struct. Biol. 2012, 177, 90–98. [Google Scholar] [CrossRef] [PubMed]

	



Strauss, R.; Hüser, A.; Ni, S.; Tuve, S.; Kiviat, N.; Sow, P.S.; Hofmann, C.; Lieber, A.; Huser, A. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein. Mol. Ther. 2007, 15, 193–202. [Google Scholar] [CrossRef] [PubMed]

	



Hofmann, C.; Strauss, M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther. 1998, 5, 531–536. [Google Scholar] [CrossRef] [PubMed]

	



Georgopoulos, L.J.; Elgue, G.; Sanchez, J.; Dussupt, V.; Magotti, P.; Lambris, J.D.; Tötterman, T.H.; Maitland, N.J.; Nilsson, B. Preclinical evaluation of innate immunity to baculovirus gene therapy vectors in whole human blood. Mol. Immunol. 2009, 46, 2911–2917. [Google Scholar] [CrossRef] [PubMed]

	



Hoare, J.; Waddington, S.; Thomas, H.C.; Coutelle, C.; McGarvey, M.J. Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. J. Gene Med. 2005, 7, 325–333. [Google Scholar] [CrossRef] [PubMed]

	



Sandig, V.; Hofmann, C.; Steinert, S.; Jennings, G.; Schlag, P.; Strauss, M. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum. Gene Ther. 1996, 7, 1937–1945. [Google Scholar] [CrossRef] [PubMed]

	



Kinnunen, K.; Kalesnykas, G.; Mahonen, A.J.; Laidinen, S.; Holma, L.; Heikura, T.; Airenne, K.; Uusitalo, H.; Yla-Herttuala, S. Baculovirus is an efficient vector for the transduction of the eye: Comparison of baculovirus- and adenovirus-mediated intravitreal vascular endothelial growth factor D gene transfer in the rabbit eye. J. Gene Med. 2009, 11, 382–389. [Google Scholar] [CrossRef] [PubMed]

	



Lehtolainen, P.; Tyynela, K.; Kannasto, J.; Airenne, K.J.; Yla-Herttuala, S. Baculoviruses exhibit restricted cell type specificity in rat brain: A comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Ther. 2002, 9, 1693–1699. [Google Scholar] [CrossRef] [PubMed]

	



Wu, C.; Lin, J.; Hong, M.; Choudhury, Y.; Balani, P.; Leung, D.; Dang, L.H.; Zhao, Y.; Zeng, J.; Wang, S. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy. Mol. Ther. 2009, 17, 2058–2066. [Google Scholar] [CrossRef] [PubMed]

	



Park, H.J.; Lee, W.Y.; Kim, J.H.; Kim, J.H.; Jung, H.J.; Kim, N.H.; Kim, B.K.; Song, H. Interstitial tissue-specific gene expression in mouse testis by intra-tunica albuguineal injection of recombinant baculovirus. Asian J. Androl. 2009, 11, 342–350. [Google Scholar] [CrossRef] [PubMed]

	



Wang, X.; Wang, C.; Zeng, J.; Xu, X.; Hwang, P.Y.K.; Yee, W.-C.; Ng, Y.-K.; Wang, S. Gene transfer to dorsal root ganglia by intrathecal injection: Effects on regeneration of peripheral nerves. Mol. Ther. 2005, 12, 314–320. [Google Scholar] [CrossRef] [PubMed]

	



Liu, X.; Li, K.; Song, J.; Liang, C.; Wang, X.; Chen, X. Efficient and stable gene expression in rabbit intervertebral disc cells transduced with a recombinant baculovirus vector. Spine 2006, 31, 732–735. [Google Scholar] [CrossRef] [PubMed]

	



Airenne, K.J.; Makkonen, K.-E.; Mähönen, A.J.; Ylä-Herttuala, S. In vivo application and tracking of baculovirus. Curr. Gene Ther. 2010, 10, 187–194. [Google Scholar] [CrossRef] [PubMed]

	



Sarkis, C.; Serguera, C.; Petres, S.; Buchet, D.; Ridet, J.L.; Edelman, L.; Mallet, J. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc. Natl. Acad. Sci. USA 2000, 97, 14638–14643. [Google Scholar] [CrossRef] [PubMed]

	



