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Abstract: Human endogenous retrovirus (HERV-K (HML-2)) proviruses are among the 

few endogenous retroviral elements in the human genome that retain coding sequence. 

HML-2 expression has been widely associated with human disease states, including 

different types of cancers as well as with HIV-1 infection. Understanding of the potential 

impact of this expression requires that it be annotated at the proviral level. Here, we 

utilized the high throughput capabilities of next-generation sequencing to profile HML-2 

expression at the level of individual proviruses and secreted virions in the teratocarcinoma 

cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating 

primarily from two proviruses located on chromosome 22, only one of which was 

efficiently packaged. Interestingly, there was a preference for transcripts of recently 

integrated proviruses, over those from other highly expressed but older elements, to be 

packaged into virions. We also assessed the promoter competence of the 5’ long terminal 

repeats (LTRs) of expressed proviruses via a luciferase assay following transfection of 

Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs 

corresponded to their transcript levels. 
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1. Introduction 

The genomes of all mammals, and indeed of most or all vertebrates, contain sequences of retroviral 

origin. Retroviruses have the unique ability to convert their ssRNA genome into dsDNA, which is then 

irreversibly integrated, as a provirus, into the host genome as part of the replication cycle. Though 

infection generally occurs through horizontal transfer, where a retrovirus infects a somatic cell, replicates 

and is passed from cell to cell and from one individual to another, proviruses resulting from infection 

of germline cells can also be inherited and transferred vertically, from parent to offspring [1]. Human 

endogenous retroviruses (HERVs) are the vestiges of infection of the germline cells of our ancestors 

and comprise ~8% of the genome [2]. Once integrated into the genome, HERVs are inherited in a 

Mendelian fashion, akin to genes, and subject to similar selection pressures, as insertions can have 

beneficial, detrimental or neutral effects on a host [3].  

One group of HERVs, called HERV-K (HML-2), includes >90 proviruses and ~950 solo long 

terminal repeats (LTRs), produced from recombination between the 5’ and 3’ LTRs of a provirus [4]. 

Some HML-2 insertions integrated into the genome after the human-chimpanzee split and are the  

only HERVs specific to the human lineage [5]. At least 11 of these proviruses are still insertionally 

polymorphic within the human population and the question of their continued integration into the 

human germline remains open [5–7]. Interestingly, many proviruses in the HML-2 group retain close 

to full-length genomic sequence and some have maintained open reading frames for the retroviral 

genes gag, pro, pol and env [5].  

HML-2 (Human MMTV-like, group 2) proviruses were named for the similarity of their pol 

sequence to mouse mammary tumor virus (MMTV), the viral cause of mammary carcinoma in  

mice [8–10]. Correspondingly, HML-2 expression has been linked to numerous disease states in 

humans. HML-2 expression in humans was first clearly linked to teratocarcinoma, where HML-2 

RNA, protein and non-infectious virions are produced from diseased cells [11–14] and patients exhibit 

immune responses against expressed HML-2 antigens [15–17]. Remarkably, new types of spliced 

transcripts encoded by HML-2 were discovered in teratocarcinoma cells, later named rec and np9 [18]. 

Rec is functionally analogous to HIV-1 Rev in shuttling unspliced or partially spliced mRNA out of 

the nucleus into the cytoplasm and is encoded by proviruses that were integrated with full-length 

sequence, called type 2 HML-2 proviruses [19]. Conversely, Np9 has no known function in the HML-2 

replication cycle. In fact, np9 is the result of a 292-bp deletion at the pol-env boundary in a contingent 

of defective proviruses, referred to as type 1 HML-2 proviruses, where the deletion creates a new 

splice donor site [20]. In addition to teratocarcinoma, HML-2 expression is often observed in other 

cancers, including breast cancer [21–26] and melanoma [27,28], and during HIV-1 infection [29–34]. 

However, a causal role for HML-2 proviral expression in human disease has not yet been identified.  

A potential hurdle to examining the effect of HML-2 expression on the human host is determining 

which of the multiple HML-2 proviruses are active in different disease states. PCR approaches can 
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reliably detect HML-2 RNA transcripts, however may not be able to discriminate among all the 

individually expressed HML-2 proviruses. In terms of pathogenic potential and association with 

disease, the proviral source of HML-2 expression is likely important because of their varying sequence 

preservation and coding potential [5]. In addition, due to their recent integration, accurate detection of 

many of the evolutionarily young HML-2 integrations is challenging as they are remarkably similar in 

sequence and finding unique regions to amplify may not be straightforward for each provirus. Due to 

sequence similarity, PCR recombination may pose a threat to accurate detection of individual proviruses 

if more than one is expressed at a time. Gold standard PCR methods like single genome sequencing [35] 

can effectively circumvent most issues, however amplified targets will be limited by the primer design 

of the assay and the throughput of the method.  

High throughput next-generation sequencing approaches like RNASeq have been used to quantify 

expression of specific proviruses belonging to older groups of HERVs, including HERV-H [36] and 

HERV-W [37], and more recently have been applied to the HML-2 group [38,39]. Because of their 

more recent integration into the human genome, assignment of sequence reads to specific HML-2 

proviruses is more difficult. Here, we use RNASeq to quantify expression of the more recently integrated 

HML-2 proviruses in the human teratocarcinoma cell line Tera-1 and in the virions it produces.  

As mentioned previously, teratocarcinoma cells are unusual in that they express HML-2 RNA and 

protein and also produce virions, a phenomenon that has only been reliably identified in a few other 

cell types [28,40], and the mechanism by which they do so has been largely unexplored [13,41]. By using a 

bioinformatic approach that calculates expression levels based solely on unique alignments, similar to 

a previous approach [39], we identified a number of distinct HML-2 proviral transcripts expressed in 

Tera-1 cells, including both evolutionarily older and younger elements. Two of the most highly expressed 

proviruses are present on chromosome 22, and closer analysis reveals distinct mechanisms of transcription 

for each provirus. In addition, promoter activity assays performed using the 5’ LTRs of expressed 

proviruses corroborate RNASeq results, demonstrating LTR function. Interestingly, only transcripts of 

the younger HML-2 elements appear to be packaged in Tera-1 virions, even though both old and 

young proviruses are expressed in the cell. This result implies that a selective process, potentially 

reliant on a packaging signal, is occurring for some of the more preserved HML-2 proviruses, 

supporting an observation made previously [13]. Thus, RNASeq analysis can effectively discriminate 

HML-2 provirus expression profiles and can be used to uncover basic features of HML-2 biology. 

2. Materials and Methods 

2.1. Cell Culture 

The human teratocarcinoma cell line Tera-1 (ATCC, Manassas, VA, USA, Cat# HTB-105) was 

grown in McCoy’s 5A media (Life Technologies, Carlsbad, CA, USA, Cat# 16600-082), 

supplemented with 15% FBS (Atlanta Biologicals, Norcross, GA, USA, Cat# S11195) and 1%  

Pen-Strep (Life Technologies Cat# 15140-122). Feline astrocyte G355.5 cells (ATCC Cat# CRL-2033) 

were grown in McCoy’s 5A media supplemented with 10% FBS and 1% Pen-Strep. 293T cells (ATCC 

Cat# CRL-2316) were grown in DMEM supplemented with 10% FBS and 1% Pen-Strep. All cell lines 

were grown at 37 °C with 5% CO2. 
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2.2. RNA Extraction 

Passage-matched Tera-1 cells and Tera-1 supernatant were collected from 100 mm cell culture plates. 

Culture supernatant was spun down for 5 min at 1200× g and 0.22 μm filtered to remove cellular 

debris. 1 mL of 0.25% Trypsin-EDTA (Gibco, Carlsbad, CA, USA, Cat# 25200-056) was added to the 

cell culture plate in order to remove cells and incubated at 37 °C until detached. Cells were removed 

from the plate, washed once with 5 mL of 1× Phosphate-buffered saline (PBS; Gibco Cat# 14190), and 

pelleted for 5 min at 1200× g. Dry pellets of Tera-1 cells and filtered supernatant samples were frozen 

at −80 °C until the extraction procedures were performed. For RNA extraction, 1–2 million Tera-1 cells 

were used as input for the TRIzol-PureLink RNA system (Ambion, Carlsbad, CA, USA, Cat# 15596-026 

and Cat# 1218301A). Virions were pelleted at 21,000× g from 3 mL of cell supernatant and RNA was 

extracted using guanidinium isothiocyanate (Sigma, St. Louis, MO, USA, Cat# 50983), as described 

previously [34]. Tera-1 cellular RNA was treated with 2U DNase (Ambion, Turbo DNA-free kit,  

Cat# AM1907) for 1 h at 37 °C and virion RNA was treated with 1.5U of DNase for 45 min at 37 °C. 

