
Supplement

Fitting infection data using likelihood

To fit theoretical formulas on the change in probability of infection with viral dose we use
maximum likelihood approach [87]. For a particular trial of infection of a host with an initial
dose of the virus V0, the likelihood that i animals are infected out of a total of N animals is
given by the binomial distribution

L(i, N |λ, n, V0) =

(
N
i

)
[pinf(V0)]i[1− pinf(V0)]N−i, (S1)

where pinf is the probability of infection (e.g., eqn. (13)). When an infection trial was done for
multiple initial viral doses, likelihoods of infection were multiplied and best fit parameters were
found by maximizing the likelihood, L, or log-likelihood, L:

L = logL =
∑
V0

i log pinf(V0) +
∑
V0

(N − i) log(1− pinf(V0)) + const. (S2)

Calculating the dynamics of infected cells

To determine the impact of variability in the burst size N on the total virus found at a specific
time t (e.g., time of virus detection tdet), it is useful to rescale the extended model for virus
dynamics by defining v = V/N . Then the model becomes:

dv

dt
= δII − (βT + c)v, (S3)

dIE
dt

= βTNv − (m+ δIE)IE, (S4)

dI

dt
= mIE − δII. (S5)

Under the condition that c� βT , the product βTN is proportional to the observed growth
rate of the virus population r (see eqn. (9) in Main text). Then the dynamics of the rescaled
model (eqns. (S3)–(S5)) is independent of the burst size N . Therefore, this analysis illustrates
that under biologically reasonable conditions the time to virus detection is determined strictly
by the dynamics of infected cells, and the amount of free virus at the time of virus detection
scales linearly with N .

Given that asymptotically the dynamics of the model follow exponential growth or decay,
we sought to determine the value for the initial number of productively infected cells I∗ that
we expect if population size were to grow exponentially from time 0 (Figure S1). Because the
original model is rather complicated, we performed our analysis with the standard model found
by letting m→∞ in eqns. (S3)–(S5).
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Figure S1: Schematic representation of the dynamics of productively infected cells and the calculation
of the initial number of infected cells, I∗, if the number of infected cells was increasing exponentially
at a rate r.

In the standard model, the rate of growth of the virus population is simply r = δI

(
βTN
c+βT

− 1
)

,

and after re-arranging variables and assuming that N � (1+ r
δI

) we find that βT = c
N

(
1 + r

δI

)
.

Replacing βT in eqn. (S3), we find the standard rescaled model as

dI

dt
= c

(
1 +

r

δI

)
− δII, (S6)

dv

dt
= δII − cv. (S7)

Asymptotic behavior of the model is determined by the eigenvalues and the predicted initial
conditions (I∗, V ∗) are given by eigen vectors. Eigenvalues of the model are found in equation

∣∣∣∣−δI − λ c(1 + r/δI)
δI −c− λ

∣∣∣∣ = 0

and eigenvalues are

λ1,2 =
±
√

(c+ δI)2 + 4rc− (c+ δI)

2
(S8)

Asymptotically when c � δI , λ1 ≈ r and λ2 ≈ −c as expected. Recalling that V0 = a0NδI
r

(see eqn. (18)), the asymptotic behavior of the dynamics of infected cells is

I(t) ≈ I∗eλ1t =
a0(c+ λ1)(c+ λ2)

r(λ2 − λ1)
eλ1t ≈ a0

(
1 +

δI
r

)
ert, (S9)
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This result further demonstrates that the dynamics of the infected cells are only determined
by the growth rate of the virus population, death rate of productively infected cells, and the
probability of infection of the animal. At the limit of the rapid removal of free viruses (c→∞),
the dynamics of scaled virus particles is also independent of N , v(t) ≈ δII

∗

c
ert. Then the

dynamics of absolute number of virus particles is simply V (t) ≈ a0NδI(r+δI)
cr

ert, and therefore,
the virus density at which infection becomes detected is directly proportional to the burst size
N . Direct scaling of the virus number at which infection becomes detected with N is illustrated
in Figure S2.

Calculating the probability of extinction

For the model eqns. (1)–(3) with three species V , IE and I, we denote PV0,IE0,I0;V ∗,I∗E ,I
∗(t) as the

transition probability that (V (t), IE(t), I(t)) = (V ∗, I∗E, I
∗) at time t with the initial condition

(V (0), IE(0), I(0)) = (V0, IE0, I0). Given the initial distribution on three species, pV0,IE0,I0(0),
the probability distribution at time t can be expressed as

pV ∗,I∗E ,I
∗(t) =

∞∑
V0,IE0,I0=0

PV0,IE0,I0;V ∗,I∗E ,I
∗(t)pV0,IE0,I0(0). (S10)

Since all species are of finite sizes, PV0,IE0,I0;V ∗,I∗E ,I
∗(t)→ 0 and pV0,IE0,I0(0)→ 0 as V0, IE0, I0 →

∞.