Huser, A.; Rudolph, M.; Hofmann, C. Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors. Nat. Biotechnol. 2001, 19, 451–455. [Google Scholar] [CrossRef] [PubMed]

	



Kaikkonen, M.U.; Maatta, A.I.; Yla-Herttuala, S.; Airenne, K.J.; Ylä-Herttuala, S. Screening of complement inhibitors: Shielded baculoviruses increase the safety and efficacy of gene delivery. Mol. Ther. 2010, 18, 987–992. [Google Scholar] [CrossRef] [PubMed]

	



Kircheis, R.; Wightman, L.; Schreiber, A.; Robitza, B.; Rössler, V.; Kursa, M.; Wagner, E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001, 8, 28–40. [Google Scholar] [CrossRef] [PubMed]

	



Laitinen, O.H.; Airenne, K.J.; Hytönen, V.P.; Peltomaa, E.; Mähönen, A.J.; Wirth, T.; Lind, M.M.; Mäkelä, K.A.; Toivanen, P.I.; Schenkwein, D.; et al. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res. 2005, 33, e42. [Google Scholar] [CrossRef] [PubMed]

	



Räty, J.K.; Liimatainen, T.; Wirth, T.; Airenne, K.J.; Ihalainen, T.O.; Huhtala, T.; Hamerlynck, E.; Vihinen-Ranta, M.; Närvänen, A.; Ylä-Herttuala, S.; et al. Magnetic resonance imaging of viral particle biodistribution in vivo. Gene Ther. 2006, 13, 1440–1446. [Google Scholar] [CrossRef] [PubMed]

	



Liu, B.H.; Yang, Y.; Paton, J.F.R.; Li, F.; Boulaire, J.; Kasparov, S.; Wang, S. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain. Mol. Ther. 2006, 14, 872–882. [Google Scholar] [CrossRef] [PubMed]

	



Li, Y.; Wang, X.; Guo, H.; Wang, S. Axonal transport of recombinant baculovirus vectors. Mol. Ther. 2004, 10, 1121–1129. [Google Scholar] [CrossRef] [PubMed]

	



Haeseleer, F.; Imanishi, Y.; Saperstein, D.A.; Palczewski, K. Gene transfer mediated by recombinant baculovirus into mouse eye. Invest. Ophthalmol. Vis. Sci. 2001, 42, 3294–3300. [Google Scholar] [PubMed]

	



Turunen, T.A.K.; Laakkonen, J.P.; Alasaarela, L.; Airenne, K.J.; Ylä-Herttuala, S. Sleeping Beauty baculovirus hybrid vectors for long-term gene expression in the eye. J. Gene Med. 2014, 16, 40–53. [Google Scholar] [CrossRef] [PubMed]

	



Luz-Madrigal, A.; Clapp, C.; Aranda, J.; Vaca, L. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter. Virol. J. 2007, 4, e88. [Google Scholar] [CrossRef]

	



Torres-Vega, M.A.; Vargas-Jerónimo, R.Y.; Montiel-Martínez, A.G.; Muñoz-Fuentes, R.M.; Zamorano-Carrillo, A.; Pastor, A.R.; Palomares, L.A. Delivery of glutamine synthetase gene by baculovirus vectors: A proof of concept for the treatment of acute hyperammonemia. Gene Ther. 2015, 22, 58–64. [Google Scholar] [CrossRef] [PubMed]

	



Heikura, T.; Nieminen, T.; Roschier, M.M.; Karvinen, H.; Kaikkonen, M.U.; Mähönen, A.J.; Lesch, H.P.; Rissanen, T.T.; Laitinen, O.H.; Airenne, K.J.; et al. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J. Gene Med. 2012, 14, 35–43. [Google Scholar] [CrossRef] [PubMed]

	



Yanev, P.; Jolkkonen, J.; Airenne, K.; Ylä-Herttuala, S.; Wirth, T. Enhanced angiogenesis and reduced infarct size by vascular endothelial growth factor D is not translated to behavioral outcome in a rat model of ischemic stroke. J. Exp. Stroke Transl. Med. 2010, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]

	



Paul, A.; Nayan, M.; Khan, A.A.; Shum-Tim, D.; Prakash, S. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: Investigation in rat heart with acute infarction. Int. J. Nanomed. 2012, 7, 663–682. [Google Scholar] [CrossRef]

