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Abstract: Dendritic cells (DCs) are specialized antigen-presenting cells that have a notable role in
the initiation and regulation of innate and adaptive immune responses. In the context of cancer,
appropriately activated DCs can induce anti-tumor immunity by activating innate immune cells and
tumor-specific lymphocytes that target cancer cells. However, the tumor microenvironment (TME)
imposes different mechanisms that facilitate the impairment of DC functions, such as inefficient
antigen presentation or polarization into immunosuppressive DCs. These tumor-associated DCs
thus fail to initiate tumor-specific immunity, and indirectly support tumor progression. Hence,
there is increasing interest in identifying interventions that can overturn DC impairment within
the TME. Many reports thus far have studied oncolytic viruses (OVs), viruses that preferentially
target and kill cancer cells, for their capacity to enhance DC-mediated anti-tumor effects. Herein, we
describe the general characteristics of DCs, focusing on their role in innate and adaptive immunity
in the context of the TME. We also examine how DC-OV interaction affects DC recruitment, OV
delivery, and anti-tumor immunity activation. Understanding these roles of DCs in the TME and
OV infection is critical in devising strategies to further harness the anti-tumor effects of both DCs
and OVs, ultimately enhancing the efficacy of OV-based oncotherapy.

Keywords: dendritic cells; tumor microenvironment; oncolytic virus; anti-viral immunity;
anti-tumor immunity; immunotherapy

1. Introduction

Currently available cancer treatment options such as surgery, chemotherapy, radiation, and
hormone therapy, remain inadequate in consistently producing optimum outcomes from cancer [1].
Hence, a major focus of cancer research activities worldwide is concentrated on finding novel
therapeutic modalities with enhanced anti-cancer benefits. Consequently, emerging evidence has
identified the critical importance of the immune system in regard to cancer immune surveillance [2].
Research thus far shows that the presence of a functional anti-tumor T cell response directly correlates
with positive cancer outcomes [3,4]. In this context, cancer immunotherapies, capable of promoting
the generation of anti-tumor immunity, have garnered tremendous interest for the treatment
of cancers of almost every origin. Interestingly, the establishment and regulation of such anti-tumor immune
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responses require the presentation of tumor antigens by dendritic cells (DCs) to tumor-specific
T cells [5]. Considering the potential of DCs to influence both innate and adaptive immunity,
therapeutic modulations involving DCs represent an ideal immunotherapeutic candidate to achieve
clinically relevant beneficial immune responses against cancer.

DCs constitute a heterogeneous population of professional antigen-presenting cells (APCs),
which can uptake, process, and present different types of antigens [6]. The inherent function of
DCs to present tumor antigens is imperative in the generation of anti-tumor immunity as they
can interact with various immune cells to initiate and maintain innate and adaptive immune
responses [7]. However, several immunosuppressive mechanisms in the tumor microenvironment
(TME) impair DC functions and block the development of anti-tumor immunity [8], which
may decrease the efficacy of immunotherapies. Thus, efforts are underway to circumvent
tumor-associated immunosuppression.

One of the most promising treatment options to overcome such obstacles is oncolytic virus-based
anti-cancer therapy (oncotherapy). Oncolytic viruses (OVs) preferentially target and kill cancer cells
through direct oncolysis and OV-induced anti-tumor immunity [9]. Immunosuppression in the TME
provides an infection-vulnerable niche that is permissive for viral replication, causing direct lysis
of the cancer cells. Following this OV-induced immunogenic cancer cell death with the resulting
“danger” signals, there is an increased infiltration of APCs and lymphocytes in the TME and the
consequent activation of non-specific and specific anti-tumor immunity with possible long-term
protection against cancer recurrence [10]. In addition, OVs invoke other immunological events that
override the impairment of tumor antigen presentation and promote the interaction between APCs
and tumor-specific T cells [11]. Hence, better understanding DC-OV interaction is pivotal in devising
novel or improved therapeutic approaches to harness the anti-tumor effects of both DCs and OVs,
ultimately enhancing the efficacy of OV-based anti-cancer therapy. This review will summarize the
role of DCs in anti-viral and anti-tumor immunity, and highlight how the latter can be initiated and
sustained through cooperative DC-OV interactions.

