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Abstract: Herpes simplex virus-1 (HSV-1), like all herpesviruses, is a large complex DNA 

virus containing up to 16 different viral membrane proteins in its envelope. The assembly of 

HSV-1 particles occurs by budding/wrapping at intracellular membranes producing infectious 

virions contained within the lumen of cytoplasmic membrane-bound compartments that are then 

released by secretion. To ensure incorporation of all viral membrane proteins into the 

envelope, they need to be localized to the appropriate intracellular membranes either via the 

endocytic pathway or by direct targeting to assembly sites from the biosynthetic secretory 

pathway. Many HSV-1 envelope proteins encode targeting motifs that direct their 

endocytosis and targeting, while others do not, including the essential entry proteins gD and 

the gH/gL complex, and so it has been unclear how these envelope proteins reach the 

appropriate assembly compartments. We now show that efficient endocytosis of gD and 

gH/gL and their incorporation into mature virions relies upon the presence of the HSV-1 

envelope proteins gM and the gK/pUL20 complex. Our data demonstrate both redundant and 

synergistic roles for gM and gK/pUL20 in controlling the targeting of gD and gH/L to the 

appropriate intracellular virus assembly compartments. 
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1. Introduction 

The correct sub-cellular localization of viral envelope proteins is crucial for the assembly of 

enveloped viruses. This is the case whether viruses acquire their lipid envelope by directly budding 

through the plasma membrane, or by budding/wrapping at intracellular membranes whereby virions 

become contained within the lumen of that compartment (with example assembly sites including the 

endoplasmic reticulum, trans-Golgi network, and endosomes). The localization of cellular membrane 

proteins frequently involves discrete targeting motifs, short sequences present in cytoplasmic domains 

of such membrane proteins that mediate their inclusion into transport vesicles via direct or indirect 

interactions with the vesicle forming coat machinery. The best-understood class of cellular targeting 

motifs is the so-called tyrosine based motifs (YXXΦ, where X indicates any amino acid and Φ indicates 

an amino acid with a bulky hydrophobic side chain), which interact with clathrin adaptor complexes [1]. 

Herpesviruses are large and structurally complex DNA viruses that infect a wide variety of vertebrates 

and cause many clinical and veterinary problems. The envelope of herpesviruses includes many different 

viral envelope proteins, for example the alphaherpesvirus herpes simplex virus-1 (HSV-1) envelope contains 

at least 12, and potentially up to 16 different virally encoded transmembrane proteins [2]. HSV-1 envelope 

proteins mediate a wide range of roles during the virus life cycle and are, thus, important components of 

the virion. In particular, glycoproteins B (gB), gD and the gH/gL complex play essential roles during 

virus entry and their incorporation into virions during assembly is vital for the production of infectious 

progeny [3]. Whilst some herpesvirus envelope proteins such as gB and gE appear to be able to mediate 

their own localization to intracellular virus assembly sites following de novo protein synthesis, others 

including gD and gH/L appear to rely on other viral proteins for correct localization. Endocytic targeting 

motifs have been characterized in gB and gE, which allow for trafficking to the cell surface and 

subsequent internalization where they accumulates intracellularly [4,5]. gD and gH/L however, do not 

appear to encode any targeting information and expression of gD or gH/L alone gives rise to cell surface 

localization [6]. This contrasts to the intracellular localization of both gD and gH/L that can be readily 

observed in infected cells. These observations highlight a requirement for the presence of other viral 

proteins to localize gD and gH/L correctly. 

Previously, it has been demonstrated that gM can efficiently internalize gD and gH/L from the plasma 

membrane, revealing a mechanism by which gD and gH/L could localize to intracellular virus assembly 

sites [6]. However, whilst gM can mediate the internalization of gD and gH/gL in transfection assays, 

subsequent studies suggested that during infection other, gM-independent, mechanisms may also occur. 

The deletion of the gene encoding gM (UL10) from HSV-1 was found to inhibit gH/gL internalization 

and reduce its incorporation into virions, confirming a role for gM in mediating the appropriate 

localization of gH/gL to viral assembly compartments. However, no detectable difference in the 

internalization of gD from the cell surface, or the levels of gD present in purified virions could be 

observed for the gM-null virus. Also, while gH/gL levels were reduced in gM-null virions, this 

glycoprotein complex was not completely absent demonstrating at least some gH/gL was still able to 

reach viral assembly compartments [7]. These data suggest other viral proteins may also be able to 

localize gD and at least some gH/gL to intracellular sites of HSV-1 assembly. 

Previous published data suggest that the gK/pUL20 complex may also be able to alter the localization 

of other HSV-1 envelope proteins. Cell fusion induced by glycoproteins gB, gD, and gH/gL is inhibited 
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upon co-expression with gK/pUL20, suggesting that this membrane protein complex may be able to alter 

cell surface expression of these fusion glycoproteins [8,9]. 

The viral envelope proteins gK and pUL20 are multiple membrane-spanning proteins that are 

conserved in all alphaherpesviruses. Studies have demonstrated that HSV-1 gK and pUL20 form a 

complex, and the correct intracellular trafficking, localization and function of these proteins relies on 

their co-expression [10,11]. The gK/pUL20 complex is important for cytoplasmic virion morphogenesis, 

as mutant viruses lacking gK or pUL20 accumulate unenveloped capsids within the cytoplasm resulting in 

a defect in virion egress and spread [12–14]. Furthermore, gK and pUL20 are also thought to be 

important determinants of virus-induced cell fusion, as many different mutations within gK or pUL20 

give rise to syncytial variants of HSV-1, which cause extensive cell-cell fusion upon infection [15–20]. 

Structurally, gK has been described to have an N-terminal signal sequence and either four 

transmembrane domains with extracellularly located N- and C-termini [17,18] or three transmembrane 

domains with the C-terminal tail located intracellularly [21,22]. pUL20 is predicted to lack a signal 

sequence and to have four transmembrane domains with cytoplasmic N- and C-termini [23]. gK and 

pUL20 are both transcribed with late gene kinetics, therefore, requiring viral DNA replication for 

efficient expression [24,25]. 