	



Paul, A.; Binsalamah, Z.M.; Khan, A.A.; Abbasia, S.; Elias, C.B.; Shum-Tim, D.; Prakash, S. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 2011, 32, 8304–8318. [Google Scholar] [CrossRef] [PubMed]

	



Paul, A.; Elias, C.B.; Shum-Tim, D.; Prakash, S. Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization. Sci. Rep. 2013, 3, 2366. [Google Scholar] [CrossRef] [PubMed]

	



Nishibe, Y.; Kaneko, H.; Suzuki, H.; Abe, T.; Matsuura, Y.; Takaku, H. Baculovirus-mediated interferon alleviates dimethylnitrosamine-induced liver cirrhosis symptoms in a murine model. Gene Ther. 2008, 15, 990–997. [Google Scholar] [CrossRef] [PubMed]

	



Räty, J.K.; Liimatainen, T.; Huhtala, T.; Kaikkonen, M.U.; Airenne, K.J.; Hakumäki, J.M.; Närvänen, A.; Ylä-Herttuala, S. SPECT/CT imaging of baculovirus biodistribution in rat. Gene Ther. 2007, 14, 930–938. [Google Scholar] [CrossRef] [PubMed]

	



Corridon, P.R.; Rhodes, G.J.; Leonard, E.C.; Basile, D.P.; Gattone, V.H.; Bacallao, R.L.; Atkinson, S.J. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am. J. Physiol. Renal Physiol. 2013, 304, F1217–F1229. [Google Scholar] [CrossRef] [PubMed]

	



Wang, C.-Y.; Li, F.; Yang, Y.; Guo, H.-Y.; Wu, C.-X.; Wang, S. Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Res. 2006, 66, 5798–5806. [Google Scholar] [CrossRef] [PubMed]

	



Balani, P.; Boulaire, J.; Zhao, Y.; Zeng, J.; Lin, J.; Wang, S. High mobility group box2 promoter-controlled suicide gene expression enables targeted glioblastoma treatment. Mol. Ther. 2009, 17, 1003–1011. [Google Scholar] [CrossRef] [PubMed]

	



Guo, H.; Choudhury, Y.; Yang, J.; Chen, C.; Tay, F.C.; Lim, T.M.; Wang, S. Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate. J. Gene Med. 2011, 13, 26–36. [Google Scholar] [CrossRef] [PubMed]

	



Luo, W.-Y.; Shih, Y.-S.; Lo, W.-H.; Chen, H.-R.; Wang, S.-C.; Wang, C.-H.; Chien, C.-H.; Chiang, C.-S.; Chuang, Y.-J.; Hu, Y.-C. Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Ther. 2011, 18, 637–645. [Google Scholar] [CrossRef] [PubMed]

	



Swift, S.L.; Rivera, G.C.; Dussupt, V.; Leadley, R.M.; Hudson, L.C.; Ma de Ridder, C.; Kraaij, R.; Burns, J.E.; Maitland, N.J.; Georgopoulos, L.J. Evaluating baculovirus as a vector for human prostate cancer gene therapy. PLOS ONE 2013, 8, e65557. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Zhang, M.; Guo, R.; Shi, S.; Miao, Y.; Zhang, Y.; Li, B. Baculovirus vector-mediated transfer of sodium iodide symporter and plasminogen kringle 5 genes for tumor radioiodide therapy. PLOS ONE 2014, 9, e92326. [Google Scholar] [CrossRef] [PubMed]

	



Huang, W.; Tian, X.-L.; Wu, Y.-L.; Zhong, J.; Yu, L.-F.; Hu, S.-P.; Li, B. Suppression of gastric cancer growth by baculovirus vector-mediated transfer of normal epithelial cell specific-1 gene. World J. Gastroenterol. 2008, 14, 5810–5815. [Google Scholar] [CrossRef] [PubMed]

	



Pan, Y.; Fang, L.; Fan, H.; Luo, R.; Zhao, Q.; Chen, H.; Xiao, S. Antitumor effects of a recombinant pseudotype baculovirus expressing Apoptin in vitro and in vivo. Int. J. Cancer 2010, 126, 2741–2751. [Google Scholar] [PubMed]

	