Following a similar procedure as shown in [88], we can derive the backwards Chapman-
Kolmogorov differential equation for PV0,IE0,I0;V ∗,I∗E ,I

∗(t) [89]:

dPV0,IE0,I0;V ∗,I∗E ,I
∗(t)

dt
= mIE0(PV0,IE0−1,I0+1;V ∗,I∗E ,I

∗ − PV0,IE0,I0;V ∗,I∗E ,I
∗) + δIEIE0(PV0,IE0−1,I0;V ∗,I∗E ,I

∗ − PV0,IE0,I0;V ∗,I∗E ,I
∗)

+ δII0(PV0,IE0,I0−1;V ∗,I∗E ,I
∗ − PV0,IE0,I0;V ∗,I∗E ,I

∗) + δINI0(PV0+1,IE0,I0;V ∗,I∗E ,I
∗ − PV0,IE0,I0;V ∗,I∗E ,I

∗)

+ cV0(PV0−1,IE0,I0;V ∗,I∗E ,I
∗ − PV0,IE0,I0;V ∗,I∗E ,I

∗) + βTV0(PV0−1,IE0+1,I0;V ∗,I∗E ,I
∗ − PV0,IE0,I0;V ∗,I∗E ,I

∗)

(S11)

with initial condition PV0,IE0,I0;V ∗,I∗E ,I
∗(0) = θV0V ∗θIE0I

∗
E
θI0I∗ (here θij is the Kronecher delta

function). The probability generating function GV0,IE0,I0(x, y, z; t), given initial condition
(V (0), IE(0), I(0)) = (V0, IE0, I0), is defined as

GV0,IE0,I0(x, y, z; t) = E[xV (t)yIE(t)zI(t)
∣∣V (0) = V0, IE(0) = IE0, I(0) = I0]

=
∞∑

V ∗,I∗E ,I
∗=0

PV0,IE0,I0;V ∗,I∗E ,I
∗(t)xV

∗
yI

∗
EzI

∗
.

By exploiting the branching property

GV0,IE0,I0(x, y, z; t) = (G1,0,0(x, y, z; t))V0(G0,1,0(x, y, z; t))IE0(G0,0,1(x, y, z; t))I0 ,
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we can reduce the infinite-dimensional differential equations for GV0,IE0,I0(x, y, z; t) to three
equations. For convenience, we denoteG1(x, y, z; t) = G1,0,0(x, y, z; t), G2(x, y, z; t) = G0,1,0(x, y, z; t)
and G3(x, y, z; t) = G0,0,1(x, y, z; t).

dG1(x, y, z; t)

dt
= c(1−G1(x, y, z; t))− βT (G1(x, y, z; t)−G2(x, y, z; t)),

dG2(x, y, z; t)

dt
= −m(G2(x, y, z; t)−G3(x, y, z; t))− δIE(G2(x, y, z; t)− 1),

dG3(x, y, z; t)

dt
= −δI(G3(x, y, z; t)− 1)− δING3(x, y, z; t)(1−G1(x, y, z; t)).

(S12)

with initial conditions G1(x, y, z; 0) = x, G2(x, y, z; 0) = y and G3(x, y, z; 0) = z.

Define q = qV as the probability that a single infectious virion does not initiate an HIV
infection. From the definition, qV can be obtained from PV0,IE0,I0;V ∗,I∗E ,I

∗(t) in the following
way:

qV = lim
t→∞

P1,0,0;0,0,0(t).

Since P1,0,0;0,0,0(t) = G1(0, 0, 0; t), qV can be expressed as qV = limt→∞G1(0, 0, 0; t). The
probability of extinction, qV , is the G1(x, y, z; t) coordinate of the stable fixed point of the
system (S12). After straightforward calculation, we get the expression of qV :

qV =

1, βT ≤ c(m+δIE )

m(N−1)−δIE
,

(δIE+m)(βT+c+cN)+NβTδIE
N(c+βT )(δIE+m)

, βT >
c(m+δIE )

m(N−1)−δIE
.

(S13)

where m(N − 1) − δIE > 0. So, the probability of infection, given that a single replicating

virion initiates it, is given as 1 − qV . Note that the condition
βT (m(N−1)−δIE )

c(m+δIE )
comes from the

stable condition of the fixed point of system (S12). From this condition, we can define the basic
reproductive number R0 as

R0 =
βT (m(N − 1)− δIE)

c(m+ δIE)
=
βT

c

(
m

m+ δIE
N − 1

)
.