As HSV-1 and pseudorabies virus (PRV) gK/pUL20 have been reported to inhibit cell fusion in gB, 

gD and gH/gL transfected cells [8,9], this suggests that the cell surface expression levels of at least  

one of gB, gD, or gH/gL is reduced by gK/pUL20, potentially as a result of internalization. We have 

now investigated the relative roles of gM and gK/pUL20 for gD and gH/gL localization using 

transfection-based assays and in cells infected with a series of recombinant viruses lacking gM, gK, 

and/or pUL20. Our data now show that both gK/pUL20 and gM can mediate gD and gH/L 

internalization, and that both gM and gK/pUL20 are required for efficient gH/gL incorporation into 

HSV-1 particles. Interestingly, gD incorporation into virions is mainly dependent on gK/pUL20, despite 

little effect on gD internalization unless both gM and gK/pUL20 are deleted. 

2. Experimental Section 

2.1. Cell Lines and Viruses 

COS-7, Vero, VK302 (provided by G Kousoulas, Louisiana State University [13]) and Fd20-1 

(provided by G Kousoulas, Louisiana State University [23]) cells were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 10% FCS, 2 mM L-glutamine, 100 U/mL 

penicillin and 100 µg/mL streptomycin. HaCaT cells were maintained in Glasgow Minimum Essential 

Medium (GMEM) supplemented as above. All viruses lacking gM, gK or pUL20 expression were based 

on BAC-cloned HSV-1 strain KOS [26] and recombinant viruses were constructed using the primers 

shown in Table 1 and the two-step Red recombination technique [27]. Viruses lacking gD or gH have 

been previously described [28,29]. 
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Table 1. Primers used for construction of recombinant HSV-1. 

COL426 

TGCGGTCTGCGTCACGGGGCTCCTCGTCCTGGCCTC

TGTGTAATAGTGAGAATTCCCTGCTTTTACGCCACG

AGGATGACGACGATAAGTAGGG 

Forward primer for replacing 

codons 53–55 of UL10 with 

three stop codons 

COL427 

ACCCCGGCATAAGAGCTCGCCGTGGCGTAAAAGCA

GGGAATTCTCACTATTACACAGAGGCCAGGACGAG

GACAACCAATTAACCAATTCTGATTAG 

Reverse primer for replacing 

codons 53–55 of UL10 with 

three stop codons 

COL468 

GGTACGCCCCACCGGCACCAACAACGACACCGCCC

TCGTGTGATAGTAAGCTTACCAGACCCTATTGTTTC

TGAGGATGACGACGATAAGTAGGG 

Forward primer for replacing 

codons 54–56 of UL53 with 

three stop codons 

COL469 

GGGGGGTGCGTCGGGGCCCCCAGAAACAATAGGGT

CTGGTAAGCTTACTATCACACGAGGGCGGTGTCGTT

GTCAACCAATTAACCAATTCTGATTAG 

Reverse primer for replacing 

codons 54–56 of UL53 with 

three stop codons 

COL464 

CCTTCCTCTGGTGGATCGAGATCTGGTCGACGAGGC

CGCCTGATAGTAAGCTTAGGGAGAACTGCCACTGG

AGAGGATGACGACGATAAGTAGGG 

Forward primer for replacing 

codons 20–23 of UL20 with 

three stop codons 

COL465 

GAGGACAATGAAAACTGTTCCTCCAGTGGCAGTTCT

CCCTAAGCTTACTATCAGGCGGCCTCGTCGACCAGA

TCAACCAATTAACCAATTCTGATTAG 

Revere primer for replacing 

codons 20–23 of UL20 with 

three stop codons 

2.2. Antibody Internalization Assays 

COS-7 cells grown on glass coverslips were transfected using Trans-IT LT1 according to the 

manufacturer’s instructions (Mirus Bio, Madison, WI, USA). At 24 h post transfection, cells were 

incubated with primary antibodies against gD or gH/gL (Table 2) diluted in pre-warmed supplemented 

DMEM for 1 h at 37 °C in a humidified chamber. Cells were then washed once with PBS before being 

fixed in 3% (v/v) paraformaldehyde in PBS for 15 min at room temperature and then washed three times 

with PBS. Cells were permeabilised and blocked using 0.1% TX100/1% FCS in PBS for 15 min. The 

samples were then incubated with Alexa-647 conjugated anti-mouse secondary antibody (Life Technologies, 

Grand Island, NY, USA). The coverslips were then washed and mounted onto glass slides using ProLong 

Gold antifade reagent containing DAPI (Life Technologies). For infected samples, Vero cells grown on 

glass coverslips were infected with HSV-1 strains at 3 PFU/cell. At 7 h post infection, cells were 

incubated with primary antibodies against gD or gH/gL for 1 h and fixed and permeabilised as described 

above. Samples were then incubated with anti-VP5 antibody (Table 2) followed by subtype specific 

secondary antibodies (anti-IgG2a-Alexa-488 and anti-IgG2b-Alexa-568; (Life Technologies) and 

mounting on slides. Fluorescence microscopy images were captured using a 60 × 1.4-numerical-aperture 

oil objective (Olympus, Tokyo, Japan) of an Olympus IX81 inverted wide field microscope using  

Image-Pro Plus software. Images were processed using ImageJ software (v1.43) and Adobe Photoshop. 
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Table 2. Antibodies used for immunofluorescence (IF) microscopy and Western blotting (WB). 

Antigen Name Species Isotype Application (Dilution) Source 

Actin AC-40 Mouse IgG2a WB (1:5000) Sigma 

gB CB24 Mouse IgG2b WB (1:60) [30] 

gD 
LP2 Mouse IgG2a IF (1:3) [31] 

LP14 Mouse IgG2a WB (1:10) [31] 

gH 
BBH1 Mouse IgG2a WB (1:10) Abcam 

LP11 Mouse IgG2a IF (1:3) [32] 

gM gM-B Rabbit - WB (1:1000) From: H Browne 

pUL20 - Rabbit - WB (1:1000) From: H Browne 

pUL37 - Rabbit - WB (1:5000) From: T Mettenleiter 

VP5 Ab6508 Mouse IgG2b IF (1:200); WB (1:1000) Abcam 

VP16 LP1 Mouse IgG1 WB (1:2000) Abcam 

VP22 AGV30 Rabbit - WB (1:2000) [33] 

2.3. Single Step Growth Curves 

Vero, VK302 or Fd20-1 cells were seeded at 1 × 105 cells/well in 24-well plates. The next day, cells 

were infected at 10 PFU/cell by incubation for 1 h at 37 °C before inactivating any residual virus by acid 

wash (40 mM citric acid, 135 mM NaCl, 10 mM KCl, pH 3.0) for 1 min at room temperature, followed 

by 3 washes with PBS and replacing with fresh supplemented media. At various times post infection, 

samples were harvested by freezing at −70 °C. Cells were then lysed in their media by three cycles of 

freeze thawing and total virus titers were determined by plaque assays. 