Chen, C.-L.; Wu, J.-C.; Chen, G.-Y.; Yuan, P.-H.; Tseng, Y.-W.; Li, K.-C.; Hwang, S.-M.; Hu, Y.-C. Baculovirus-mediated mirna regulation to suppress hepatocellular carcinoma tumorigenicity and metastasis. Mol. Ther. 2015, 23, 79–88. [Google Scholar] [CrossRef] [PubMed]

	



Kitajima, M.; Abe, T.; Miyano-Kurosaki, N.; Taniguchi, M.; Nakayama, T.; Takaku, H. Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus. Mol. Ther. 2008, 16, 261–268. [Google Scholar] [CrossRef] [PubMed]

	



Suzuki, T.; Oo Chang, M.; Kitajima, M.; Takaku, H. Induction of antitumor immunity against mouse carcinoma by baculovirus-infected dendritic cells. Cell. Mol. Immunol. 2010, 7, 440–446. [Google Scholar] [CrossRef] [PubMed]

	



Molinari, P.; Crespo, M.I.; Gravisaco, M.J.; Taboga, O.; Morón, G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLOS ONE 2011, 6, e24108. [Google Scholar] [CrossRef] [PubMed]

	



Wang, L.; Shan, L.; Lo, K.W.; Yin, J.; Zhang, Y.; Sun, R.; Zhong, J. Inhibition of nasopharyngeal carcinoma growth by RTA-expressing baculovirus vectors containing oriP. J. Gene Med. 2008, 10, 1124–1133. [Google Scholar] [CrossRef] [PubMed]

	



Bak, X.Y.; Yang, J.; Wang, S. Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Ther. 2010, 17, 721–729. [Google Scholar] [CrossRef] [PubMed]

	



Bak, X.Y.; Lam, D.H.; Yang, J.; Ye, K.; Wei, E.L.X.; Lim, S.K.; Wang, S. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Hum. Gene Ther. 2011, 22, 1365–1377. [Google Scholar] [CrossRef] [PubMed]

	



Zhao, Y.; Lam, D.H.; Yang, J.; Lin, J.; Tham, C.K.; Ng, W.H.; Wang, S. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. 2012, 9, 189–200. [Google Scholar]

	



Lee, E.X.; Lam, D.H.; Wu, C.; Yang, J.; Tham, C.K.; Ng, W.H.; Wang, S. Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Mol. Pharm. 2011, 8, 1515–1524. [Google Scholar] [CrossRef] [PubMed]

	



Yang, J.; Lam, D.H.; Goh, S.S.; Lee, E.X.; Zhao, Y.; Tay, F.C.; Chen, C.; Du, S.; Balasundaram, G.; Shahbazi, M.; et al. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells 2012, 30, 1021–1029. [Google Scholar] [CrossRef] [PubMed]

	



Zhu, D.; Chen, C.; Purwanti, Y.I.; Du, S.; Lam, D.H.; Wu, C.; Zeng, J.; Toh, H.C.; Wang, S. Induced pluripotent stem cell-derived neural stem cells transduced with baculovirus encoding CD40 ligand for immunogene therapy in mouse models of breast cancer. Hum. Gene Ther. 2014, 25, 747–758. [Google Scholar] [CrossRef] [PubMed]

	



Sung, L.-Y.; Lo, W.-H.; Chiu, H.-Y.; Chen, H.-C.; Chung, C.-K.; Lee, H.-P.; Hu, Y.-C. Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials 2007, 28, 3437–3447. [Google Scholar] [CrossRef] [PubMed]

	



Chen, H.-C.; Lee, H.-P.; Ho, Y.-C.; Sung, M.-L.; Hu, Y.-C. Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 2006, 27, 3154–3162. [Google Scholar] [CrossRef] [PubMed]

	



Sung, L.-Y.; Chiu, H.-Y.; Chen, H.-C.; Chen, Y.-L.; Chuang, C.-K.; Hu, Y.-C. Baculovirus-mediated growth factor expression in dedifferentiated chondrocytes accelerates redifferentiation: Effects of combinational transduction. Tissue Eng. A 2009, 15, 1353–1362. [Google Scholar] [CrossRef]

	