RNA was confirmed to lack detectable DNA by performing a quantitative PCR for detection of  

HML-2 template, where DNA contamination is evident via amplification in wells lacking reverse 

transcriptase. This qPCR has been described previously [34].  

2.3. RNASeq Library Preparation 

An Illumina RNASeq library was prepared from the Tera-1 cell RNA using the TruSeq Stranded 

Total RNA kit with Ribo-Zero Gold (Illumina, San Diego, CA, USA, Cat# RS-122-2301), which 

removes ribosomal RNA from the test sample. ~1 ug of Tera-1 RNA was depleted of rRNA and 

resulting RNA was incubated at 65 °C for 5 min to avoid shearing (as recommended in alternate 

protocol), which should produce cDNA fragments ranging from 130–350 bases in length due to 

random priming. Our RNA fragments showed an average length of 190 bases using BioAnalyzer 

(Agilent Technologies, Santa Clara, CA, USA) peak analysis. This step was followed by reverse 

transcription, end repair, an A-tailing reaction to add a single 3’ A-overhang to the fragments and then 

ligation of barcoded sequencing adaptors with a T-overhang to bind these fragments. The library was 

amplified using adaptor-specific primers for 10–15 cycles of PCR. An Illumina RNASeq library was 

prepared from the Tera-1 virion RNA using the NuGen Ovation v2 kit (NuGen, San Carlos, CA, USA, 

Part# 7102). This kit does not allow for strand-marking (dUTP incorporation) during cDNA synthesis. 

It takes low input samples like virion RNA and amplifies RNA using a proprietary process. Amplified 

RNA is converted to cDNA and the cDNA is sheared using a targeted sonicator (Covaris, Woburn, 

MA, USA, M-Series, M220). Virion cDNA was sheared to 200–600 bp, as determined using a 

BioAnalyzer. The Tera-1 virion library was prepared from the cDNA using end repair, A-tailing, 

barcoded adaptor ligation and library amplification as described above. Both libraries were run together 

on the MiSeq benchtop sequencer (Tera-1 cell library = 95% input; Tera-1 virion library = 5% input) 

using the v3 kit that allows for paired-end (PE) reads up to 301 bases in length (Illumina,  

Cat# MS-102-3001). 26 million PE reads were generated for the Tera-1 cell library and 1.2 million PE 

reads for the Tera-1 virion library. 
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2.4. RNASeq Analysis 

MiSeq reads from the Tera-1 cell and virion libraries were trimmed to remove Illumina  

adaptor sequences, low quality reads (Q < 25) and reads shorter than 100 bases using the program 

Trimmomatic [42]. Trimmed paired-end reads from the Tera-1 cell and virion libraries were aligned to 

the hg19 build of the human genome or to a faux “HML-2 genome” which is a FASTA file containing 

the sequences of 93 proviruses (4 are present only as solo LTRs in hg19, and 2 are present as  

pre-integration sites in hg19) and 943 solo LTRs. Both alignments were performed using TopHat 

v2.0.10, which used Bowtie v2.1.0 as the underlying aligner [43,44] and allowed for up to 2 mismatches 

to a mapping location for unique or multi-mapped reads. Hg19 alignments for the Tera-1 cell reads 

were performed using the –fr-firststrand option which allows for the strandedness of the read to be 

incorporated into the alignment data (“Plus stranded”) or without with this option (“Unstranded”). 

Output .bam files from the alignment were either (1) sorted and kept unfiltered (“Unfiltered”) which 

retains reads that align to multiple targets as well as those that uniquely align to a single provirus or  

(2) sorted and filtered for uniquely aligned reads (“Unique Only”) using SAMtools [45]. TopHat2 assigns 

uniquely aligned reads a mapping quality (MAPQ) score of 50 and these reads can be selected for from 

the total alignment using the SAMtools view –q 50 command. Aligned reads from the cell library had 

an average insert size of 180 bases (range: 98–522) as compared to 200 bases (range: 100–568) for  

the virion library, which was determined using Picard Tools (Broad Institute) for QC analysis of  

the .bam files. 

Cufflinks v2.2.1 [46] was used to generate estimates of transcript abundance normalized to the 

length of the expressed gene, outputted as fragments per kilobase per million mapped reads (FPKM). 

Hg19 transcript annotation files (GTF format) contained annotations for 87 HML-2 full proviruses,  

4 proviruses present only as solo LTRs in hg19 and 947 solo LTRs in addition to cellular transcripts. 

HML-2 genome GTF files contained annotations for all 93 included proviruses and 943 solo LTRs. 

Cufflinks was run using the standard default parameters or with the Multi-read correct –u parameter 

(“Multi-read Correct”), which assigns weighted FPKM values to loci with multi-mapping reads, based 

on an algorithm described previously [47]. 

FPKM values for individual HML-2 elements were used to calculate total HML-2 expression or 

packaging in the cells or virion by adding up the FPKM values from all HML-2 proviruses. From this 

number (“Total HML-2”), the percent abundance of each HML-2 provirus compared to the total value 

was calculated as (provirus FPKM)/(total HML-2 provirus FPKM) × 100 to illustrate the relative 

contribution of individual proviruses to total HML-2 expression or packaging in the cell or virion. 

Graphics were generated using Prism 6 (GraphPad software). Age estimates and open reading frames 

for proviruses were obtained from a previous publication [5] or by inputting sequence into the NCBI 

ORF Finder [48]. Heatmaps were created using RStudio (RStudio: Integrated development environment 

for R, version 0.98.1060). FPKM values for the heatmap were log-normalized using Decostand in 

RStudio Vegan and plotted using RStudio Pheatmap.  

Alignments were visualized using the Integrative Genomics Viewer IGV v2.3.36 [49] and by using 

a custom track on the UCSC Genome Browser [50].  
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2.5. MiSeq In-Silico Simulation 

Simulated MiSeq 250 base PE reads were generated from the faux HML-2 genome FASTA of  

93 HML-2 proviruses to 20X coverage using the next-generation sequencing simulator program ART 

vVanillaIceCream-03-11-2014 [51]. Simulated reads were aligned back to the HML-2 genome using 

TopHat2 and were either kept “Unfiltered” or filtered for “Unique Only” alignment. FPKMs for each 

provirus were calculated using Cufflinks for both sets of FPKM values as previously described. As all 

proviruses were equally represented in the simulation, the average FPKM value for proviruses in  

the “Unfiltered” data set was used as the comparator for the “Unique Only” data set in order to assess 

which proviruses were underrepresented. 

2.6. Phylogenetic Analysis 

Neighbor-joining phylogenetic trees were created using MEGA6 [52]. Alignment of proviral or 

LTR sequence was performed using MUSCLE, an alignment tool native to the MEGA6 program. 

Neighbor-joining trees were constructed using the pairwise deletion option so that all available sites 

were used for comparison. The bootstrap values for the produced trees were the result of 1000 replicate 

tests. Distance was calculated using the p-distance method and the branch lengths correspond to the 

number of base differences per site. 

2.7. LTR Amplification and Cloning 

HML-2 proviral sequences were obtained from the hg19 build of the human genome using 

RepeatMasker in the UCSC Table Browser [53]. Primers flanking the 5’ LTR of each provirus were 

made using the Primer3 program [54] with restriction enzyme sites added to the 5’ ends of both the 

forward and reverse primers (Table S1). Primers used to create LTR truncation constructs are also 

reported (Table S2). Genomic DNA from Tera-1 cells was extracted with the DNeasy Blood & Tissue 

Kit (Qiagen, Cat# 69504) and used as a template for PCR amplification of the LTRs with Taq DNA 

polymerase (Invitrogen, Cat# 10342-020). The LTRs were directly cloned in sense orientation into the 

multiple cloning region of the pGL4.17[luc2/Neo] promoter-less firefly luciferase vector (Promega, 

Madison, WI, USA, Cat. #E6721). Reporter constructs were screened for mutations through 

sequencing before transfection. 