2.4. Determination of Plaque Size 

For plaque formation analysis, plaque assays fixed and stained with 0.1% toluidine blue solution  

were scanned at 600 dpi and diameters were determined by Adobe Photoshop in pixels. The average 

plaque size was determined for 50 plaques and expressed as a percentage of the average KOS WT  

plaque diameter. 

2.5. Sucrose Cushion Virus Purification 

HaCaT cells growing in 10 cm dishes were infected at 5 PFU/cell by incubation for 1 h at 37 °C 

before inactivating any residual virus by acid wash for 1 min at room temperature, followed by  

3 × PBS washes and replacing with fresh supplemented media. After 24 h, the culture supernatant was 

harvested and cleared from cellular debris by two consecutive low speed centrifugations (once at  

912× g, 20 min, 4 °C, Beckman GH-3.8 and then at 17,000× g, 30 min, 4 °C, Beckman SW32Ti). 3 mL 

of the cleared supernatant was then layered on top of 1 mL of 33% (v/v) sucrose cushion. Virus particles 

were then pelleted by centrifugation (48,600× g, 3 h, 4 °C, Beckman TLA-100.3). The pellet was 

resuspended in 50 µL of SDS-PAGE sample buffer and analysed by Western blotting with various 

antibodies (Table 2). 
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2.6. Transmission Electron Microscopy (TEM) and Quantification 

Monolayers of HaCaT cells in 10 cm dishes were infected at an MOI of 3 PFU/cell by incubation for 

1 h at 37 °C and harvested for TEM analysis at 20 hpi. The cells were washed with 0.9% (w/v) sodium 

chloride and fixed in 2% glutaraldehyde/2% formaldehyde in 0.5 M sodium cacodylate buffer (pH 7.4) 

for 4 h at 4 °C. The cells were then harvested from the culture dish by scraping into fixative, pelleted 

and washed in buffer. The cell pellets were treated with 1% osmium ferricyanide for 2 h, before being 

washed in distilled water and treated with 2% uranyl acetate in 0.05 M maleate buffer (pH 5.5) for 2 h. 

The samples were rinsed again in distilled water before being dehydrated in graded ethanol, treated with 

dry acetonitrile and infiltrated with Quetol epoxy resin. Ultrathin sections were examined with a FEI 

Technai G2 Transmission electron microscope operated at 120 Kv using an AMT XR60B digital camera 

running Deben software. Samples were processed by the Cambridge Advanced Imaging Centre, 

University of Cambridge. For TEM quantification extracellular virions, cytoplasmic non-enveloped capsids, 

cytoplasmic enveloped virions and nuclear capsids were counted in 8 separate cells for each condition. 

3. Results 

3.1. gK/pUL20 Cause the Internalization of gD and gH/gL in Transfected Cells 

Whilst it is known that gM can mediate the internalization of gD and gH/gL [6], subsequent studies 

suggest that during infection other mechanisms may also be in place to mediate gD and gH/gL 

localization to viral assembly compartments [7]. A potential candidate that may be involved in  

gM-independent mechanisms of glycoprotein localization control is the viral envelope protein complex 

gK/pUL20. Cell fusion induced by gB, gD and gH/gL is inhibited upon co-expression with gK/pUL20 

and one possible explanation for the phenotype is that gK/pUL20 may alter cell surface expression of 

one or more of these fusion glycoproteins [8,9]. To test this hypothesis, gD and gH/gL were co-expressed 

with gK/pUL20 or gM and antibody internalization assays were performed. COS-7 cells were  

co-transfected with plasmids expressing gD or gH/gL in combination with gM-Cherry or gK-Cherry and 

pUL20-GFP and incubated with gD- or gH/gL-specific antibodies for 1 h at 37 °C before fixation. In 

this assay, cells are only exposed to the gD and gH/gL-specific antibodies while they are living and 

intact. Therefore, the only mechanism by which antibody positive signals can occur in intracellular 

compartments is if gD or gH/gL are internalized from the cell surface after binding to antibody. Control 

cells expressing just gD or gH/gL demonstrated predominantly cell surface staining, suggesting little 

internalization of these glycoproteins occurs when they are expressed in the absence of other viral 

proteins (Figure 1a,d). As expected from previous work, when gM was co-expressed, gD and gH/gL 

were efficiently internalized from the cell surface (Figure 1b,e). Furthermore, internalised gD and gH/gL 

showed some co-localization with gM in the perinuclear region (Figure 1b,e, coloured panels). Upon  

co-expression with gK/pUL20, both gD and gH/gL were also efficiently internalized to a juxtanuclear 

compartment with little remaining cell surface localization observed (Figure 1c,f). Furthermore, 

internalized gD and gH/gL showed some co-localization with gK/pUL20 (Figure 1c,f, coloured panels). 

These results demonstrate that gK/pUL20 and gM are both able to mediate the internalization of gD and 

gH/gL from the cell surface in transfected cells, and so could serve as alternative and potentially 

redundant mechanisms for controlling HSV-1 envelope protein localization. However, it is important to 
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note that this assay only monitors copies of gD and gH/gL that pass over the cell surface during the 1 h 

antibody incubation period, and any gD or gH/gL molecules that remain in intracellular compartments 

during this time will not be detected. Therefore, while our data demonstrates a clear induction of gD and 

gH/gL internalization by gM and gK/pUL20, we cannot rule out that gM and gK/pUL20 could also cause 

some retention of gD and gH/gL in intracellular compartments. 

 

Figure 1. Effect of gK/pUL20 on the internalization of gD and gH/gL. COS-7 cells were 

transfected with plasmids expressing gD (a–c) or gH/gL (d–f); together with plasmids 

expressing GFP plus Cherry (a,d); gM-Cherry plus GFP (b,e); or gK-Cherry plus  

pUL20-GFP (c,f). At 24 h post-transfection, cells were incubated with gD or gH/gL specific 

antibodies for 1 h at 37 °C before being fixed, permeabilised and stained with secondary 

antibody. For clarity, gD and gH/gL signals are shown in black/white in the first column, 

followed by smaller images of gD and gH/gL signals shown in blue in the second column 

along with the co-expressed proteins as indicated. 