2. Development and Function of DC Subsets

DCs originate from bone marrow hematopoietic progenitor cells, committed to either lymphoid
or myeloid lineage, and reside in both peripheral and lymphoid tissues, where they are involved
in immune surveillance and activation of T cell immune responses, respectively [12]. In mice, the
heterogeneous population of DCs can be divided into two major groups: classical and non-classical
(extensively reviewed by Mildner and Jung [13]). Classical DCs (cDCs) can be distinguished based
on the expression of cell surface markers CD8, CD103, and CD11b. CD8+ cDCs reside in lymphoid
tissues and are functionally specialized for cross-presentation [14]—the presentation of exogenous
antigens by class I major histocompatibility complex (MHC) molecules [15]. Thus, CD8+ cDCs
play a critical role in immune responses against viruses and intracellular bacteria. CD103+ cDCs,
on the other hand, populate non-lymphoid tissues, particularly the intestinal mucosa where they
regulate immune tolerance to commensal bacteria and food antigens [16]. Both CD8+ and CD103+
cDC lineage development is governed by the same transcription factors: inhibitor of DNA binding 2
(Id2) [17], interferon regulatory factor 8 (IRF8) [18], basic leucine zipper transcriptional factor ATF-like
3 (BATEF3) [19], and nuclear factor, interleukin 3 regulated (NFIL3) [20]. In addition, CD11b+ c¢DCs
make up the most abundant population of cDCs in lymphoid organs, and they can be further
divided into CD4+ ¢DCs (CD8—, CD11b+, CD4+) and double negative cDCs (CD8—, CD11b+,
CD4-) [21]. The development of CD11b+ cDCs is under the control of transcription factors Relb [22],
NOTCH2 [23], RBP-J [24], IRF2 [25], and IRF4 [26]. CD11b+ ¢DCs possess prominent class II MHC
presentation machinery and are thus important in the induction of CD4+ T cell responses [27].

Conversely, non-classical DCs consist of three major subsets: Langerhans cells, monocyte-derived DCs,
and plasmacytoid DCs. Langerhans cells (LCs) are DCs in the epidermal skin layer with a prominent
sentinel role, continuously sampling the tissue environment even in the absence of infection [28]. LCs
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migrate to lymph nodes via the afferent lymphatics and present antigens to activate naive T cells.
Monocyte-derived DCs (moDCs), also known as inflammatory DCs, originate from monocytes,
which circulate in the blood and mature into tissue-resident macrophages; but under inflammatory
conditions, they can also differentiate into DCs [29]. moDCs are similar to ¢cDCs in terms of their
expression patterns of class II MHC molecules, CD11b, and CD11c; however, moDCs also express
CD64 which indicates their monocytic lineage [30]. Lastly, plasmacytoid dendritic cells (pDCs) in
the blood and peripheral organs are key determinants of anti-viral innate immunity. Due to the
constitutive expression of IRF7, pDCs can produce large amounts of type I interferons (IFNs) during
viral infections and establish an anti-viral state [31,32]. They can also secrete pro-inflammatory
chemokines and cytokines for the recruitment of leukocytes and regulation of immune responses.
For instance, interleukin (IL)-12 secretion by pDCs can induce IFN-y production in natural killer
(NK) cells, CD4+ and CD8+ T cells [33-35], while IL-6 can promote the production of anti-viral
antibodies by plasma B cells [36]. While pDCs have been shown to induce antigen-specific immune
responses [37], they can also be poor stimulators of T cells owing to their low expression levels
of MHC and co-stimulatory molecules [38]. In fact, it has been suggested that pDCs can induce
CD4+CD25+ T regulatory (Treg) cells [39] or anergy in antigen-specific CD4+ T cells, where T cells
remain unresponsive to antigens [40].