2.8. Transfection and Dual-Luciferase Assay 

Tera-1 cells were seeded at 1 × 105 cell/well in a 24-well plate for transfection. The pGL4 firefly 

luciferase vector, containing the 5’ LTR of interest, was co-transfected alongside a pRL-SV40  

internal control Renilla luciferase vector (Promega, Cat# E2231) at a 30:1 ratio, as recommended by 

the manufacturer’s protocol. Non-transfected Tera-1 cells were used as a control to account for  

any background signal associated with the assay. Transfections were carried out using Opti-MEM 

reduced-serum media (Life Technologies, Cat# 31985-070) and Lipofectamine 2000 (Life Technologies, 

Cat# 11668-019) according to the manufacturer’s protocol. The transfected cells were incubated  

for 48 h before lysis and assayed using the dual-luciferase assay system (Promega, Cat. #E1910). 

Luminescence was measured as relative light units (RLU) on a BioTek Synergy HT plate reader using 
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Gen5 data analysis software (v2.03). The firefly luciferase signal was normalized against that of the 

Renilla luciferase signal to determine the relative promoter activity of each 5’ LTR. 

3. Results 

3.1. RNASeq Methodology to Determine HML-2 Provirus Expression 

HML-2 proviruses are the most recently integrated ERVs in the human genome and have retained 

substantial coding potential [5]. In fact, the teratocarcinoma cell line Tera-1 expresses HML-2 RNA 

and protein and is capable of producing virions, though none have been found to be infectious [14]. 

The biology of this cell line is largely unknown, but it has been shown to primarily express  

HML-2 RNA originating from the provirus at chromosome 22q11.21 and other evolutionarily young 

integrations [13], and its virions appear to be immature and lacking Env glycoprotein [12].  

To discern more detail about the provirus expression profile of this unique virion-producing cell 

line, we applied RNASeq methodology to capture HML-2 proviral transcription. RNASeq provides  

a high-throughput approach to determine HML-2 expression in the context of other cellular genes and 

bypasses PCR primer bias in detecting HML-2 proviruses, as primers may not be able to detect older 

integrations due to sequence divergence. A predicted complication in applying this approach to HML-2 

transcription profiling is caused by the high sequence similarity between recently integrated HML-2 

proviruses (Figure 1B). Reads originating from highly similar or conserved areas could potentially 

align to multiple proviruses and interfere with RNASeq read alignment to a unique mapping location. 

Therefore, the effect of different RNASeq analysis methods on provirus representation was considered 

at each step. 

Two RNASeq libraries were prepared for RNASeq analysis, with one constructed from Tera-1 

cellular RNA and the other from Tera-1 virion RNA. Produced RNASeq reads were clipped of poor 

quality bases, adaptor sequences and reads shorter than 100 bases prior to alignment using TopHat2 [44].  

Expression of some polymorphic proviruses may not be captured by alignment to the human 

reference genome because they were not present in the individual(s) contributing genomic sequence or 

were missed in genome assembly. Due to this anticipated issue, the reads were analyzed by TopHat2 

alignment to the hg19 build of the human genome as well as to an HML-2 reference genome containing 

the sequences of 943 solo LTRs, 93 proviruses and a prototype SINE-R element, a type of retrotransposon 

comprised of HERV-K LTR and env sequence [55]. Of the 93 proviruses included in the HML-2 

reference genome, four are present as solo LTRs in hg19 and two are present as pre-integration sites  

(Table S3). In the HML-2 reference genome, each element was listed as an independent sequence,  

thus functioning as a catalogue of 1037 HML-2 “chromosomes” during alignment.  

Around half of all reads (~47%) aligned to HML-2 proviruses had multiple alignments, referred to 

as “multi-reads.” The true placement of a multi-read is in question since they may be misaligned to  

a closely related location and provide false signal for a provirus or solo LTR, leading to an inexact 

provirus transcription profile. Therefore, to circumvent this problem, only uniquely mapped reads were 

preserved, with the reasoning that a truly expressed provirus will also produce reads with unique 

sequence in addition to more conserved regions that will multi-map. Data were either kept in full 

(referred to as “Unfiltered”) or filtered for uniquely aligned reads (referred to as “Unique Only”). 
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Figure 1. RNASeq analysis of HML-2 expression in Tera-1 cells. (A) RNASeq reads derived 

from Tera-1 cellular RNA were aligned to the hg19 build of the human genome, using 

either a stranded (“Plus Stranded”) or unstranded (“Unstranded”) alignment. Aligned reads 

were either kept in full (“Unfiltered”), or were filtered based on mapping quality scores to 

only retain reads that uniquely aligned to one map location (“Unique Only”). The fragments 

per kilobase per million mapped reads (FPKM) values representing relative expression in  
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Tera-1 cells were determined either with a multi-read correct parameter (“Multi-read Correct”) 

that proportionally allocates multi-reads to mapping locations, or without this parameter. 

FPKM values for selected HML-2 proviruses and the cellular genes GAPDH and β-actin 

(ACTB) across the analyses were log-normalized and used for heatmap generation to 

demonstrate the effects of the different analyses on expression levels. Proviruses and gene loci 

are divided into four groups according to their relative values following the different 

analyses: stable (Group 1); decrease after Unique Only (Group 2); decrease after Plus 

stranded alignment (Group 3); and decrease after Unique Only and Plus stranded analysis 

(Group 4). Log-normalized FPKM is shown by the colors from high (red) to low (blue),  

as indicated in the chart to the right. The (*) symbols refer to proviruses predicted to be 

underrepresented by 15% or more based on an in silico simulation. (B) A neighbor-joining 

tree of the underrepresented proviruses was created using the full provirus sequence. The  

p-distance method was used and bootstrap values are indicated as percent of 1000 replicates. 

(C) The abundance of transcripts after the Plus stranded, Unfiltered and the Plus Stranded, 

Unique Only analyses are plotted against estimated times of integration to show the effect of 

the Unique Only analysis on recently integrated proviruses. The 0–2 mya group includes 

human specific integrations with high sequence similarity predicted to be underrepresented 

in the Unique Only RNASeq in silico simulation. The relative abundance in Tera-1 cells was 

calculated for each provirus based on (provirus FPKM)/(total HML-2 provirus FPKM) × 100. 

Elements without 5’ or 3’ LTRs were unsuitable for age estimation and are not included. 

Gene expression data from Unfiltered and Unique Only reads were used as input to calculate gene 

length normalized RNASeq expression values called FPKM (fragments per kilobase per million mapped 

reads) using the Cufflinks software package [46]. Cufflinks can assign multi-reads proportionally to 

multiple mapping locations based on abundance estimations for each mapping location. Reads were 

either analyzed in this manner (referred to as “Multi-read correct”) or were analyzed in a default manner 

where multi-reads are assigned to multiple mapping locations in a uniform manner (e.g., if a read maps 

to five locations, each location is assigned 20% of a read). Another parameter used in FPKM 

calculation is one that indicates whether transcription is occurring in the sense orientation for a 

particular locus. For the cell library, which was stranded, this parameter was used to properly estimate 

transcript abundance (referred to as “Plus stranded” if performed, and “Unstranded” if not).  

A comparison of analytical methodologies of the RNASeq data is shown in a heatmap representation 

in Figure 1A, with yellow to red marking the highest expressed loci identified by the various approaches. 

All discussed proviruses are listed in Table 1 with their known aliases and genomic position. In the 

Unstranded, Unfiltered analysis, many proviruses are noted as expressed. However, in the Unique Only 

and Multi-read correct analyses, which consider only uniquely aligned reads or reads probabilistically 

assigned to loci, a dramatic drop off occurs in the FPKM of several of these “expressed” proviruses. 

Based on this analysis, we only considered proviruses remaining after either Unique Only filtering or 

Multi-read correction as being reliably expressed in Tera-1 cells and not misaligned to closely related 

loci. For example, the provirus 8p23.1a (K115; chr8: 7355397-7364859) is not present in Tera-1 cells [13]. 