Chen, H.-C.; Sung, L.-Y.; Lo, W.-H.; Chuang, C.-K.; Wang, Y.-H.; Lin, J.-L.; Hu, Y.-C. Combination of baculovirus-expressed BMP-2 and rotating-shaft bioreactor culture synergistically enhances cartilage formation. Gene Ther. 2008, 15, 309–317. [Google Scholar] [CrossRef] [PubMed]

	



Chen, H.-C.; Chang, Y.-H.; Chuang, C.-K.; Lin, C.-Y.; Sung, L.-Y.; Wang, Y.-H.; Hu, Y.-C. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 2009, 30, 674–681. [Google Scholar] [CrossRef] [PubMed]

	



Chuang, C.-K.; Lin, K.-J.; Lin, C.-Y.; Chang, Y.-H.; Yen, T.-C.; Hwang, S.-M.; Sung, L.-Y.; Chen, H.-C.; Hu, Y.-C. Xenotransplantation of human mesenchymal stem cells into immunocompetent rats for calvarial bone repair. Tissue Eng. Part A 2010, 16, 479–488. [Google Scholar] [CrossRef] [PubMed]

	



Lin, C.-Y.; Chang, Y.-H.; Lin, K.-J.; Yen, T.-C.; Tai, C.-L.; Chen, C.-Y.; Lo, W.-H.; Hsiao, I.-T.; Hu, Y.-C. The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials 2010, 31, 3222–3230. [Google Scholar] [CrossRef] [PubMed]

	



Lin, C.-Y.; Lin, K.-J.; Kao, C.-Y.; Chen, M.-C.; Lo, W.-H.; Yen, T.-C.; Chang, Y.-H.; Hu, Y.-C. The role of adipose-derived stem cells engineered with the persistently expressing hybrid baculovirus in the healing of massive bone defects. Biomaterials 2011, 32, 6505–6514. [Google Scholar] [CrossRef] [PubMed]

	



Lin, C.-Y.; Chang, Y.-H.; Kao, C.-Y.; Lu, C.-H.; Sung, L.-Y.; Yen, T.-C.; Lin, K.-J.; Hu, Y.-C. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials 2012, 33, 3682–3692. [Google Scholar] [CrossRef] [PubMed]

	



Lu, C.-H.; Lin, K.-J.; Chiu, H.-Y.; Chen, C.-Y.; Yen, T.-C.; Hwang, S.-M.; Chang, Y.-H.; Hu, Y.-C. Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng. A 2012, 18, 2114–2124. [Google Scholar] [CrossRef]

	



Lu, C.-H.; Yeh, T.-S.; Yeh, C.-L.; Fang, Y.-H.D.; Sung, L.-Y.; Lin, S.-Y.; Yen, T.-C.; Chang, Y.-H.; Hu, Y.-C. Regenerating cartilages by engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol. Ther. 2014, 22, 186–195. [Google Scholar] [CrossRef] [PubMed]

	



Chen, C.-Y.; Wu, H.-H.; Chen, C.-P.; Chern, S.-R.; Hwang, S.-M.; Huang, S.-F.; Lo, W.-H.; Chen, G.-Y.; Hu, Y.-C. Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Mol. Pharm. 2011, 8, 1505–1514. [Google Scholar] [CrossRef] [PubMed]

	



Pan, Y.; Yin, H.; Lv, J.; Ju, H.; Zhou, X.; Zhang, Y. A novel hybrid baculovirus-adeno-associated viral vector-mediated radionuclide reporter gene imaging system for stem cells transplantation monitoring. Appl. Microbiol. Biotechnol. 2015, 99, 1415–1426. [Google Scholar] [CrossRef] [PubMed]

	



Uren, A.G.; Kool, J.; Berns, A.; van Lohuizen, M. Retroviral insertional mutagenesis: Past, present and future. Oncogene 2005, 24, 7656–7672. [Google Scholar] [CrossRef] [PubMed]

	



Jooss, K.; Chirmule, N. Immunity to adenovirus and adeno-associated viral vectors: Implications for gene therapy. Gene Ther. 2003, 10, 955–963. [Google Scholar] [CrossRef] [PubMed]

	



Wang, S.; Ang, W. A*STAR Institute of Bioengineering and Nanotechnology. Personal communication, Singapore, Singapore, 2015. [Google Scholar]

	