3. DCs in Viral Infections

3.1. DC Activation and Maturation

DCs are found in both “immature” and “mature” states, which differ in localization, phenotype,
and function. Tissue-resident immature DCs efficiently capture antigens via several mechanisms.
They engulf pathogens and cell debris by phagocytosis [41,42], and take up particles and extracellular
fluid by micropinocytosis [43]. In addition, they employ receptor-mediated endocytosis via C-type
lectin receptors [43] or Fc (Fragment, crystallisable region of antibodies) receptors [44] for antigen
uptake. Immature DCs also express low levels of class I and II MHC molecules, as well as
co-stimulatory molecules such as CD80 and CD86 [45-47]. However, upon pathogen recognition or
stimulation by activatory signals (i.e., pro-inflammatory cytokines [48]), DCs undergo a phenotypic
change and migrate from peripheral to lymphoid tissues [49]. This migration is aided by the upregulation
of C-C chemokine receptors (CCR), such as CCR2 and CCR7 which bind monocyte chemotactic
protein 1 (MCP-1) and macrophage inflammatory protein-3-3 (MIP-33), respectively [50-52].
DCs complete their maturation in the secondary lymphoid organs, where the downregulation
of phagocytic and endocytic receptors, upregulation of MHC and co-stimulatory molecules, and
reorganization of the cytoskeleton make mature DCs more efficient at antigen presentation for T cell
priming [47,53,54].

Activation of DCs can be induced directly by infectious agents and indirectly by inflammatory
products. Pattern-recognition receptors (PRRs) such as Toll-like receptors (TLRs) on DCs recognize
pathogen-associated molecular patterns (PAMPs)—microbial products conserved within groups of
pathogens [55,56]—and induce a pro-inflammatory response that contributes towards the activation
of DCs themselves as well as other innate immune cells [57]. For example, herpes simplex virus-2
(HSV-2) recognition by murine pDCs is mediated by TLR-9, triggering the secretion of IFN-«
by pDCs [58]. Specifically, TLR-9 recognizes the unmethylated CpG motifs present on HSV-2
genomic DNA. Of note, DC subsets express different levels and types of TLRs, suggesting that
they preferentially recognize distinct classes of pathogens [59]. While TLR-3 is absent in murine
pDCs, it is preferentially expressed by CD8o+ DCs; similarly, TLR-7 is expressed by pDCs but
not CD8x+ DCs [59]. In addition, DCs can detect viral infections via non-TLR cytosolic PRRs.
For instance, cytosolic enzyme protein kinase R (PKR) can recognize viral double-stranded RNA
(dsRNA) and induce type I IFN secretion by cDCs without TLR-3 involvement [60,61]. Another
TLR-independent pathway for the recognition of intracellularly replicating viruses involves retinoic
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acid-inducible gene 1 (RIG-I), a dsRNA helicase enzyme that detects viral genome [62]. Furthermore,
activatory signals can originate from other cells responding to PAMPs via their own PRRs [63].
For example, DCs are activated by IFNs secreted by virally infected cells, and LCs can be activated
by tumor necrosis factor o« (TNF«x), IL-1, and IL-18 secreted by keratinocytes [64]. On the other
hand, PAMP-independent activation of DCs depends on “danger” signals, also known as danger- or
damage-associated molecular pattern (DAMPs), which are released by necrotic cells [65]. These
host-derived endogenous molecules, such as heat shock proteins, hyaluron degradation products,
ATP, and bradykinins, may mimic PAMPs and can thus trigger DC activation [66-68]. Once again,
indirect activation is possible, wherein recognition of these stress molecules by healthy cells triggers
the secretion of inflammatory mediators, such as TNFe, leading to DC activation.

3.2. Induction of Anti-Viral Immunity

DCs contribute towards anti-viral innate immune responses through activation of innate
immune cells, such as NK cells, and cytokine production. Upon pathogen recognition in peripheral
tissues, DCs produce chemokines, such as MCP-1, MIP-1«, and macrophage-derived chemokine
(MDC) [69,70]. These signaling proteins recruit innate immune cells including macrophages,
NK cells, NKT cells, and neutrophils to sites of infection, which then recognize and respond to
pathogens through non-specific mechanisms. In particular, the interaction between DCs and NK
cells is important in early defenses against infections through the production of other key effector
molecules. For instance, DCs and NK cells have complementary functions, with DCs producing
IL-18 or type I IFNs and presenting antigens, and NK cells producing IFN-y and exhibiting cytotoxic
functions [71-73]. In fact, CD11b+ DCs infected with murine cytomegalovirus (MCMYV) were efficient
at activating NK cells, while DC-derived IL-18 and IFN-o were necessary for NK cell cytotoxicity [74].
Similarly, IL-12 and IL-18 secreted by CD8x+ DCs were essential for the expansion of NK cells during
acute MCMYV infection while the presence of NK cells in return maintained the CD8x+ DC population
in the spleen [75].