Prior to filtering, this provirus was incorrectly assigned 2.5% of all HML-2 reads; after filtering, its 

expression level dropped to the background value of 0.07%. Of note, the Unique Only and Multi-read 
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correct analyses gave virtually identical results in terms of assigning FPKM to specific proviruses for 

the Tera-1 data set. We additionally analyzed the effect of applying the strandedness option to FPKM 

assignment, thus considering only reads aligned in the sense orientation of the provirus. Unexpectedly, we 

found that a number of proviral loci were negatively affected by this distinction. These proviruses are 

displayed on the heatmap as becoming blue in the final column and include 7q34, 11q12.3 and 

11q23.3. Without considering the strandedness of the read, these proviruses would not have been 

identified as products of antisense transcription, most likely due to neighboring transcription units. 

Specifically, in the case of the 7q34 provirus, reads that align to this locus appear to be the product of 

read-through transcription from the neighboring highly transcribed gene SSBP1. For the 11q12.3 

provirus, which resides in an intron of the gene ASRGL1, aligned reads appear to be result of  

pre-mRNA present in the total RNA used for library preparation. Finally, at the proviral locus on 

11q23.3, aligned reads appear to originate in a HERV-H element located just upstream of the proviral 

3' LTR, though there did appear to be an increase in aligned reads throughout the provirus. The ability 

of proviral 3’ LTRs to drive antisense transcription was not tested in this analysis, though this appears 

to be most plausible for 11q23.3. 

Table 1. Names and locations for discussed HML-2 proviruses. 

Provirus Alias Chromosomal Location (hg19) 

1p31.1a K4, K116, ERV-K1 chr1: 75842771-75849143 

1p36.21a N/A chr1: 12840260-12846364 

1p36.21b K(OLDAL023753), K6, K76 chr1: 13458305-13467826 

1p36.21c K6, K76 chr1: 13678850-13688242 

1q21.3 N/A chr1: 150605284-150608361 

1q22 K102, K(C1b), K50a, ERVK-7 chr1: 155596457-155605636 

1q23.3 K110, K18, 1 (+) K(C1a), ERVK-18 chr1: 160660575-160669806 

3p12.3 N/A chr3: 75600465-75609150 

3q12.3 K(II), ERVK-5 chr3: 101410737-101419859 

3q13.2 K106, K(C3), K68, ERVK-3 chr3: 112743123-112752282 

3q21.2 K(I), ERVK-4 chr3: 125609302-125618416 

3q24 ERVK-13 chr3: 148281477-148285396 

3q27.2 K50b, K117, 3 (-) ERVK-11 chr3: 185280336-185289515 

4p16.1a K17b chr4: 9123515-9133075 

4p16.3a N/A chr4: 234989-239459 

4q32.1 N/A chr4: 161579938-161582360 

5p13.3 K104, K50d chr5: 30487114-30496205 

5q33.3 K107/K10, K(C5), ERVK-10 chr5: 156084717-156093896 

6p22.1 K(OLDAL121932), K69, K20 chr6: 28650367-28660735 

6q14.1 K109, K(C6), ERVK-9 chr6: 78427019-78436083 

7p22.1a K108L, K(HML.2-HOM), K(C7), ERVK-6 chr7: 4622057-4631528 

7p22.1b K108R, ERVK-6 chr7: 4630561-4640031 

7q22.2 ERVK-14 chr7: 104388369-104393266 

7q34 K(OLDAC004979), ERVK-15 chr7: 141450926-141455903 

8p23.1a K115, ERVK-8 chr8: 7355397-7364859 

8p23.1b K27 chr8: 8054700-8064221 

8p23.1c N/A chr8: 12073970-12083497 
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Table 1. Cont. 

Provirus Alias Chromosomal Location (hg19) 

8p23.1d KOLD130352 chr8: 12316492-12326007 

8q24.3a N/A chr8: 140472149-140475236 

10p12.1 K103, K(C10) chr10: 27182399-27183380 

11q12.3 K(OLDAC004127) chr11: 62135963-62150563 

11q22.1 K(C11c), K36, K118, ERVK-25 chr11: 101565794-101575259 

11q23.3 K(C11b), K37, ERVK-20 chr11: 118591724-118600883 

12q13.2 N/A chr12: 55727215-55728183 

12q14.1 K(C12), K41, K119, ERVK-21 chr12: 58721242-58730698 

12q24.11 N/A chr12: 111007843-111009325 

16p11.2 N/A chr16: 34231474-34234142 

19p12a K52 chr19: 20387400-20397512 

19p12b K113 chr19: 21841536-21841542 (empty site) 

19p12c K51 chr19: 22757824-22764561 

19p12d N/A chr19: 22414379-22414382 (empty site) 

19q11 K(C19), ERVK-19 chr19: 28128498-28137361 

19q13.42 LTR13 chr19: 53862348-53868044 

21q21.1 K60, ERVK-23 chr21: 19933916-19941962 

22q11.21 K101, K(C22), ERVK-24 chr21: 18926187-18935307 

22q11.23 K(OLDAP000345), KOLD345 chr21: 23879930-23890615 

Xq28a K63 chrX: 153817163-153819562 

Xq28b K63 chrX: 153836675-153844015 

Yq11.23a N/A chrY: 26397837-26401035 

Yq11.23b N/A chrY: 27561402-27564601 

The exclusion of reads that align to multiple map locations may create a reporting bias, in which 

highly similar proviruses could be underrepresented due to a paucity of uniquely aligned reads.  

To determine the effect of this approach on HML-2 expression analysis, an in silico simulation of the 

RNASeq Unique Only analysis was performed as described in Materials and Methods. Based on  

this simulation, we found that mostly recently integrated proviruses and duplications appeared to be 

underrepresented after filtering for unique reads. The proviruses that were negatively affected by >15% 

(range: 17%–86%) are shown on the neighbor-joining phylogenetic tree in Figure 1B. Three main 

categories of HML-2 proviruses, 5A, 5B, and Hs, have been recognized based on their LTR phylogenies. 

LTR 5B proviruses are basal to both LTR 5A and LTR Hs proviruses, the latter of which include the 

more recent, mostly human-specific, HML-2 integrations [5]. Many of the underrepresented loci include 

the most recent LTR Hs integrations, which have accumulated fewer mutations since their last common 

ancestors than those resident in the genome for longer periods of time (Figure 1B). In addition, proviruses 

that are known to have arisen by duplication post-integration, including the LTR Hs proviruses on 

7p22.1, the LTR 5B proviruses on 1p36.21, Xq28 and Yq11.23, and the LTR 5A proviruses on 8p23.1, 

are also represented in the RNASeq simulation less frequently than expected (Figure 1B). Curiously, 

the LTR Hs provirus 6p22.1, which is not human specific, was also underrepresented in the simulation. 

However, all proviruses were detected in the simulation. Therefore, although the true abundance of 

affected proviruses may be underrepresented, their expression will, nevertheless, be captured in the 
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analysis. All proviruses that appeared to be affected in this way are shown with a red asterisk in  

Figure 1A,B to denote their potential underrepresentation. Of interest, the two LTR Hs proviruses  

that cluster tightly and exhibit long branch length, 3q21.2 and 21q21.1, were shown to have been 

hypermutated by APOBEC3G [56]. 

To depict how the Unique Only analysis affected provirus representation in Tera-1 cells, Figure 1C 

shows how the estimated age of integration for expressed proviruses changed between an Unfiltered, Plus 

stranded alignment and the Unique Only, Plus stranded alignment. Recently integrated proviruses are 

still represented in analysis, however they are 2/3 less abundant, leading to a perceived overrepresentation 

of older elements. 

3.2. Expression and Packaging of HML-2 Proviruses in Tera-1 Cells and Virions 

Using the Unique Only, Plus stranded approach, HML-2 transcription in Tera-1 cells was quantified 

relative to the cellular genes GAPDH, ACTB and RAB5A (Figure 2A). The analysis removed roughly 

half of all HML-2 reads present in the unfiltered alignment, yet total expression of this group was still 

readily quantifiable, at ~1/200th the level of the metabolic gene GAPDH and ~1/5th the level of the 

cytoskeletal gene ACTB (β-actin). The top two expressed HML-2 proviruses, the LTR 5B provirus at 

22q11.23 (see later for more on this provirus) and the LTR Hs provirus at 22q11.21 (Figure 2A,B),  

were each detected at a level comparable to that of the cellular gene RAB5A, which encodes a protein 

localized on early endosomes, and together made up roughly half of all the HML-2 reads generated 

from Tera-1 cells.  