R0 has clear biological meaning, and it gives the number of newly produced virions generated
by one virion through infecting target cells during its lifetime.

Similarly, we define qIE (or qI) as the probability that a single cell in the eclipse (or produc-
ing/releasing) phase does not initiate an HIV infection. This gives

qIE =

1, βT ≤ c(m+δIE )

m(N−1)−δIE
,

NβTδIE+(δIE+m)(βT+c)

NβT (δIE+m)
, βT >

c(m+δIE )

m(N−1)−δIE
,

(S14)

qI =

1, βT ≤ c(m+δIE )

m(N−1)−δIE
,

(δIE+m)(βT+c)

NβTm
, βT >

c(m+δIE )

m(N−1)−δIE
.

(S15)
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In fact, qIE =
δIE

m+δIE
+ m

m+δIE
qI , where

δIE
m+δIE

and m
m+δIE

are the fractions of target cells that

died in the eclipse phase and that moved to the productively infected phase, respectively.

Deriving the model with a fixed delay eclipse phase

We formulate the model with a fixed delay as a combination of the ODE and PDE

∂iE(t, τ)

∂t
+
∂iE(t, τ)

∂τ
= −δIE iE(t, τ), (S16)

dI(t)

dt
= iE(t,∆)− δII(t), (S17)

dV (t)

dt
= NδII(t)− (c+ βT )V (t), (S18)

with the boundary condition iE(t, 0) = βTV (t). In the model ∆ is the duration of the eclipse
phase and other parameters are as defined in the main text. By solving eqn. (S16) by method
of characteristics we find iE(t, τ) = βTV (t− τ)e−δIE τ . The total number of cells in the eclipse

phase is defined as IE(t) =
∫ ∆

0
iE(t, τ)dτ . Integrating eqn. (S16) we find an equation for IE(t)

and I(t)

dIE(t)

dt
= βTV (t)− βTV (t−∆)e−δIE∆ − δIEIE(t), (S19)

dI(t)

dt
= βTV (t−∆)e−δIE∆ − δII(t), (S20)

and the dynamics of the cell-free virus is given in eqn. (S18).
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Additional results of simulations
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Figure S2: The burst sizeN influences the virus detection limit Vdet. We run deterministic simulations
of the extended mathematical model (eqns. (1)–(3)) for different values of the burst size N (values
are indicated on the panels). Parameters of the model (m, dI , dIE , and c) were fixed to values for
the intermediate mode of virus production by infected cells (Table 1 in the main text), and other
parameters varied to satisfy constrains on r and pinf. The proposed detection limits are Vdet = 104,
105, and 106 infectious viruses for N = 10, 100, and 1000, respectively.
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Figure S3: Several individual simulations of virus and cell dynamics as compared with the predictions
of the deterministic model. Parameters for simulation are shown in Table 1 for the intermediate mode
of virus production by infected cells. In these example simulations we show that stochastic virus
dynamics may occur faster than that predicted by the deterministic model (top left panel), dynamics
may be similar in stochastic and deterministic simulations (top right panel), or dynamics can be slower
in stochastic simulations than that in deterministic simulations (bottom left panel). Also, virus can
go extinct in stochastic simulations (bottom right panel).
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Figure S4: Dynamics of cell populations as simulated deterministically and stochastically (using
Gillespie algorithm). An intermediate mode of virus production (see Table 1 in the main text) was
chosen and simulations were started with one virus (left), one cell in the eclipse phase (middle), or
one productively infected cell (right). The relationship between the time it takes the infection to take
off exponentially illustrates the overall trend between the stochastic and the deterministic models.
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Figure S5: The probability of infection (pinf, panels A and C) and the time to virus detection (t100,
panels C and D) versus initial viral dose, V0, (left column) and the relative duration of the eclipse
phase, Tm, eqn. (4) (right column). In these simulations, we set δIE = 0 (compare to Figure 4 in
the Main text). In panels A and B, points represent values from stochastic simulations and dashed
lines are analytical predictions (eqn. (13)). In panels C and D, points represent values from stochastic
simulations and solid lines are predictions from the deterministic solutions of the model.
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Figure S6: The model is unable to accurately predict the change in the time of virus detection with
larger viral doses at different parameter values. We let N = 100 infectious viruses, c = 100 day−1,
δI = 1 day−1, δIE = 0.5 day−1, and we vary m from 0.5 to 5 day−1. Parameters βT and V0 were
calculated to satisfy constrains imposed by the data with Vdet = 5 × 104 infectious viruses. We ran
1000 Gillespie simulations for every parameter set. The think black lines denote the average of the
stochastic simulations, and thin dashed lines are 95% confidence intervals from stochastic simulations.
The thick red line is the predictions of the deterministic simulations of the model. Dots denote the
time to virus detection for individual animals from Liu et al. [16] and bars are the average time per
given dose. Interestingly, at high rate of virus clearance c, the average prediction of the stochastic
simulations and deterministic simulations are nearly identical.
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(a) Times to virus detection starting with 10 virions.
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(b) Times to virus detection starting with 10 eclipsed cells.
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(c) Times to virus detection starting with 10 infected cells.