3.2. Construction of Recombinant Viruses Lacking gK/pUL20 and gM 

To investigate the role of gK/pUL20 in gD and gH/gL localisation in the context of infection,  

single deletion viruses lacking the expression of functional gK or pUL20 were created by inserting three 

tandem in-frame stop codons into the genes UL53 (after codon 53), and UL20 (after codon 19) 

respectively (KOS ΔgK and ΔpUL20; Figure 2). Furthermore in order to investigate possible functional 

redundancy of gK/pUL20 with gM; a single deletion virus lacking the expression of functional gM was 

created by inserting three tandem in-frame stop codons into the UL10 gene (after codon 52), as well as 

double deletion viruses lacking the expression of functional gM together with gK or pUL20 were created 
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in the same genetic background (KOS ΔgM, ΔgMΔgK, ΔgMΔpUL20; Figure 2). The short  

N-terminal sequences of gM, gK and pUL20 that could be expressed by these deletion viruses would not 

be expected to retain any activity, and we would not predict these short peptides to affect viral replication 

or membrane protein localization. All viruses were constructed using a bacterial artificial chromosome 

(BAC)-cloned HSV-1 genome (strain KOS; [26]) using the two-step Red-mediated recombination 

method [27]. All recombiant virus BAC-clones were carefully analysed by restriction enzyme digest to 

ensure correct recombination had occurred and no detectable deletions or insertions were present. All 

mutations were verified by sequencing PCR fragments covering the respective regions of the genome 

that were generated from infected cell DNA. All mutations were present as expected with the exception 

of the singly mutated KOS ΔpUL20, which had also acquired an additional base insertion of a single G 

in the first stop codon, leading to a F20W mutation as well as a frameshift rather than the designed stop 

codons (Figure 2c). The resulting translation product from this mutated gene would contain the first 19 

amino acids of pUL20, followed by 23 amino acids from the out of frame sequence before a stop codon 

is reached. Such a drastically different protein sequence would not be expected to retain any normal 

pUL20 functionality. The ∆pUL20 mutation in the ∆gM∆pUL20 deletion virus contained the three  

in-frame stop codons as expected. In HSV-1, the 5' end of the gK-encoding gene (UL53) overlaps by  

45 bp with the 3' end of the essential DNA synthesis gene UL52 (helicase-primase subunit). The 

mutations introduced into the gK-encoding gene were therefore designed downstream of the UL52 stop 

codon so as to not affect its expression. Likewise the 5' end of the gM-encoding gene (UL10) overlaps 

with the 5' end of the essential origin binding protein gene (UL9), which is in the opposite orientation to 

UL10, by 55 base pairs, and so the stop codons were introduced into UL10 at 100bp 5' to the UL9 start 

codon to avoid affecting UL9 expression. The UL20 gene does not overlap with any other known genes. 

Single HSV-1 gM, gK, and pUL20 deletion viruses have previously been described and constructed by 

different methods and in different HSV-1 strains [7,13,19,34–39]. Whilst the deletion of gM has been 

reported to have little effect on virus growth, deleting gK or pUL20 results in severe attenuation by 

approximately 400- and 100-fold respectively, compared to WT virus [36,37]. Therefore, viruses lacking 

gK or pUL20 require complementing cell lines for propagation of virus stocks (Table 3). The VK302 

cell line that expresses HSV-1 gK [13] and the Fd20-1 cell line that expresses HSV-1 pUL20 [23] were 

used to propagate and titer all ∆gK and ∆pUL20 viruses, respectively. Mutant viruses obtained from 

these Vero-based complementing cell lines are fully infectious in complementing cells. Infection of  

non-complementing cell lines can be used to investigate the effects of these gene deletions on post-entry 

stages of a single round of viral replication. 
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Figure 2. Schematic representation of recombinant viruses constructed. (a) Representation 

of the prototypic arrangement of the HSV-1 genome with the unique long (UL) and unique 

short (US) regions flanked by the terminal repeat (TR) and internal repeat (IR) regions;  

(b) Relative genomic positions of genes mutated to create recombinant viruses;  

(c) Schematic representation of mutations created. Viruses lacking gM, gK, and pUL20 were 

constructed by replacing codons 53–55, 54–56, and 20–22 with three stop codons in the 

UL10, UL53, and UL20 genes, respectively. 

Table 3. Titers of viruses lacking gK or pUL20 in complementing and non-complementing cell lines. 

Virus 

Virus Titre (PFU/mL) 

Non-Complementing Cell Line 

(Vero) * 

Complementing Cell Lines 

(VK302/Fd20-1) ** 

KOS ΔgK 1.52 × 104 2.63 × 106 

KOS ΔpUL20 3.40 × 103 9.70 × 105 

KOS ΔgMΔgK 2.20 × 103 1.08 × 106 

KOS ΔgMΔpUL20 2.70 × 102 1.53 × 105 

Virus stocks, were prepared by infecting complementing cells (VK302 or Fd20-1) at low MOI  

(0.1–0.01 PFU/cell) for 1 h at 37 °C. After incubation for up to 4 days at 37 °C, the cells were harvested by 

scraping into the culture medium and centrifugation (4 °C, 1200× g, 10 min). The cells were lysed to release 

cell-associated virus by sonication for 20 s at 39% amplitude in a cup horn sonicator (Fisher Scientific) and 

virus stocks were stored at −80 °C. Viral titers were determined by plaque assays on Vero cells (*) or on the 

appropriate complementing cell line (**). 
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3.3. Growth Kinetics of Viruses Lacking gK/pUL20 and gM 

To investigate the effect of deleting gM, gK, and pUL20 on virus replication rates, single-step growth 

curves were performed in Vero cells and the gK- and pUL20-complementing cell lines  

(VK302 and Fd20-1). In Vero cells, the deletion of gM from the virus resulted in peak titers similar to 

WT, with a c.a. 2-fold reduction at 24 h post infection (hpi) (Figure 3a). The replication of ΔgK and 