Moreover, as a major source of type I IFNs, DCs play a critical role in the establishment of
an anti-viral state. By inducing an anti-viral state in cells, type I IFNs restrict viral replication
and stimulate the production of anti-viral, anti-proliferative, and immunomodulatory proteins [76].
For example, CD8x+ DCs were identified as a potent producer of type I IFNs (IFN-«/f) during
MCMV infections which limited viral replication; however, the same response was not observed
after lymphocytic choriomeningitis virus (LCMYV) infection, suggesting that DC-derived cytokines
regulate immune responses in only certain viral infections [77]. Furthermore, as mentioned above,
pDCs secrete type I IFNs, as well as IL-12 and IL-6, to regulate immune responses in NK cells, CD4+
and CD8+ T cells, and plasma B cells [33-36]. Thus, DCs activate and interact with the cells of
the innate immune system, which in turn influence the nature of the adaptive immune response
that follows.

One of the main roles of DCs in the induction of adaptive immunity is antigen presentation.
The captured antigens are processed by the endocytic pathway of DCs and loaded onto MHC
molecules [78,79]. MHC class II-rich compartments in immature DCs allow rapid presentation of
exogenous antigens for the generation of CD4+ T helper cells [44,45]. Of note, different DC subsets
induce different T helper (Th) cell polarization; CD8o+ DCs preferentially induce Th1 responses while
CD8— DCs trigger the development of Th2 responses [80]. For the activation of cytotoxic CD8+ T cells,
DCs present endogenous antigens via class I MHC molecules following direct infection as observed
during infections by influenza viruses [81] and HSV [82]. For instance, DCs infected with influenza
A virus expressed viral proteins HA and NS1 which induced potent cytotoxic T lymphocyte (CTL)
responses [83]. This virus-DC interaction occurred with retention of cell viability and substantial
production of IFN-«, and allowed for the processing of newly synthesized viral proteins by the
traditional class I MHC pathway in the cytoplasm of DCs. For antigens from viruses that do not
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directly infect DCs, DCs can utilize the cross-presentation machinery, but the exact mechanism
through which this occurs is still poorly understood [15,84].

The priming of anti-viral T cell responses requires three signals: (1) peptide-MHC complexes on
DCs interacting with antigen-specific T cell receptors [7], (2) co-stimulatory molecules such as CD80,
CD86 on DCs interacting with CD28 on T cells [53], and (3) inflammatory cytokines that stimulate
and support T cell expansion and differentiation [85]. The nature of the PAMP-PRR interaction
is an important determinant in the generation of signals 2 and 3 [80]. That is, the recognition of
PAMPs by PRRs leads to increased expression of co-stimulatory molecules on DCs, contributing
to T cell proliferation, differentiation, and survival. Without such co-stimulation, T cell anergy or
immune tolerance may result instead of T cell activation. Furthermore, particular PAMPs will induce
different types of signal 3, such as those resulting in the polarization of either a Th1 or Th2 response.
Once generated, anti-viral CTL responses protect against subsequent infections. For instance,
mice immunized with DCs pulsed with LCMV-specific peptide GP33-41 developed LCMV-specific
anti-viral immunity which protected against LCMV challenge up to 60 days post immunization [86].
However, it is important to note that DCs contribute to not only the induction of anti-viral immunity
but also the propagation of viral infections [87]. For example, DCs can serve as reservoirs for
human immunodeficiency virus (HIV) and transport the virus to lymph nodes, contributing to the
pathogenesis of the disease, while concurrently triggering anti-viral immunity [88]. Thus, the dual
role of DCs in viral infections is a key factor to take into consideration when devising strategies to
enhance or dampen anti-viral immune responses.