Figure S7: Distribution of times to 100 infectious viruses (t100) with an initial dose of (a) 10 viruses,
(b) 10 cells in the eclipse phase, or (c) 10 virus-producing cells. The mode of virus production used
continuous/budding for the left column, intermediate for the middle column, and burst-like for the right
column. We ran 20,000 simulations of the basic mathematical model using the Gillespie algorithm.
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(b) Times to extinction starting with one cell in the eclipse phase.
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(c) Times to extinction starting with one virus-producing cell.

Figure S8: Distribution of times to virus extinction, starting with an initial load of (a) 1 virus,
(b) 1 cell in the eclipse phase, or (c) 1 virus-producing cell. The mode of virus production used is
continuous/budding for the left column, intermediate for the middle column, and burst-like for the
right column.
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(a) Times to extinction starting with 10 virions.
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(b) Times to extinction starting with 10 cells in the eclipse phase.
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(c) Times to extinction starting with 10 virus-producing cells.

Figure S9: Distribution of times to virus extinction, starting with an initial load of (a) 10 viruses,
(b) 10 cells in the eclipse phase, or (c) 10 virus-producing cells. The mode of virus production used
is continuous/budding for the left column, intermediate for the middle column, and burst-like for the
right column.

13



Vo=100.

td=8.5 days

V

IE

I

0 2 4 6 8 10

0

2

4

6

8

days since infection

lo
g
1
0
n
u
m
b
er

Vo=10000.

td=5.4 days

V

IE

I

0 2 4 6 8 10

0

2

4

6

8

days since infection

lo
g
1
0
n
u
m
b
er

A B

Figure S10: Dynamics of cell populations in the model with an eclipse phase having a fixed duration
∆. We simulated dynamics of the virus-infected cells and cell-free virus using eqns. (S19)–(S20) using
the following parameters: N = 103, δIE = 0.05 day−1, ∆ = 1 day, δI = 0.5 day−1, c = 100 day−1,
βT = 1.95 day−1, V0 = 100 (panel A) or V0 = 104 (panel B). Lines denote the predicted number of
viruses (solid black line), cells in the eclipse phase (large dashings red line), and virus-producing cells
(small dashings blue line). The time to virus detection is denoted as td.
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Figure S11: The model with an eclipse phase having a fixed duration does not accurately describe the
decline in the time to virus detection with increasing viral doses. We simulated the virus dynamics
using eqns. (S19)–(S20) using parameters shown in Figure S11 with V0 varied from 102 infectious
viruses (corresponding to the 106 total viruses) to 105 infectious viruses. The limit of detection in
these simulations was set to Vdet = 2.2 × 105. The time of virus detection is shown by the solid line.
Dots denote experimentally measured times to virus detection from Liu et al. [16] and horizontal lines
are the average times per given dose.
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Figure S12: Simple mathematical model for SIV dynamics fails to accurately predict change in
time to virus detection with increasing doses when there is variability in the rate of virus replication.
We vary the virus replication rate r in accord with lognormal distribution (more precisely, normal
distribution of log-transformed values for r with parameters log10 r = 0.18 (r̄ = 1.5 day−1) and
σlog10 r = 0.07) and run deterministic simulations in the basic mathematical model (eqns. (1)-(3)). We
vary the initial number of viruses and calculate the time when viruses reach Vdet level. The average
time is shown by the solid line and thin dashed lines are the observed 95% confidence intervals from
the simulations. Dots denote experimentally measured times to virus detection from Liu et al. [16] and
horizontal lines are the average times per given dose. Parameters used in simulations are N = 103,
δIE = 0.05 day−1, m = 1 day−1, δ = 1 day−1, c = 100 day−1, pinf = 0.33, Vdet = 5×105. In simulations
we assume that the initial dose of 106 viral particles leads to an infection with the initial V0 = 88
viruses.
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