ΔpUL20 however were severely attenuated, showing approximately 450- and 2000-fold reduction in 

final titers compared to WT respectively (Figure 3a,b). Furthermore, the deletion of gM with gK or 

pUL20 resulted in a synergistic defect on replication with a reduction of 3000- and 25,000-fold in final 

titers respectively compared to WT respectively (Figure 3a,b). The complementing cell lines were able 

to correct the attenuated phenotypes (Figure 3c,d). However the replication of the deletion viruses was 

not rescued to WT levels indicating that the complementation provided by the cell lines is not complete, 

although we cannot formally rule out the possibility that random additional changes may have occurred 

during the construction of the recombinant viruses that are not fully rescued by these complementing 

cell lines. In the VK302 and Fd20-1 cell lines, the deletion of gM results in similar final titers compared 

to WT (Figure 3c,d). These results show that whilst the deletion of gM from the virus has little effect on 

replication, the deletion of gK or pUL20 results in a highly attenuated virus, as expected from previous 

publications [7,36,37]. Furthermore, the deletion of gM in combination with gK or pUL20 gives rise to 

a synergistic defect in HSV-1 replication. The severe attenuation in single-step growth curves observed 

with both gK- and pUL20-deficient viruses in non-complementing cell lines could be the result of 

reduced numbers of virions being produced, the production of non-infectious virions, or a combination 

of the two. 

 

Figure 3. Cont. 
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Figure 3. Replication kinetics, plaque formation and protein expression of recombinant 

viruses. Single-step growth curves at high MOI (10 PFU/cell) were carried out in Vero cells 

(a,b); VK302 cells (c); or Fd20-1 cells (d). Total infectious virus yields were determined by 

plaque assay using the appropriate complementing cells lines. Error bars represent standard 

errors of the means of triplicate samples; (e) HaCaT cells were infected with the indicated 

viruses at high MOI (5 PFU/cell) for 24 h before being harvested and lysates separated by 

SDS-PAGE and analysed by Western blotting using the indicated antibodies. Molecular mass 

markers (in kDa) are indicated on the right; (f) Plaque formation of the indicated viruses was 

determined by standard plaque assay on Vero, VK302 and Fd20-1 cells at 3 days post 

infection. Representative images are shown. Scale bars: 2.5 mm. Plaque sizes were 

determined by scanning assay plates and measurement using Photoshop. The relative 

diameters compared to WT are shown. Error bars represent standard error (n = 50). 

3.4. Viral Protein Expression of Recombinant Viruses Lacking gK/pUL20 and gM 

To investigate the effect of deleting gM, gK, and pUL20 on viral protein expression, infected cell 

lysates were analysed by Western blot. This revealed that gM and pUL20 were not expressed in cells 

infected with the appropriate viruses (Figure 3e). Unfortunately no antibodies that detect gK by Western 

blotting were available for these studies. However, we noted that deletion of gK resulted in reduction of 

pUL20 levels, consistent with previously published results that the two form a complex and are reliant 

on one another for processing [10,11]. The deletion of gM, gK, or pUL20 did not affect overall 

expression of capsid (VP5) or tegument proteins VP16, VP13/14, and pUL37 in infected cells, although 

all deletion viruses showed a modest reduction in VP22 expression levels (Figure 3e). Interestingly 
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however, we noted VP22 migrated only as a single band in cells infected with viruses lacking gK or 

pUL20 in comparison to the doublet observed when infected with WT or ∆gM viruses. This suggests 

that gK/pUL20 may be involved in post-translational modification of VP22. Furthermore, we also noticed 

somewhat reduced pUL20 levels in cells infected with ∆gM. Recent published data suggests gM and 

pUL20 interact [40], and our observations here support a potential interaction and suggest gM is 

necessary to stabilize pUL20 expression. Similar levels of gB, gD and gH/gL were found in cells infected 

with all mutant viruses compared to WT (Figure 3e). 

3.5. Plaque Size Analysis of Recombinant Viruses Lacking gK/pUL20 and gM 

The ability of HSV-1 to form plaques reflects its ability to enter cells, replicate and spread to 

neighbouring uninfected cells. Plaque formation of the mutant viruses was assessed by standard plaque 

assay on Vero, VK302 and Fd20-1 cell lines. This demonstrated that all mutant viruses exhibited either 

reduced plaque sizes compared to that of WT or were unable to form plaques (Figure 3f). Plaques formed 

by KOS ΔgM on all cell lines were approximately 60%–80% of the size of WT. All viruses lacking gK 

or pUL20 were unable to form plaques on Vero cells, but this was restored in VK302  

and Fd20-1 cells, respectively. On the VK302 complementing cell line, plaques formed by ΔgK or 

ΔgMΔgK showed a reduction of 40%–50% in size compared to that of WT plaques. The comparison of 

plaque sizes formed by ΔpUL20 or ΔgMΔpUL20 on Fd20-1 cells demonstrated reductions of  

30%–40% in size compared to WT. These results indicate that the loss of gM results in a modest 

deficiency in plaque formation, whilst the loss of gK or pUL20 blocks any detectable spread. The 

inhibition observed for viruses lacking gK or pUL20 can be restored in complementing cell lines, 

however similar to that observed with the single-step growth curves, complementation is not complete. 

3.6. Internalization of gD and gH/gL in Infected Cells 

To investigate the relative roles of gK/pUL20 and gM in the localization of gD and gH/gL in infected 

cells, antibody uptake assays were performed. At 7 hpi, when virion assembly has just begun, infected 

Vero cells were incubated with gD or gH/gL-specific antibodies for 1 h at 37 °C before being fixed.  

As a control for equivalent levels of infection, cells were then permeabilised and incubated with a  

VP5-specific antibody, followed by subtype specific secondary antibodies. VP5 (the major capsid 

protein) is a late gene product and localizes primarily to the nucleus. Only cells that demonstrated 

equivalent levels of VP5 were imaged, and the same exposure settings and post-acquisition processing 

was used for all samples. No signals were detected for gD or gH/gL antibodies in cells infected with 

viruses lacking expression of gD or gH/gL respectively, demonstrating the specificity of these 

antibodies. WT-infected cells demonstrated intracellular staining for gD and gH/L, indicating that both 

glycoproteins reach the plasma membrane and are internalized efficiently during normal infection 

(Figure 4a,b). Furthermore, the internalization of gD appeared similar to WT in ΔgM, ΔgK, and ΔpUL20 

infected cells suggesting gD can still be internalized in the absence of gK/pUL20 or gM. However there 

was a clear inhibition of gD internalization for ΔgMΔgK and ΔgMΔpUL20-infected cells (Figure 4a). 