Fewell, G.D.; Schmitt, K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discov. Today 2006, 11, 975–982. [Google Scholar] [CrossRef] [PubMed]

	



Kim, D.H.; Rossi, J.J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 2007, 8, 173–184. [Google Scholar] [CrossRef]

	



Mack, G.S. MicroRNA gets down to business. Nat. Biotechnol. 2007, 25, 631–638. [Google Scholar] [CrossRef] [PubMed]

	



Davidson, B.L.; McCray, P.B. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 2011, 12, 329–340. [Google Scholar] [CrossRef] [PubMed]

	



Wang, L.; Shan, L.; Yin, J.; Zhao, M.; Su, D.; Zhong, J. The activation of lytic replication of Epstein-Barr virus by baculovirus-mediated gene transduction. Arch. Virol. 2006, 151, 2047–2053. [Google Scholar] [CrossRef] [PubMed]

	



Andersson, M.; Warolén, M.; Nilsson, J.; Selander, M.; Sterky, C.; Bergdahl, K.; Sörving, C.; James, S.R.; Doverskog, M. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells. BMC Cell Biol. 2007, 8, e6. [Google Scholar] [CrossRef]

	



Airenne, K.J. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res. 2003, 31, e101. [Google Scholar] [CrossRef] [PubMed]

	



Asgari, S. MicroRNA functions in insects. Insect Biochem. Mol. Biol. 2013, 43, 388–397. [Google Scholar] [CrossRef] [PubMed]

	



Salem, T.Z.; Maruniak, J.E. A universal transgene silencing approach in baculovirus-insect cell system. J. Virol. Methods 2007, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]

	



Marek, M.; van Oers, M.M.; Devaraj, F.F.; Vlak, J.M.; Merten, O.-W. Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol. Bioeng. 2011, 108, 1056–1067. [Google Scholar] [CrossRef] [PubMed]

	



Singh, J.; Singh, C.P.; Bhavani, A.; Nagaraju, J. Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 2010, 407, 120–128. [Google Scholar] [CrossRef] [PubMed]

	



Mehrabadi, M.; Hussain, M.; Asgari, S. MicroRNAome of Spodoptera frugiperda cells (Sf9) and its alteration following baculovirus infection. J. Gen. Virol. 2013, 94, 1385–1397. [Google Scholar] [CrossRef] [PubMed]

	



Jayachandran, B.; Hussain, M.; Asgari, S. Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. J. Invertebr. Pathol. 2013, 114, 151–157. [Google Scholar] [CrossRef] [PubMed]

	



Valdes, V.J.; Sampieri, A.; Sepulveda, J.; Vaca, L. Using double-stranded RNA to prevent in vitro and in vivo viral infections by recombinant baculovirus. J. Biol. Chem. 2003, 278, 19317–19324. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, F.; Chen, R.-T.; Lu, Y.; Liang, S.; Wang, M.-X.; Miao, Y.-G. piggyBac transposon-derived targeting shRNA interference against the Bombyx mori nucleopolyhedrovirus (BmNPV). Mol. Biol. Rep. 2014, 41, 8247–8254. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, P.; Wang, J.; Lu, Y.; Hu, Y.; Xue, R.; Cao, G.; Gong, C. Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther. 2014, 21, 81–88. [Google Scholar] [CrossRef] [PubMed]

	



Kanginakudru, S.; Royer, C.; Edupalli, S.V.; Jalabert, A.; Mauchamp, B.; Prasad, S.V.; Chavancy, G.; Couble, P.; Nagaraju, J. Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol. Biol. 2007, 16, 635–644. [Google Scholar] [CrossRef] [PubMed]

	



Singh, C.P.; Singh, J.; Nagaraju, J. A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. J. Virol. 2012, 86, 7867–7879. [Google Scholar] [CrossRef] [PubMed]

	



Singh, C.P.; Singh, J.; Nagaraju, J. bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochem. Mol. Biol. 2014, 49, 59–69. [Google Scholar] [CrossRef] [PubMed]

	



Zhu, M.; Wang, J.; Deng, R.; Xiong, P.; Liang, H.; Wang, X. A microRNA encoded by Autographa californica nucleopolyhedrovirus regulates expression of viral gene ODV-E. J. Virol. 2013, 87, 13029–13034. [Google Scholar] [CrossRef] [PubMed]