LTR Hs type proviruses were the most commonly expressed proviruses in Tera-1 cells (12 out of 

the top 14), and included 7 human specific integrations that were likely to be underrepresented (indicated 

with red asterisks in Figure 1A,B and Figure 2B). The tandem duplicated LTR Hs proviruses on 

chromosome 7p22.1 [5] were considered together since they are nearly identical in sequence and reads 

could have originated from either of them. Interestingly, two ancient LTR 5B proviruses, on 

chromosomes 22q11.23 and 4p16.3a, were also expressed in the cells but no LTR 5A proviruses were 

detected at >0.2% abundance.  

The open reading frames (ORFs) for the genes gag, pro, pol, and env vary among the HML-2 

proviruses. To assess the contribution of the identified proviruses to virion production, we calculated 

the relative numbers of transcripts belonging to proviruses capable of potentially expressing full-length 

gene products. We found that most (55.1%) expressed HML-2 sequence was capable of encoding gag, 

largely from the gag ORFs present on proviruses 22q11.23 and 22q11.21 (Figure 2C). Of interest, the 

Gag protein encoded by 22q11.21 appears to be full length (666 amino acids) but the one encoded by 

22q11.23, which is a more ancient provirus, is predicted to be truncated by 43 amino acids at the  

C-terminus. The pol (5.6%) and env (3.9%) ORFs were much less well represented, and a significant 

amount (35.4%) of the expressed HML-2 sequence was derived from proviruses that lack coding 

capability altogether (Figure 2C). The majority of HML-2 proviruses expressed were Type 1 (Figure 2D), 

which is typified by a 292-bp deletion at the pol-env boundary, resulting in a non-functional Env,  

and encodes the accessory gene np9 [57]. Type 2 proviruses, which made up 30% of expressed HML-2 

proviruses, retain full sequence at the pol-env boundary and encode the accessory gene rec [58].  
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The detection of doubly spliced transcripts for np9, rec and the non-coding transcript hel [20,58] is 

detailed for individual proviruses in Table S4. 

In reads generated from Tera-1 virions, HML-2 sequences were more frequently represented compared 

to their detection in the cells, as expected, exhibiting >25-fold increase in FPKM (Figure 2E). Virions 

also appeared to non-specifically package the highly expressed cellular mRNAs from GAPDH and 

ACTB, which were increased about two-fold in FPKM from their levels in cells, but not RAB5A, which 

was not detected in the virions (Figure 2E). Relative to GAPDH, HML-2 representation increased  

>100-fold in virions, and in comparison to ACTB, ~10-fold (Figure 2E).  

The virion reads aligned primarily to the type 1 provirus on chromosome 22q11.21, making up 

~79% of all HML-2 reads (Figure 2E–F). This observation is in agreement with a previous publication 

assessing the origins of packaged HML-2 RNA from Tera-1 virions [13]. In virions, over 90% of packaged 

genomes originated from Env-defective Type 1 proviruses, mainly due to the abundance of the 22q11.21 

transcripts. The top 6 packaged proviruses are all members of the human specific LTR Hs group,  

a major distinction from the proviruses expressed in Tera-1 cells, which included LTR Hs proviruses 

that were not human specific as well as an older LTR 5B proviruses (Figure 2B). 

 

Figure 2. Cont. 
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Figure 2. HML-2 expression in Tera-1 cells and virions. (A,B) RNASeq reads originating 

from Tera-1 cells were aligned to the hg19 build of the human genome and analyzed using 

the Plus stranded, Unique Only analysis, except as indicated. (E–F) RNASeq reads originating 

from Tera-1 virions were aligned to the hg19 build of the human genome and analyzed 

using the Unstranded, Unique Only analysis, except as indicated, due to the input library 

not being stranded. (A, E) Relative transcript expression values (FPKM) for cellular genes, 

total HML-2 and the most abundantly expressed or packaged HML-2 transcripts are plotted 

for Tera-1 cells (A) and Tera-1 virions (E). (B,F) Abundance of transcripts for each provirus 

in Tera-1 cells (B) and virions (F) is plotted according to (provirus FPKM)/(total HML-2 

FPKM) × 100. Proviruses with (*) were predicted to be underrepresented by the in silico 

analysis, as used in Figure 1. (C) Open reading frames for gag, pol and env were determined 

for proviruses making up 96.81% of all HML-2 reads shown in Figure 2B. If a provirus 

had the potential to express open reading frame(s) (ORF(s)), the abundance of the provirus 

in the cell was allocated to each ORF, as this represents the maximum probability of that 

ORF being expressed. Splicing was not considered for this analysis. (D) Type 1/2 status 

was determined for HML-2 proviruses making up 96.81% of all HML-2 reads, listed in 

Figure 2B. Unknown indicates that the entire pol-env boundary region was not present in the 

provirus, preventing identification of provirus type. 

3.3. Human Specific LTR Hs Proviruses were Enriched in HML-2 Virions 

HML-2 transcripts packaged in Tera-1 virions were more abundant, less abundant or present in roughly 

equal proportion to their expression in cells (Figure 3A), and this pattern reflected the relative time of 

their integration. The transcripts with the highest increase in abundance in virions were all derived 

from recently integrated human specific LTR Hs proviruses, some of which were predicted to be 

underrepresented in the analysis (Figure 1B), noted with red asterisks as before (Figure 3B), whereas 

those that decreased in abundance mostly originated from either older LTR Hs or LTR 5B proviruses. 

For example, transcripts from the LTR 5B provirus at 22q11.23 made up 25.32% of all cellular HML-2 

reads, but its abundance in the virions it was 0.38%, a 66-fold decrease (Figure 3B). Transcripts from 
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the LTR 5B provirus at chromosome 4p16.3a, expressed in cells at about 1%, were not even detected 

in the virions. Other transcripts with major decreases, on chromosomes 1q21.3, 3q12.3 and 19p12, 

were derived from older LTR Hs integrations.  

 

 

Figure 3. HML-2 packaging shows preference for recently integrated proviruses. (A) The 

abundance of proviruses expressed in the cell and packaged into virions was calculated as 

described in Figure 2. These values were plotted side-by-side to show an increased abundance 

(panel 1, left), decreased abundance (panel 2, middle) or similar abundance (panel 3, right) 

for proviruses packaged in virions as compared to their expression in the cell. Long 

terminal repeat (LTR) types of proviruses detected are indicated, with LTR Hs (human 

specific) in green, LTR Hs (in humans and non-human primates) in red and LTR 5B in 

blue. Two proviruses (12q24.11 and 4p16.3a) that were not detected in virions were plotted 

at 0.01% in panel 2. (B) The identities of the proviruses and the ratios of their virion to cell 

abundance are shown. Proviruses with (*) were predicted to be underrepresented by the in 

silico analysis (Figure 1). 
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3.4. HML-2 Proviruses are Transcribed through a Variety of Mechanisms 

To determine the relatedness of the expressed proviruses shown in Figure 2B, the relationship of 

their 5’ LTRs was visualized using a neighbor-joining tree [52] (Figure 4A). As expected, the recently 

integrated (human-specific) LTR Hs proviruses clustered very closely and for the most part could not 

be definitively assigned to branches due to their similarity, as seen with the low bootstrap support 

values generated (Figure 4A). However, the relationship of the older LTR Hs elements and LTR 5B 

elements could be ascertained from the tree and was clearly distinct from the recent LTR Hs integrations. 

The association of divergent LTR types with transcribed proviruses in the Tera-1 cells implies either 

that the promoter elements of these distinct LTRs were all functional, or that there are alternative ways 

(i.e., 5’ LTR independent) in which some of the proviruses were transcribed.  

Visualization of HML-2 reads aligned to their map locations using the UCSC Genome Browser [50] 

or the Integrative Genomics Viewer [49] can inform whether transcription of a provirus is driven by  

its 5’ LTR. That is, 5’ LTR driven proviral transcription should be confined to the provirus itself, whereas 

transcription caused by read-through from a neighboring transcription unit results in reads aligning  

to the provirus as well as flanking sequence intermediate to the transcriptional start and/or end. 

Transcription driven from a neighboring element may also result in minus strand reads if the provirus 

and element are in opposite transcriptional orientation, a phenomenon relevant to LTR Hs proviruses 

7q34, 11q12.3 and 11q23.3 (Figure 1A and Figure 4A, solid squares). 