Additionally, gH/gL internalization was inhibited in all mutant viruses (Figure 4b). These data suggest 

that different mechanisms are involved in regulating the localization of gD and gH/gL in infected cells. 

For gD, either gM or the gK/pUL20 complex can independently mediate its internalization, suggesting 
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redundant functions are in place to localize this glycoprotein efficiently. However, the localization of 

gH/gL appears to require both gM and the gK/pUL20 complex, suggesting gM, gK and pUL20 may 

function as a complex. 

 

Figure 4. gD and gH/gL internalization in infected cells. Vero cells were infected  

with viruses as indicated at 3 PFU/cell. At 7 hpi cells were incubated with (a) gD or  

(b) gH/gL-specific antibodies for 1 h at 37 °C before being fixed, permeabilised and  

co-stained with a VP5-specific antibody as a marker for comparable infection. 

3.7. Transmission Electron Microscopy 

Consistent with previous publications demonstrating that gK and pUL20 are interdependent on each 

other for correct localization and function [10], the phenotypes that we have observed upon deleting gK 

or pUL20 have essentially been the same. Therefore, for subsequent experiments examining the effect 

of deleting the gK/pUL20 complex from the virus we used HSV-1 lacking gK (with or without  

gM expression). 

To investigate further the defects of our recombinant viruses, transmission electron microscopy 

(TEM) analyses were carried out on WT, ΔgM, ΔgK and ΔgMΔgK infected cells. HaCaT cells were 
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infected at an MOI of 5 PFU/cell and processed for TEM analysis at 20 hpi. For each sample, 8 cells 

were analysed and the numbers of extracellular virions, cytoplasmic non-enveloped capsids, cytoplasmic 

enveloped virions and nuclear capsids were quantified. The percentages of viral particles relative to the 

total particles counted were then determined. As expected, cells infected with WT virus displayed a large 

abundance of extracellular enveloped virions (Figure 5a; Table 4). Furthermore, some cytoplasmic naked 

capsids were also observed to be present, however these were less common (2.5% of total particles) than 

cytoplasmic enveloped capsids (9.6% of total particles) indicating the efficiency of normal HSV-1 

envelopment (Figure 5a; Table 4). Cells infected with ΔgM were observed to have only small differences 

compared to WT virus. Overall, there were fewer viral particles in ∆gM-infected cells compared to  

WT virus, possibly due to delayed entry or replication kinetics of ∆gM as shown before [7]. The  

ΔgM-infected samples contained a slightly lower proportion of extracellular enveloped virions and 

slightly higher proportion of cytoplasmic naked capsids (Figure 5b, Table 4), consistent with defects in 

cytoplasmic envelopment previously observed by others when gM is absent [38]. However, cytoplasmic 

enveloped virions and extracellular virions were still present indicating that envelopment and egress was 

occurring relatively efficiently. In contrast, cells infected with the ΔgK and ΔgMΔgK viruses revealed 

large defects in cytoplasmic envelopment, producing large numbers of unenveloped cytoplasmic capsids 

and very few extracellular virions or enveloped cytoplasmic virions (Figure 5c,d; Table 4). We noted 

however that the defect in assembly appeared more severe in cells infected with ΔgMΔgK than the ΔgK 

virus. These results demonstrate that whilst the deletion of gM from the virus results in a slight defect in 

virion morphogenesis, the loss of gK/pUL20 function results in a dramatic defect in virus secondary 

envelopment, although a limited number of enveloped virions are still produced. 

 

Figure 5. Cont. 
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Figure 5. Ultrastructural morphology of cells infected with KOS WT, ∆gM, ∆gK and 

∆gM∆gK viruses. HaCaT cells were infected with (a) KOS WT; (b) ∆gM; (c) ∆gK; and (d) 

∆gM∆gK virus at an MOI of 5 PFU/cell and processed for electron microscopy at  

20 hpi. Representative nuclear capsids are marked with large black arrows, extracellular 

virions with small black arrows, cytoplasmic enveloped virions with white arrowheads  

and cytoplasmic naked capsids with black arrowheads. The nucleus (n), cytoplasm (c), 

nuclear membrane (nm) plasma membrane (pm) and extracellular space (e) are marked. 

Scale bars: 500 nm. 
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Table 4. Virus particle quantification from TEM analysis. 

Virus Nuclear Capsids 
Cytoplasmic  

Non-Enveloped Capsids 

Cytoplasmic 

Enveloped Virions 

Extracellular 

Virions 
Total 

KOS WT 510 (41.9%) 31 (2.5%) 117 (9.6%) 560 (46.0%) 1218 

KOS ΔgM 309 (44.5%) 40 (5.8%) 60 (8.6%) 285 (41.4%) 694 

KOS ΔgK 244 (47.4%) 258 (50.1%) 9 (1.7%) 4 (0.8%) 515 

KOS ΔgMΔgK 186 (34.8%) 347 (64.8%) 2 (0.4%) 0 (0.0%) 535 

Virus particles were counted in 8 cells. Numbers in parentheses are the percentage of total particles counted. 

3.8. Analysis of gD and gH/gL Incorporation into Progeny Virions from Recombinant Viruses 

The assembly of infectious progeny virions requires the coordinated recruitment of all envelope 

proteins to virus assembly sites. Our results suggest that both gM and the gK/pUL20 complex can control 

gD and gH/gL localization and as a result may function to actively traffic these essential entry 

glycoproteins to virus assembly sites. In order to investigate the involvement of gM- and gK/pUL20 for 

the incorporation of gD and gH/L into virions, the viral protein content of progeny virions produced in 

non-complementing cell lines was examined. The culture media from infected cells was collected, cell 

debris removed and virus particles partially purified by centrifugation through a sucrose cushion. The 

relative amount of several viral proteins and cellular actin (as a control for contaminating cellular  

debris) in the harvested virions, as well as lysates of the producing cells, were analysed by Western blot 

(Figure 6a,b). Initially, we noted that viral protein levels were dramatically decreased in ∆gK and 

∆gM∆gK supernatant virions samples consistent with TEM analysis, which revealed reduced numbers 

of enveloped virions being produced (Table 4). Loading of supernatant virion samples was therefore 

normalized to VP5 levels to compare viral proteins present in samples containing equivalent capsid 

amounts. Actin was not detected in any of the supernatant-derived virion preparations but was easily 

detectable in cellular lysates, demonstrating a lack of cellular contamination in the isolated supernatant 

virions (Figure 6b). Relative to VP5 levels, slightly increased levels of pUL37 inner tegument and VP16 

outer tegument were observed in supernatant virions for all mutant viruses (Figure 6b). However, VP22 

outer tegument and gB envelope levels were greatly reduced in ∆gK and ∆gM∆gK virions (Figure 6b). 