	



Hebert, C.G.; Valdes, J.J.; Bentley, W.E. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol. Bioeng. 2009, 104, 390–399. [Google Scholar] [CrossRef] [PubMed]

	



Nicholson, L.J.; Philippe, M.; Paine, A.J.; Mann, D.A.; Dolphin, C.T. RNA interference mediated in human primary cells via recombinant baculoviral vectors. Mol. Ther. 2005, 11, 638–644. [Google Scholar] [CrossRef] [PubMed]

	



Ong, S.T.; Li, F.; Du, J.; Tan, Y.W.; Wang, S. Hybrid cytomegalovirus enhancer-h1 promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum. Gene Ther. 2005, 16, 1404–1412. [Google Scholar] [CrossRef] [PubMed]

	



Chen, C.-L.; Luo, W.-Y.; Lo, W.-H.; Lin, K.-J.; Sung, L.-Y.; Shih, Y.-S.; Chang, Y.-H.; Hu, Y.-C. Development of hybrid baculovirus vectors for artificial MicroRNA delivery and prolonged gene suppression. Biotechnol. Bioeng. 2011, 108, 2958–2967. [Google Scholar] [CrossRef] [PubMed]

	



Chen, C.-L.; Tseng, Y.-W.; Wu, J.-C.; Chen, G.-Y.; Lin, K.-C.; Hwang, S.-M.; Hu, Y.-C. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 2015, 44, 71–81. [Google Scholar] [CrossRef] [PubMed]

	



Lin, J.; Teo, S.; Lam, D.H.; Jeyaseelan, K.; Wang, S. MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012, 3, e398. [Google Scholar] [CrossRef] [PubMed]

	



Liao, Y.-H.; Chang, Y.-H.; Sung, L.-Y.; Li, K.-C.; Yeh, C.-L.; Yen, T.-C.; Hwang, S.-M.; Lin, K.-J.; Hu, Y.-C. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 2014, 35, 4901–4910. [Google Scholar] [CrossRef] [PubMed]

	



Nizamani, Z.A.; Keil, G.M.; Albina, E.; Holz, C.; Minet, C.; Kwiatek, O.; Libeau, G.; Servan de Almeida, R. Potential of adenovirus and baculovirus vectors for the delivery of shRNA against morbilliviruses. Antiviral Res. 2011, 90, 98–101. [Google Scholar] [CrossRef] [PubMed]

	



Lu, L.; Ho, Y.; Kwang, J. Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein. Biochem. Biophys. Res. Commun. 2006, 340, 1178–1183. [Google Scholar] [CrossRef] [PubMed]

	



Suzuki, H.; Tamai, N.; Habu, Y.; Chang, M.O.O.; Takaku, H. Suppression of hepatitis C virus replication by baculovirus vector-mediated short-hairpin RNA expression. FEBS Lett. 2008, 582, 3085–3089. [Google Scholar] [CrossRef] [PubMed]

	



Suzuki, H.; Matsumoto, N.; Suzuki, T.; Chang, M.O.; Takaku, H. Stable replication of the EBNA1/OriP-mediated baculovirus vector and its application to anti-HCV gene therapy. Virol. J. 2009, 6, e156. [Google Scholar] [CrossRef]

	



Starkey, J.L.; Chiari, E.F.; Isom, H.C. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. J. Gen. Virol. 2009, 90, 115–126. [Google Scholar] [CrossRef] [PubMed]

	



Suzuki, H.; Saitoh, H.; Suzuki, T.; Takaku, H. Baculovirus-mediated bispecific short-hairpin small-interfering RNAs have remarkable ability to cope with both influenza viruses A and B. Oligonucleotides 2009, 19, 307–316. [Google Scholar] [CrossRef]

	



Kaneko, H.; Suzuki, H.; Abe, T.; Miyano-Kurosaki, N.; Takaku, H. Inhibition of HIV-1 replication by vesicular stomatitis virus envelope glycoprotein pseudotyped baculovirus vector-transduced ribozyme in mammalian cells. Biochem. Biophys. Res. Commun. 2006, 349, 1220–1227. [Google Scholar] [CrossRef] [PubMed]





© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).







nav.xhtml


  viruses-07-02099


  
    		
      viruses-07-02099
    


  




  