4. DCs in the Tumor Microenvironment

Clinical data from patients have conclusively established a positive correlation between anti-tumor
CD8+ T cell immunity and patient survival, tumor grade, and disease outcome [89-91]. Anti-tumor
immunity involves the recognition of class I MHC-peptide complexes on tumor cells by cytotoxic
CD8+ T cells [92,93]. As such, many efforts are underway to identify tumor-associated antigens
(TAAs), which are present on tumor cells as well as non-malignant cells, and tumor-specific
antigens (TSAs), which are unique to individual tumors [94]. A critical step in the generation
of anti-tumor immunity is the presentation of such tumor antigens by DCs resulting in the
activation of tumor-specific T lymphocytes. In spontaneous priming of anti-tumor CD8+ T cells,
DNA released from necrotic tumor cells can trigger the production of IFN-f3 by DCs through the
STING pathway [95,96], wherein type I IEN signaling may contribute to innate immune responses
against tumors [97]. For the establishment of anti-tumor immunity via therapeutic modulation,
tumor-bearing mice immunized with DCs loaded with tumor antigens ex vivo have developed
protection against tumor growth and reduction in the size of established tumors [98], and such
DC-based cancer therapeutics have been used in clinical trials since the mid-1990s. As a case in
point, MCA-207 sarcoma or MT-901 breast carcinoma cell lysate-pulsed DCs have been shown to
prime CD8+ T cells, resulting in rejection of subsequent tumor challenge and reduction in pulmonary
metastases [99]. Moreover, it has been demonstrated that CD8«x+ DCs acquire tumor antigens
in vivo by recognizing and binding exposed actin filaments of necrotic cells via the receptor DNGR-1
(CLEC9A) [100-102]. It is also possible to use DNA vaccines (i.e., plasmid-based immunization) to
deliver tumor antigens to DCs [103]. This therapeutic approach indirectly relies on DCs to present
tumor antigens for the induction of anti-tumor immunity. In addition to mediating innate and
adaptive anti-tumor immunity, DCs can have direct tumoricidal activity through perforin, granzyme
B, and TNF-related apoptosis-inducing ligand (TRAIL) [104]; and promote innate anti-tumor
immune responses through NK cell cytotoxic activity and IFN-y production. Overall, these various
functions of DCs are important in the generation of anti-tumor immune responses.

The generation of anti-tumor immunity is aided by the infiltration of DCs into the TME. Tumor
cells produce chemokines, such as MIP-3«, which recruit immature DCs via CCR6 [105]; and after
capturing tumor antigens, DCs migrate to secondary lymphoid tissues to initiate T cell responses
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against the tumor. Accordingly, increased levels of tumor-associated DCs (TADCs) are linked to
favorable prognosis and prolonged survival of patients with various types of cancers including
oral [106,107], lung [108,109], gastric [110], and colon [111]. It has also been shown that FMS-like
tyrosine kinase 3 ligand (FIt3L)-mediated mobilization of DCs into murine fibrosarcoma led to
decreased tumor growth and complete tumor regression [112]. Similar observations were made in
patients with melanoma and renal cancer, where FIt3L administration resulted in increased numbers
of DCs and monocytes, and allogeneic T-cell proliferation [113]. Therefore, the association between
TADCs and anti-tumor immunity suggests the importance of increasing DC numbers and function in
primary tumor lesions in order to promote positive cancer outcomes.

Phenotypic and Functional Alterations of DCs

The immunosuppressive nature of the TME, however, is not conducive for the anti-tumorigenic
properties of DCs. Tumor and tumor stromal cells, such as inflammatory infiltrate, fibroblasts,
endothelial cells, and pericytes, create the TME which effectively promotes tumor progression and
tumor immune evasion [114]. This is achieved through various cytokines, chemokines, growth
factors, prostaglandins, and gangliosides. For instance, nitric oxide synthase 1 (NOS1) and arginase 1
(ARG1) expression by myeloid-derived suppressor cells (MDSCs) inhibit CD8+ T cell activation [115];
similarly, IL-10, transforming growth factor $ (TGF-$), and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) expression by Tregs suppress the proliferation of T lymphocytes [116-118].
Moreover, tumor-associated macrophages (TAMs) promote angiogenesis [119], and TGF-f3 expression
by cancer-associated fibroblasts induces epithelial-mesenchymal transition (EMT) [120], which is
important in the initiation of metastasis [121]. Hence, the TME favors evasion of anti-tumor immunity
and thus dampens the pro-tumorigenic properties of immune cells.