This suggests fewer fully assembled virions with a complete tegument and envelope are being released 

from cells infected with these viruses. Interestingly, both gD and gH were barely detectable in ∆gK and 

∆gM∆gK virions. The aim of these experiments was to determine the relative incorporation of gD and 

gH/L into enveloped virions produced by the mutant viruses compared to WT. Therefore given the low 

level of enveloped virions produced by viruses lacking gK, this causes a potential problem for 

quantifying the Western blot analysis of the supernatant fraction by normalizing to capsid or tegument 

protein levels because of contaminating unenveloped and partially tegumented virus particles. In order 

to control for this, gD and gH levels need to be compared to a protein that is incorporated into the 

envelope in a gM and gK/pUL20 independent manner. An ideal candidate for such normalization is the 

envelope protein gB, which has the capacity to localize itself to intracellular compartments irrespective 

of gM and gK/pUL20 expression. Therefore, the signal levels of glycoproteins present in the isolated 

supernatant virions were quantified and normalized to gB levels from three independent experiments 

(Figure 6c). As expected, virion preparations from ∆gM- and ∆gM∆gK-infected cells contained no 

detectable gM. Little difference was observed in gD packaging of ∆gM virions relative to WT. However 
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a reduction of approximately 72% in gH packaging was observed with ∆gM virions in agreement with 

our previous work [7]. Virions from ∆gK infected cells contained 70% less gD and 60% less gH than 

WT. Similarly, ∆gM∆gK virions contained approximately 55% and 79% less gD and gH respectively 

than WT. Interestingly, the packaging of gM decreased slightly in ∆gK virions, and the gM also migrated 

faster on protein gels, suggesting possible incorporation of incompletely processed gM in the absence of 

gK. However, it should be noted that the migration of the highly hydrophobic gM in polyacrylamide 

gels is somewhat variable. These results indicate that less gD is packaged into progeny virions in the 

absence of gK but not in the absence of gM, whereas less gH/gL is packaged in the absence of gM or 

gK. Overall these data suggest that in addition to the clear defect in virus assembly in the absence of 

gK/pUL20, the virions that are enveloped and released contain substantially lower levels of both gD and 

gH/L. This reduction in the levels of these essential entry proteins presumably contributes to the dramatic 

attenuation of HSV-1 in the absence of gK or pUL20 expression. Furthermore, these data suggest the 

incorporation of gD is more dependent on gK/pUL20, whereas the incorporation of gH/L is dependent 

on both gM and gK/pUL20. 

 

Figure 6. Cont. 
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Figure 6. Viral protein incorporation in WT, ΔgM, ΔgK and ΔgMΔgK virions. HaCaT cells 

were infected at 5 PFU/cell and after 24 hpi, (a) cell lysates were prepared and  

(b) progeny viral particles were isolated from clarified cell culture media by centrifugation 

through a 33% sucrose cushion. Cell lysates and supernatant-derived virions were separated 

by SDS-PAGE and analysed using the indicated antibodies. Molecular mass markers  

(in kDa) are indicated on the right; (c) Using densitometry, packaging levels were calculated 

by dividing the amount of protein detected in supernatant-derived virions (normalized for 

gB) by the amount of protein in supernatant-derived virions of WT virus (normalized for 

gB). Error bars represent standard error of three independent experiments. 

4. Discussion 

The aim of this work was to investigate the relative role of gK/pUL20 and gM in the trafficking and 

localization of gD and gH/gL. Therefore, we generated recombinant viruses lacking gM, gK, or pUL20 

singly and in combination in the same genetic background (BAC-cloned KOS strain). To our knowledge 

no other HSV-1 ΔgMΔgK or ΔgMΔpUL20 deletion viruses have been reported in the literature so far. 

Consistent with our previous investigations and other reported gM deletion viruses, we observed that 

the absence of gM had only minor effects on final infectious virus titers compared to WT (c.a. 2-fold 

reduction) and also reduced plaque size [7,19,34,38,41]. Previous publications have shown that gK and 

pUL20 single deletion viruses have a severe attenuation and a major defect in plaque formation. These 

gK deletion viruses were reported to have reductions in final infectious titres of 400- or 1000-fold [37,39] 

whereas the pUL20 deletion viruses demonstrated reductions of 100- or 1000-fold [36,39]. The gK and 

pUL20 single deletion viruses made during this work gave similar reductions in final infectious titres of 

450- and 2000-fold respectively. Additionally, consistent with the other studies, we found that our gK 

and pUL20 deletion viruses were unable to form plaques on non-complementing cell lines. 

Consistent with one other study [38], TEM demonstrated that the ΔgM virus produced slightly 

reduced numbers of extracellular virions and increased numbers of non-enveloped cytoplasmic capsids, 

suggestive of a role during secondary envelopment. TEM also showed that the deletion of gK caused a 

profound accumulation of non-enveloped cytoplasmic capsids, demonstrating an important role during 

secondary envelopment, as previously published by others [39]. However, it is important to note that 

despite profoundly reduced titers, ∆gK and ∆pUL20 viruses do show some replication, and consistent 

with a limited level of virus assembly enveloped virions were detected in ∆gK-infected cells by TEM. 
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Interestingly, we found that the deletion of gM in combination with either gK or pUL20 resulted in a 

greater defect in virus growth than either single deletion, suggesting potential redundant functions 

mediated by gM and gK/pUL20. Furthermore, the deletion of gM together with gK/pUL20 resulted in a 

greater accumulation of cytoplasmic non-enveloped capsids compared to the ΔgM and ΔgK single 

deletion viruses. 