 

Figure 4. Cont. 
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Figure 4. Transcription of HML-2 proviruses is driven by the native LTR or a nearby 

element. (A) Neighbor-joining tree of the 5’ LTR sequences of the HML-2 proviruses 

expressed in Tera-1 cells. The p-distance method was used to calculate distance and 

bootstrap values are indicated (1000 replicates). Proviruses with (*) were predicted to be 

underrepresented by the in silico analysis, as in Figure 1. Solid squares (∎) indicate those 

proviruses (11q23.3 and 11q12.3) with minus strand transcription. Solid diamonds (♦) 

indicate those proviruses (4p16.3a and 22q11.23) with plus strand transcription, but which 

appear to originate from a neighboring transcription unit and not the corresponding 5’ LTR. 

(B) A cartoon of two proviruses located on chromosome 22 and their method of transcription. 

Provirus 22q11.21 (LTR Hs, FPKM = 26.11) is located 2.1 kb downstream from the expressed 

gene PRODH (Proline Dehydrogenase (oxidase) 1, FPKM = 11.53) but in the opposite 

transcriptional orientation. The 5’ LTR of 22q11.21 appears to drive proviral transcription in 

Tera-1 cells. Provirus 22q11.23 (FPKM = 26.94) appears to be transcribed solely through 

the use of an LTR Hs (FPKM = 0.31) located 551 bp upstream from the provirus. This 

transcript coincides with an annotated lincRNA (large intergenic non-coding RNA) [59].  

See supplemental Figures S3 and S4 for more detail. Cartoon is not drawn to scale. 

In contrast, transcription of LTR 5B proviruses 4p16.3a and 22q11.23 (Figure 4A, diamonds) appears to 

be driven by sequences other than the corresponding 5’ LTR. Provirus 4p16.3a (FPKM = 1.19) resides 

in an intron for the expressed gene ZNF876P (FPKM = 9.45) and reads align evenly to the  
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pre-mRNA intronic sequence, including the provirus. This result implies that the provirus is not  

being specifically transcribed; rather, it is preserved in an incompletely removed intron. Remarkably, 

visualization of the highly expressed LTR 5B 22q11.23 provirus (FPKM = 26.94) revealed a fragmentary 

LTR Hs element (FPKM = 0.31) 551 bp upstream, which appeared to be the start site for some fraction 

of 22q11.23 proviral transcription (Figure 4B, Figure S3). Transcription appeared to start midway through 

the R region of the upstream LTR Hs at position 826. Splicing of the transcript occurred at position 

1074 (gag leader) of the LTR Hs element into position 1018 (gag leader) of the LTR 5B provirus  

and followed the GU-AG rule (Figure 4B). This spliced transcript has been annotated as a lincRNA 

(TCONS_l2_00017644; (Cabili, 2011 #11601)), though its function is unknown. Since reads aligned to 

the 22q11.23 proviral 5’ LTR 5B could be indicative of promoter activity, the amount of transcription 

originating from the upstream 5’ LTR Hs could not be accurately estimated. Of note, the FPKM value 

for the upstream LTR Hs appeared to be artificially low since the reads primarily aligned only to  

a small region at the end of the element. The relationship of the 22q11.23 LTR Hs sequence to that of 

other expressed LTR Hs sequences is shown in Figure 4A (black arrow). 

The read-through transcription that appears to be driving expression of the LTR 5B proviruses  

can be contrasted with the clearly 5’ LTR driven transcription of the top expressed LTR Hs provirus, 

22q11.21 (FPKM = 26.1) (Figure 2A,B). This provirus is integrated 2.1kb downstream from the 

transcriptional start of the expressed cellular gene PRODH (FPKM = 11.53). Their transcriptional 

orientations are divergent (Figure 4B, Figure S4), although their expression has been reported to be 

linked [60]. Due to the sequence similarity of this provirus with other recently integrated LTR Hs 

proviruses, some internal and LTR regions do not show coverage after the Unique Only filter is applied 

(Figure S4). The transcriptional start for this provirus appears to occur around and after position 780 

on the 5’ LTR, near or at the expected site at the U3-R border at 793. In support of the role of the  

5’ LTR in driving proviral transcription, there are only a few reads aligned to the flanking region 

upstream of the provirus, indicating that upstream elements do not contribute to provirus transcription. 

3.5. 5’ LTR Activities of Expressed HML-2 Proviruses Corroborate RNASeq Findings 

Retroviral 5’ LTRs generally possess all promoter elements necessary to drive the transcription of 

associated viral genes [3,61,62]. However other factors in cells, such as epigenetic effects and expression 

of nearby genes may also affect their transcription. To investigate the correlation of transcription and 

promoter activity, we cloned 5’ LTRs from seven expressed proviruses into luciferase constructs and 

assessed their function following transfection of Tera-1 cells. The LTR Hs upstream of the 22q11.23 

provirus was similarly assayed for activity to address its role in driving expression of the ancient 

provirus in lieu of the proviral 5’ LTR 5B. The relative promoter activity for each assayed LTR was 

calculated as relative light units (RLU) normalized to that of a co-transfected control containing the 

SV40 promoter. Figure 5 shows the promoter activity of each LTR compared directly to the FPKM 

value of the originating provirus, as determined by the Unique Only, Plus stranded alignment detailed in 

Figure 2A,B. 

As shown in Figure 5B, the 5’ LTRs from most expressed proviruses displayed relative promoter 

activities comparable to their associated relative FPKM. Most provirus promoter activity varied  

±2.5-fold from the reported FPKM values. A major exception to this pattern was seen with the 
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22q11.23 provirus, whose LTR 5B was >500-fold less active relative to its FPKM (Figure 5A), while 

the activity of the upstream LTR Hs appeared to correlate with the FPKM of its transcripts. This result, 

taken together with the alignment data showing read-through transcription between the 22q11.23 LTR 

Hs and the downstream LTR 5B provirus (Figure S3), is consistent with the conclusion that the high 

expression of the 22q11.23 provirus in Tera-1 cells is due to the upstream LTR Hs, which is capable of 

high promoter activity. Another provirus whose promoter activity did not correspond well with its 

FPKM value was 3q13.2, which has predicted to be underrepresented in Figure 1. 3q13.2 displayed  

a 7.6-fold higher promoter activity level as compared to its FPKM, which may indicate that this 

provirus was underrepresented in the RNASeq analysis. 

The canonical HML-2 LTR transcription start site is believed to be located at position 793  

(Figure 5C) [62,63]. However, the RNASeq alignment showed 22q11.23 LTR Hs transcripts originating 

from further downstream, primarily at position 826 (Figure S3). Potentially, this LTR Hs can use  

an alternative start site to initiate transcription. To investigate this issue further, a series of truncated 

LTR Hs constructs containing varying promoter associated elements (Figure 5C) was transfected into 

Tera-1 cells and analyzed for activity as described for Figure 5A,B. 

 

Figure 5. Cont. 
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Figure 5. HML-2 Promoter Expression in Tera-1 Cells. (A) Comparison of the relative 

transcript expression level (FPKM; black) for a provirus and its corresponding relative 

luciferase expression level in Tera-1 cells transfected with a vector containing a luciferase 

reporter gene downstream of the indicated proviral 5’ LTR. LTR activity is expressed as 

relative light units (RLU; gray) normalized to a control construct with a Renilla luciferase 

gene driven by an SV40 promoter. The relative promoter activities of the LTR Hs located 

551 bp upstream from the 22q11.23 provirus, the 5’ LTR 5B of the 22q11.23 provirus and 

the 5’ LTR Hs of six other expressed proviruses in Tera-1 cells are shown. (B) Schematic 

of the 22q11.23 LTR Hs, showing the U3, R and U5 regions. Predicted transcriptional  

start sites are indicated with black arrows and nucleotide position. Colored boxes indicate 

previously described promoter element motifs [62–64]. Lines below the LTR diagram indicate 

the regions included in each truncated LTR construct, and numbers to the right of each  

line indicate the nucleotide position at which the LTR was truncated. GA, GA rich  

motif (nt 379–386, sequence GGGAAGGG); E, enhancer box (nt 465–476, sequence 

TTGCAGTTGAGA; nt 485–496, sequence AGGCATCTGTCT; nt 832–843, sequence 

CTCCATATGCTG); GC, GC rich motif nt 759–763, (sequence CCCCC; nt 602–606, 

sequence GGCGG); TATA, TATA box (nt 790–797, sequence AATAAATA); Inr, initiator 

element (nt 807–812, sequence CTCAGA). Cartoon is not drawn to scale. (C) Relative 

promoter expression levels of truncated 22q11.23 LTR Hs constructs in Tera-1 cells 

(Kruskal-Wallis, * p < 0.05, ** p < 0.01). All luciferase experiments were conducted in 

triplicate and are shown as mean ± standard deviation. (D) Schematic of promoter motifs 

found in the 22q11.21 provirus 5’ LTR Hs, the 22q11.23 LTR Hs and 22q11.23 provirus  

5’ LTR 5B. Crossed out boxes indicate presence of a mutation in the motif as compared to 

the canonical sequence. Cartoon is not drawn to scale. 