Consequently, the immunosuppressive local milieu influences the phenotype and function of
TADCs, decreasing the allostimulatory capacity of these cells in generating anti-tumor immune
responses (extensively reviewed by Gottfried, Kreutz, and Mackensen [122]). First, TADCs may
display reduced capacity to capture, process, and present antigens [123,124]. For instance, DCs
infiltrating renal cell carcinoma showed decreased antigen uptake, possibly due to tumor-derived
vascular endothelial growth factor (VEGF) inhibiting phagocytosis [125,126]. Second, the TME inhibits
the maturation of TADCs, which may consequently express less co-stimulatory molecules [127].
With an immature phenotype, such as the lack of CD80 and CD86 on DCs infiltrating colon
cancers [127], TADCs may induce T cell tolerance, resulting in anergy and decreased proliferation
of allogeneic T cells [128]. In addition, immature DCs can trigger deletional tolerance, resulting
in apoptosis of antigen-specific T cells [129]. The differentiation of DCs can also be inhibited by
macrophage colony-stimulating factor (M-CSF) and IL-6, as observed in renal cell carcinoma [130].
These tumor-derived factors favor the differentiation of hematopoietic progenitor cells towards a
monocyte lineage that has reduced expression of MHC and co-stimulatory molecules. Given that
MDSCs and DCs share a common hematopoietic origin, it has been suggested that the common
progenitor may preferentially differentiate into MDSCs rather than DCs, thereby augmenting the
immunosuppressive microenvironment [131]. Similarly, gangliosides, which are lipids shed by
tumor cells following hypoxia-induced aberrant ganglioside composition, can also impair DC
maturation, resulting in downregulation of antigen-processing machinery and co-stimulatory
molecule expression [132]. Third, the migration of TADCs to secondary lymphoid tissues may
be inhibited. This may be due to the immature state of TADCs [105] or directly mediated by
tumor-derived TGF-f [133]. Ultimately, these tumor-induced dysfunctions of TADCs contribute to
tumor immune evasion by inhibiting DCs from activating tumor-specific T cell responses.

Furthermore, TADCs can have tolerogenic functions through the expression of co-inhibitory
molecules, programmed death-ligand 1 (PD-L1) and indoleamine-pyrrole 2,3-dioxygenase (IDO).
For instance, PD-L1 is upregulated on ovarian cancer-infiltrating DCs, thereby suppressing
tumor-specific T cells upon interacting with the programmed cell death protein 1 (PD-1)
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receptor [134]. The immunomodulatory enzyme IDO is expressed by pDCs isolated from melanoma
patients, and its expression is upregulated by tumor-derived prostaglandin E2 (PGE2) [135]. IDO
promotes CD8+ T cell anergy and CD4+ Treg differentiation [136], and it can also increase IL-10
production by TADCs [137,138]. TADCs are also capable of producing TGF-$ [139] and display
reduced levels of IL-12 production [140]. In addition, DCs can produce IL-23, which may suppress
NK cell cytotoxic activities mediated by perforin and IFN-y, thus promoting tumor development and
metastasis [141]. Many such inhibitory activities of TADCs are driven by the transcription factor
FOXO3; indeed, DCs isolated from prostate cancer patients display elevated levels of FOXO3 and
effectively induce T cell tolerance [142]. Therefore, DCs in the TME can be polarized to an inhibitory
state that contributes to tumor immune evasion.

In addition to tumor-induced dysfunction of DCs, there can also be elimination of functional
DCs. Abnormal frequency of TADCs has been observed in melanoma patients with reduced number
of LCs [143,144], and apoptosis has been suggested as the mechanism through which DCs are
removed from the TME [145-147]. Similarly, other tumor-derived factors, such as gangliosides [148],
mucin 2 (MUC2) [149], and high-mobility group protein Bl (HMGBL1) [150], have been shown to
trigger apoptosis of TADCs. This decrease in DC number appears to be a systemic effect as it is
observed beyond the TME. For example, patients with breast, lung, pancreatic, liver, cervical, and
head and neck cancers have a reduced number of DCs circulating in the blood, which is associated
with poor prognosis [151-155]. Overall, TME-associated dysregulation of DC function and apoptosis
of functional DCs is known to contribute towards the impaired induction of anti-tumor immunity.

5. Interaction between DCs and OVs

As indicated above, DCs are pivotal in the generation and sustainability of anti-viral and
anti-tumor immune responses, and are recognized as the predominant contributors to bridging innate
and adaptive immunity. To this end, numerous cancer immunotherapeutic approaches focus on
the activation and accumulation of functional DCs or utilize DC-based vaccines (TAA/TSA-loaded
DCs) to sufficiently mediate a tumor-specific T cell immune response. Although current cancer
immunotherapies, either cancer vaccines or checkpoint blockade inhibitors, have had recent success
in clinical practice, it would be ideal to have an immunotherapeutic approach that compels the
modulation of tumor-associated immunosuppression and stimulates TADCs to effectively prompt
anti-tumor immunity [156,157]. OVs represent a novel and promising immunotherapeutic approach
that naturally perform this function. The anti-viral immune response that follows OV infection occurs
within the vicinity of the tumor (i.e., the TME) and overturns tumor-associated immune evasion
mechanisms and enhances DC activation, maturation, and TAA /TSA uptake and presentation.