Given the synergistic effect of gM and gK/pUL20 deletion on inhibiting HSV-1 replication,  

it seems likely that gM and gK/pUL20 may function together in a redundant manner during secondary 

envelopment. One interpretation of these observed phenotypes is that gM and gK/pUL20 are required 

for controlling the transport and localization of gD and gH/gL to the virus assembly site. The deletion 

of gM and gK/pUL20 would, therefore, prevent sufficient amounts of gD and gH/gL being localized to 

this compartment. As the prevalent model indicates that specific interactions among viral tegument 

proteins and glycoproteins embedded within membranes are key factors for driving cytoplasmic virion 

envelopment, a lack of sufficient glycoprotein-tegument protein interactions could prevent secondary 

envelopment from taking place. Equally, any viruses that do assemble would lack gD and gH/L, thereby 

rendering them non-infectious. However, there are clear differences in the contribution of gM and 

gK/pUL20 to assembly; the lack of gM alone does not inhibit secondary envelopment significantly, 

whereas gK/pUL20 has a more profound effect, suggesting additional roles for gK/pUL20 in mediating 

virus assembly than redundant functions shared with gM. 

The internalization of gH/gL was found to be impaired in cells infected with the single deletion 

viruses; ΔgM-, ΔgK-, ΔpUL20 as well as ΔgMΔgK and ΔgMΔpUL20-infected cells. This requirement 

of gH/gL for its internalization suggests that gM and gK/pUL20 may function as a larger complex 

consisting of all three proteins. Consistent with this, one study has demonstrated that gM interacts with 

pUL20 and vice versa [40]. Interestingly, the internalization of gD was found to differ to that observed 

with gH/gL; gD internalization was not impaired in cells infected with the single deletion viruses but 

was upon deletion of gM in combination with gK or pUL20. 

One surprising observation during this study was reduced levels of gD packaging in ΔgK virions 

when there was little/no change in gD internalization in ΔgK- or ΔpUL20-infected cells. This may be 

explained by a role of gK/pUL20 in additional intracellular trafficking steps once gD has been 

internalized that mediate its localization to, or retention within, the virus assembly site. Such defects in 

trafficking steps between intracellular compartments would be difficult to detect by just looking at 

steady-state levels and internalization from the cell surface, considering the dynamic nature of the 

endosomal system. In addition, it was interesting to find that the deletion of gK/pUL20 resulted in 

alterations in the post-translational modifications of VP22. VP22 is one of the most abundant tegument 

proteins in HSV-1 virions and is a major structural protein. VP22 has been reported to be involved in a 

number of functions, including interactions with gD and gE/gI during secondary envelopment [42,43] 

and the reorganisation of microtubules [44]. VP22 has been demonstrated to undergo various  

post-translational modifications including phosphorylation, glycosylation and ADP-ribosylation [45–47]. 

In infected cell lysates, VP22 can be resolved into at least two migrating forms by SDS-PAGE gel 

electrophoresis. The slower-migrating form is phosphorylated, whilst the faster-migrating form is  

non-phosphorylated and is specifically incorporated into purified virions [45,48]. The deletion of 

gK/pUL20 reported here resulted in a reduction in the amount of faster-migrating VP22 in infected cell 

extracts. Given the reported interaction of VP22 with gD, this could contribute to the reduced amount of 
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gD packaged into progeny ∆gK virions. However, whilst one study has reported an interaction between 

endogenous VP22 with gD by co-immunoprecipitation [42], another study was unable to reproduce this 

under the same conditions tested [49]. To our knowledge, there has been no other finding reporting an 

involvement of gK/pUL20 in the post-translational modifications of VP22. 

Interestingly, ΔgMΔgK-infected cells produce a small number of infectious virus particles, with low 

but detectable amounts of gD and gH/gL. This indicates a further mechanism by which gD and gH/gL 

can reach virion assembly sites for incorporation in the absence of gM or gK/pUL20, possibly due to 

glycoproteins passing en route through the virus assembly compartments before they reach the plasma 

membrane. However, the vast majority of gD and gH/gL clearly requires the presence of gM and 

gK/pUL20 in order for efficient incorporation. 

Several HSV-1 envelope proteins have been shown to internalize from the cell surface in the absence 

of infection: gB and gE [4,5,50], the gK/pUL20 complex [10] and as shown here, in the presence of gM 

and gK/pUL20, gD and gH/gL. Due to the dynamics of protein synthesis and trafficking, it seems likely 

that internalization is required to maintain the steady-state concentration of the viral envelope proteins 

in the intracellular virus assembly compartments. It is not formally known whether the trafficking of 

viral envelope proteins over the plasma membrane is a de facto requirement for their incorporation into 

virions, or they can be directly targeted to virus assembly compartments during their transport through 

the secretory following de novo biosynthesis, or both. The ability of a viral envelope protein to 

internalize can have varying effects on the production of infectious particles, according to the virus and 

glycoprotein investigated. For example, a single mutation of the VZV gE endocytic motif abolishes virus 

replication [51], however inhibition of the endocytic machinery, which occurs by 6 hpi during PRV 

replication, does not affect infectious virus production [52]. Evidence from one study demonstrates that 

the depletion of Rab5, a GTPase that is involved in trafficking from the plasma membrane to early 

endosomes, inhibits gD internalization and also significantly inhibits the production of infectious virus 

particles [53]. The authors conclude that the inhibition of glycoprotein trafficking prevents subsequent 

virus wrapping, therefore the viral envelope proteins must travel to the cell surface before reaching the 

final envelopment site. The work presented here demonstrates that in the absence of gM and gK from 

the virus, approximately 50% and 80% less gD and gH/gL respectively are incorporated into virions.  

As the absence of gM and gK/pUL20 from HSV-1 also results in impaired gD and gH/gL internalization, 

this suggests that endocytosis is a major route for targeting these viral envelope proteins to the assembly 

sites, in agreement with the studies by Hollinshead and colleagues [53]. However, the fact that some gD 

and gH/gL incorporation still takes place suggests either yet another redundant mechanism in addition 

to gM and gK/pUL20 allows for gD and gH/gL internalization, or alternatively that some incorporation 

for gD and gH/L can occur due to proteins reaching the assembly compartment before they reach the 

plasma membrane. 

5. Conclusions 

In conclusion, our work demonstrates important but differing roles for both HSV-1 gM and the 

gK/pUL20 complex in mediating the internalization of the viral envelope proteins gD and gH/gL from 

the plasma membrane, and the targeting of gD and gH/gL to intracellular compartments for incorporation 

into assembling virions. 
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