We observed only small decreases in activity after truncating the 3’ end of the LTR to position 805, 

an unexpected result, considering the RNASeq alignment data showing a TSS at 826 (Figure 5D and 

Figure S3). No significant drop in activity was seen until the LTR was truncated to position 740, 

resulting in removal of both a GC box and the TATA box (Figure 5C). In addition, truncations down to 

positions 522 and 460 ablated LTR activity almost entirely (Kruskal-Wallis, * p < 0.05, ** p < 0.01, 

Figure 5D). Thus, the ability of the LTR Hs to promote transcription is largely dependent on GC box 
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and/or TATA box promoter elements in the luciferase assay and did not appear to mimic the TSS 

exhibited in its native genomic location, although we have not yet directly determined its site of 

transcriptional initiation. 

The most active relatively recent LTRs in the Tera-1 cells, namely the 5’ LTR of the 22q11.21 

provirus and the LTR Hs on 22q11.23, may have preserved promoter elements that allowed for their 

activity, in comparison to less active, older LTRs, like the 22q11.23 5’ LTR 5B. Accordingly, canonical 

E box, GC box and TATA box elements were found in the most active LTRs (Figure 5E). Conversely, 

the mostly inactive 22q11.23 LTR 5B displayed 1–3 nucleotide mutations for 5 out of the 8 promoter 

elements on its 5’ LTR (Figure 5E). Significantly, this LTR did not retain the canonical GC box or 

TATA box sequences, which were shown to be important for HML-2 LTR transcription in Figure 5D. 

Thus, HML-2 LTR activity in Tera-1 cells appears to be in part reliant on maintenance of canonical 

promoter motifs.  

4. Discussion 

HERV-K (HML-2) proviruses represent the most recently integrated proviruses in the human 

genome, some of which maintain ORFs for retroviral genes [5]. Although not expressed in most 

normal tissue, multiple studies have shown HML-2 transcription to be associated with several disease 

states, notably in cancers and HIV-1 infection [20,65,66]. Neither the mechanism nor the consequences 

of this expression are well understood. An impediment to investigating their possible role in disease 

has been the incomplete understanding of their expression patterns in human cells and, along the same 

lines, the availability of only small sample sizes of analyzed tissues [67,68]. In addition, the exact 

proviral loci and the details of their regulation that may be important in a disease context are not 

known. To address these issues, we applied RNASeq analysis to capture the HML-2 transcription profile 

of the teratocarcinoma cell line Tera-1 and to determine HML-2 packaging in the virions produced from 

this cell line. 

Our approach to HML-2 profiling was to create total RNA Illumina MiSeq libraries from Tera-1 

cells and virions, with a maximum sequencing length of 301 bases per read. By using RNASeq instead 

of PCR-cloning to characterize Tera-1 HML-2 transcription, an approach used previously [13],  

we were able to bypass the effects of PCR primer and cloning bias in provirus amplification, and thus 

achieve greater sensitivity in the breadth of proviruses identified as both expressed in cells and 

packaged into virions. In addition, by performing a total RNA analysis, the context of provirus expression 

was understood. As reported, the HML-2 transcription profile in Tera-1 cells included both recent and 

older proviruses as well as plus strand and minus strand transcription, results that would not have been 

captured by PCR-cloning. Furthermore, we discovered that the transcription of the most highly 

expressed LTR 5B provirus was in fact driven by an LTR Hs element upstream, while others appeared 

to be driven by their native LTRs or neighboring transcription units, exemplifying how RNASeq 

captures valuable contextual data about how HML-2 elements are expressed in specific cells.  

Recently, two groups applied next-generation sequencing to address HML-2 expression in primary 

human PBMCs [38,39]. We consider our approach as combining positive attributes from both methods. 

The lower error rate in Illumina sequencing may offer an advantage over PacBio sequencing, in addition 

to bypassing the effects of RT and PCR primer bias in amplicon sequencing for identification of closely 
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related proviruses [38]. However, the PacBio platform offers longer reads lengths that would be ideal 

for HML-2 identification. In comparison to the Illumina HiSeq method used previously [39], our approach 

similarly only considers uniquely mapped reads, but takes advantage of the 3× longer read lengths 

available through Illumina MiSeq platform, thus making unique identification of HML-2 proviruses 

more apparent. Furthermore, in our libraries, by keeping the RNA unsheared or by limiting fragmentation, 

we created a pool of longer library inserts that allows for improved provirus identification, especially in 

combination with paired-end sequencing, alignment and expression analysis as we performed. Lastly,  

in contrast to both previous methods, our RNASeq analysis fits within the well-established TopHat-

Cufflinks pipeline used in multiple fields for transcriptome analysis, offering a streamlined approach to 

HML-2 expression profiling without the necessity of custom scripting or higher-level bioinformatics.  

The high sequence similarity among the recently integrated HML-2 proviruses (Figures 1B, 4A, and S2) 

was predicted to complicate RNASeq analysis. Reads generated from areas of high sequence similarity 

can cause the phenomenon of “multi-reads,” where the read will map to multiple locations in the reference 

genome. As a testament to the sequence similarity between proviruses, close to 50% of all reads that 

mapped to HML-2 proviruses were multi-reads in the Tera-1 cell RNASeq library, and ~60% in the 

Tera-1 virion RNASeq library (Figure 2A,C). This observation speaks to the high number of recently 

integrated HML-2 proviruses expressed in these samples; however, it causes substantial confusion in 

terms of assigning the read to a specific locus. Accurate locus-specific assignment is critical to understand 

the biological relevance of HML-2 expression. To circumvent this complication, we used a filter to 

consider only uniquely mapped reads for the transcription profile. Although the RNASeq in silico 

simulation (Figure 1B) showed that this approach underrepresented both human specific LTR Hs 

proviruses as well as known duplicated proviruses in the genome, importantly, it is still able to capture 

their expression, albeit at a lower level. As sequencing read lengths increase, the alignability of reads 

from these highly related loci will correspondingly increase and the effects of a conservative Unique 

Only alignment should not hamper detection of modestly expressed loci. An approach to maximize the 

utility of data generated from Illumina MiSeq is to custom prepare libraries so that the RNA input is 

not over sheared, which negatively limits the insert size available for sequencing, and also to enrich the 

library for longer inserts, which can be achieved using size selection during library preparation. These 

steps would circumvent the favored sequencing of shorter molecules during the sequencing reaction 

and give longer sequence for alignment in downstream analysis. In our analysis, we found that the 

relative transcript expression values (FPKM) of the most highly transcribed proviruses did not appear 

to be greatly affected by this Unique Only approach, although detection of lower transcribed proviruses 

was impaired (Figure 1A). 

LTR activity assays (as performed in Figure 5) were used to ascertain whether the Unique Only 

approach did remove proviruses legitimately expressed at low levels (Figure S5). In this analysis,  

5’ LTRs from three proviruses (1p31.1a, 11q22.1 and 12q13.2) that showed a decrease in relative 

expression after Unique Only analysis and were detected at lower than 0.5% of all HML-2 reads in the 

hg19 alignment were cloned and assayed for LTR activity. LTR activity was then compared back to 

either the Unfiltered FPKM or the Unique Only FPKM generated for the locus. LTR activities of the 

selected loci appear to relate to the Unique Only expression value, potentially extending this analysis 

approach even for poorly expressed loci. However, even though the Unique FPKM and LTR activity 
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values look similar, the exact relationship of the proviral relative transcript expression value to its LTR 

activity is not established and cannot be interpreted definitively. 