OVs are attenuated, mutated, or naturally benign viruses that preferentially target and lyse
cancer cells while leaving normal, non-transformed cells relatively unharmed. Currently, there are
numerous prominent examples of these OVs including reovirus [158], vesicular stomatitis virus
(VSV) [159], vaccinia virus [160], Newcastle disease virus [161], measles virus [162], poliovirus [163],
HSV [164], coxsackievirus [165], adenovirus [166], and Maraba virus [167,168]. OVs preferentially
target cancer cells as a result of aberrant cellular signaling (e.g., Ras signaling [158,169]) and defective
anti-viral immune responses (e.g., type I IFNs [170,171]), which result in a weakened anti-viral
immune environment within the tumor. Interestingly, the therapeutic administration of OVs drives
two contrasting immunities: anti-viral and anti-tumor. Anti-tumor immunity is highly desirable
whereas anti-viral immunity is often unwanted as it inhibits viral replication and spread. Hence,
it is of the utmost importance to understand the interactions between DCs and OVs in the context of
the TME to further improve the therapeutic efficacy of OV-based anti-cancer therapy.

5.1. OV-Mediated DC Activation, Maturation and Antigen Presentation

As a result of being a foreign pathogen, OV exposure naturally mediates an increased
expression of a type I IFN response and a subsequent pro-inflammatory immune response to
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contain and eradicate the virus. In addition to a cytokine-mediated response, numerous OVs
are also potent inducers of class I MHC pathway-related molecules [11,172], thus immediately
providing possible tumor/viral immune recognition. With respect to DCs, OVs, such as reovirus,
HSV [173], vaccinia [174], and measles virus [175,176], induce the production of numerous cytokines
(e.g., reovirus specifically drives the production of GM-CSE, IL-1«, IL-6, IL-12p40/70, MCP-1,
M-CSF, MIG, MIP-1&, RANTES, and TNFx by human myeloid DCs [177]); and increase the
expression of co-stimulatory molecules (CD80 and CD86) and class II MHC [172]. In addition
to the natural capabilities of OVs to alter the maturation status of DCs, studies on engineered
OVs (e.g., adenovirus, HSV, arbovirus, poxvirus) have also focused on enhancing the interaction
of OVs with DCs by encoding growth factors (GM-CSF and FIt3L), chemokines (CCL2), cytokines
(IL-12, RANTES, and IFN-f), and defensins (f3-defensin-2) within the viral genome. For example,
the administration of E1B-deleted oncolytic adenovirus expressing [3-defensin-2 (Ad-BD2-E1A) has
resulted in the selective recruitment and activation of pDCs, and thus improved the type I IFN
response within the TME [178]. Additionally, an oncolytic adenovirus encoding MIP-1a and FIt3L
has been constructed to promote DC recruitment and expansion in vivo, which ultimately had a strong
synergistic effect on the infiltration of tumors by DCs and T cells [179]. The administration of IL-12
and GM-CSF-expressing adenovirus (Ad-AB7/IL12/GMCSF) in combination with DCs in B16-F10
melanoma tumor-bearing mice also showed increased DC migration to draining lymph nodes due
to the upregulation of CCL21+ lymphatic vessels around tumor tissues [180]. Greater tumor growth
inhibition, increased numbers of CD4+ and CD8+ T cells, and increased CD86 expression were also
observed in tumors. Similar results were obtained following a combinatory treatment of IL-12 and
4-1BBL-expressing adenovirus (Ad-AB7/IL-12/4-1BBL) and DCs [181]. As another case in point,
intratumoral injections of HSV-1 expressing GM-CSF, also known as Talimogene laherparepvec
(T-VEC), has been shown to trigger the development of anti-tumor immunity in metastatic melanoma
patients [182]. This is achieved through DC stimulation (attraction and maturation) via GM-CSE,
resulting in enhanced priming of antigen-specific T cells. Another example is JX-594, also known
as Pexa-Vec. Intravenous delivery of this GM-CSF-expressing vaccinia poxvirus with a deletion
of the thymidine kinase gene resulted in increased tumor-infiltrating CD8+ T cells and reduced
metastasis of hepatocellular carcinoma [183]. Most importantly, OV-driven accumulation, activation,
and heightened co-stimulatory molecule expression of DCs from OV-treated tumor-bearing hosts
overturn the dysfunctional nature of TADCs and have the potential to establish a robust anti-tumor
specific immune response.