Filtering out multi-reads can lead to gaps in read coverage for transcripts from closely related 

proviruses. For the LTR Hs provirus at 22q11.21, almost full proviral coverage is seen when reads are 

Unfiltered (Figure S4A). However, after Unique Only selection, coverage is clearly limited to several 

unique portions of the genome (Figure S4B). Another way coverage of a provirus can be interrupted is 

due to polymorphisms in the donor sequence that are not present in the reference. For example,  

a region in the pol gene of provirus 22q11.21 does not have substantial read coverage in either the 

Unfiltered or Unique Only alignments (Figure S4A,B, red arrow). Depending on the provirus, regions 

missing reads could indicate that there are mutations in the donor sequence that causes them to 

misalign to other related proviruses, or potentially remain unaligned if too divergent. Through sequence 

analysis of the 22q11.21 provirus, we established the presence of four SNPs over ~200 bases in pol 

that overlapped the gap in read coverage. If gaps in coverage for a provirus in the unfiltered alignment 

are pervasive and do not correspond to the presence of SNPs in the donor sequence, the validity of read 

assignments to it could be called into question. 

Another issue that arises in mapping HML-2 transcription is that not all known integrations are 

annotated in the hg19 build of the human genome. As mentioned previously, some HML-2 proviruses 

are insertionally polymorphic within the human population, others are found as solo LTRs in some 

individuals, and full-length proviruses in others. To ensure that we captured all known proviruses,  

an HML-2 reference “genome” was assembled containing 943 solo LTR and 93 proviral sequences,  

6 of which were not present, or only partially present, in hg19 (Table S3). Thus, an alignment to the 

HML-2 reference genome was run in parallel to the hg19 alignment to validate hits. As seen in Figure 

S1A-D, the abundance values generated in the HML-2 reference alignment generally corroborated the 

proviruses found using hg19. A notable difference is that a provirus not present in hg19, referred to as 

19p12d (empty site in hg19: 22414379-22414382, not K113), appeared to be expressed in Tera-1 cells.  

Based on the LTR phylogeny (Figure 4A), the LTR Hs group of proviruses was much more highly 

represented than the older LTR 5A and 5B groups in the Tera-1 cell transcriptome. Furthermore, 

transfection assays using the various LTRs to drive expression of a luciferase reporter in Tera-1 cells 

showed levels of expression consistent with the relative transcript levels, at least for most of the LTR 

Hs proviruses (Figure 5). Consistent with this observation, the 5’ LTR 5B of the provirus at 22q11.23 

had relatively low transcriptional activity compared to the upstream LTR Hs. This difference could be 

due to the absence of GC and TATA boxes, since deletion experiments showed that the region containing 

these elements was important for retaining transcriptional activity of the 22q11.23 LTR Hs in Tera-1 

cells (Figure 5E), although the individual contributions of each was not discerned from the assays. 

Potentially, the GC boxes are of greater importance as HML-2 LTRs are thought to function independently 

of TATA box and initiator elements [62] and a substantial loss in promoter activity was only seen 

when all GC boxes were removed from truncation constructs (Figure 5D). Our data agree with previous 

observations that the ubiquitous transcription factors Sp1 and Sp3, which bind to GC boxes found in 

promoter sequences, play a large role in regulating HML-2 promoter activity [62,63]. 

HML-2 LTR promoter activity is cell type-specific and depends on a number of factors including 

epigenetics, transcription factor binding and, possibly, proximity to other expressed genes [3,61,69].  

For example, the highly expressed 22q11.21 provirus is situated very close to the expressed cellular 
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gene PRODH (Figure 4B), which may give the LTR access to transcriptional machinery and affect its 

transcription, although the reverse has also been proposed [60]. Similar LTR Hs elements (1p31.1a, 

11q22.1 and 12q13.2) that retain promoter motifs but are located in less actively transcribed regions do 

not appear to be highly expressed in Tera-1 cells based on FPKM; however, these LTRs also do not 

show high promoter activity in in vitro assay, which should have alleviated epigenetic repression of the 

LTR if present (Figure S5). It is possible that there are other promoter elements present on active LTRs 

that allow for their expression in Tera-1 cells beyond the GC and TATA boxes analyzed in this study. 

Along the same lines, the 22q11.21 5’ LTR Hs showed high activity in promoter assays in Tera-1 cells 

(Figure 5B), but very little activity in breast cancer cell lines (Figure S6). It is likely that expression 

results from a disease-state or tissue-specific factor acting on the LTR, especially given that the LTR 

Hs driven transcription of the LTR 5B provirus on 22q11.23 coincides with a known lincRNA of 

unknown function annotated in hg19 [59]. Its expression is highest in prostate tissue, testes and ovaries, 

likely reflecting the tissue-specific transcriptional regulation of the ancestral HML-2 virus. 

Based on the predicted ORFs for the expressed proviruses (Figure 2B), the majority of the expressed 

HML-2 transcripts encode gag (~55%), including full-length and truncated forms, with env (~4%) and 

pol ORF (~5%) represented at much lower levels (Figure 2C). Based on preliminary analysis,  

the full-length 22q11.21 Gag has functional protease cleavage sites, whereas in the truncated 22q11.23 

Gag these sites are mutated [70]. Electron microscopy of Tera-1 virions shows immature particles budding 

from cells [12], however the relative contributions of ineffective Gag processing, co-packaging of  

full-length and truncated Gag and/or lack of functional protease to this phenomenon were not determined.  

In terms of morphology, Tera-1 virions infrequently show Env studding [12], an observation consistent 

with our RNASeq data, which show only ~4% of HML-2 transcripts, originating from two expressed 

proviruses, to be capable of expressing Env protein. In fact, western blotting for TM shows that Env 

protein in Tera-1 cells is not detectable (Figure S7). The Env protein produced from the 7p22.1 tandem 

duplicated provirus which contributed 70% of the possible env transcripts, has been shown to be 

functional, however Env encoded by the 6q14.1 locus is not [71].  

Tera-1 virions have not been shown to be infectious [14]. The primary packaged genome originating 

from the Type 1 provirus 22q11.21 has only an ORF for gag [13]. Although we did observe the 

packaging of other HML-2 genomes that could potentially be co-packaged and lead to recombination, 

the defective nature of the particle structure is likely to impede a proper infection cycle, thus preventing 

recombination and infectious virus production. Interestingly, the genomes that are selected for packaging 

all originate from LTR Hs proviruses that are human specific (Figure 2F, Figure 3B). In fact, genomes 

derived from these proviruses are preferentially selected for packaging over other highly expressed 

proviruses in Tera-1 cells (Figure 3). Potentially, only the recently integrated proviruses retain  

a functional packaging signal on their genomes that allows for their enrichment into Tera-1 virions.  

A packaging signal for HML-2 has not been reported; however, if consistent with other retroviruses, it 

is likely be present in the 5’ UTR region upstream of the gag initiation codon [72], and perhaps 

extending into gag. A result that helps elucidate necessary elements for packaging is the absence of 

transcripts of provirus 12q24.11 from virions, even though this recently integrated provirus is expressed 

in Tera-1 cells (Figure 2B,E). While 12q24.11 has gag leader sequence, the total provirus only retains 

sequence from the start of the 5’ LTR into the first ~400 nucleotides of gag. Potentially, sequence 

beyond the beginning of gag is necessary for the proper structure of the HML-2 packaging signal. 
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12q24.11 also has 5 polymorphisms in its gag leader in comparison to the highly packaged 22q11.21 

provirus that might impair the packaging motif. The roles of these differences remain to be tested. The 

observation that highly expressed cellular RNAs appear to be nonspecifically packaged into HML-2 

virions is consistent with other retroviruses [73].  

The biological significance of HML-2 transcription in Tera-1 cells, and even more remarkably,  

their virion production, is not clear. Likely, HML-2 expression in these cells is purely a relic of LTR 

responsiveness to the transcriptional environment. Thus, the production of virions in these cells is 

coincidental to the proviruses with responsive LTR motifs. By analysis of HML-2 proviral transcription 

and selective packaging into virions, we should be able to elucidate elements of HML-2 biology that 

were relevant to their lifecycle as infectious retroviruses. Furthermore, in utilizing a high throughput 

approach independent of most PCR limitations, we can assess the full scope of HML-2 expression in 

the context of the cell. In the future, application of HML-2 profiling to both healthy and diseased 

tissues will be of great use to help elucidate the effect of HML-2 expression in the human host. 
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