In addition to the natural interaction of DCs with OVs following co-culture or therapeutic
administration, studies have also shown that the incorporation of OVs with common DC-based
immunotherapeutic approaches bear enhanced efficacy. For example, a DC-based vaccination approach
that loaded DCs with an OV, M protein mutant oncolytic VSV (AM51-VSV) encoding a tumor-associated
antigen, enhanced the activation, maturation, and function of DCs, and subsequently controlled
tumor growth by the engagement of both NK and CD8+ T cells [184]. A similar outcome was
observed when DCs loaded with measles virus-infected mesothelioma cells induced spontaneous
DC maturation and significant tumor-specific CD8+ T cell proliferation [175,185]. These and
other studies suggest that OVs enhance or restore DC responsiveness which potentially favors the
development of anti-tumor immunity during direct oncotherapy or supplementation of OVs to an
existing immunotherapeutic approach.

5.2. DC-Based Delivery of OV's

From the perspective of viral perseverance, DCs are now being recognized as possible cell
carriers to protect against and postpone OV eradication. Mechanisms such as neutralizing antibodies,
nonspecific organ (spleen, lung, and liver) or vasculature accumulation, and scavenging immune cells
represent major obstacles for delivering OVs to the tumor cells [186]. As opposed to intratumoral OV
injections, systemic viral administration provides a higher probability of OVs reaching metastatic
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tumors or multi-nodular tumors. Thus, multiple steps are now being attempted to improve
the systemic delivery of OVs with the use of immune cell carriers (extensively reviewed by
Roy et al. [186] and Willmon et al. [187]). Of the numerous immune cell types being evaluated
(e.g., MDSCs, T cells, or macrophages), DCs have been shown to be an effective cell carrier for
both oncolytic reovirus [188,189] and measles virus [190], where DCs internalized the virus thereby
protecting it against neutralizing antibodies. In particular, therapeutic administrations of reovirus
in previously reovirus-exposed hosts have been shown to be ineffective; however, when DCs were
loaded with reovirus, enhanced survival of melanoma-bearing mice and robust anti-tumor as well as
anti-viral immune responses were observed [191]. Hence, utilizing immune cells such as DCs as cell
carriers provides a means to enhance systemic dissemination of OVs to reach primary and metastatic
tumors, especially for OVs for which the host is likely to have pre-existing anti-viral immunity due
to previous exposure.

Ultimately, the increased delivery of OVs into the TME results in enhanced oncolysis and
overturning of immunosuppression. As a result, DC function is improved in two important ways
that facilitates the development of effective anti-tumor immunity. First, OV-induced lysis of cancer
cells releases tumor antigens, as well as other “danger” signals, that are detected by DCs [174].
While decreased MHC expression on tumor cells previously made these cells poorly immunogenic
in order to avoid immune detection, the presence of OVs now allows DCs to recognize, capture, and
present tumor antigens for the activation of tumor-specific CD8+ T cells. Second, the inflammatory
response triggered by an OV infection overturns the dysfunction of DCs caused by tumor-mediated
immunosuppression [177]. In contrast to the immature, inhibitory DCs found in the TME, DCs in the
presence of OVs are fully functional and capable of activating T cells with effective co-stimulation.
Therefore, these changes create a proper environment for the development of tumor-specific T cell
responses during OV-based anti-cancer therapy, specifically restoring the three signals provided by
DCs for the activation of T cells.

However, it is also important to note that not all interactions between OVs and DCs are
synergistic. For example, oncolytic treatment with VSV has been shown to have negative effects on
TADC number and function [192]. While the administration of recombinant FIt3L alone increased DC
number, combining FIt3L with VSV treatment abrogated this effect. VSV directly infected and killed
TADCs, thus decreasing the number of TADCs. There was also reduced tumor antigen presentation
in vivo and decreased migration of DCs to draining lymph nodes. Therefore, there are instances where
OV administration can negate DC function and effectively hamper the development of anti-tumor
immunity. It remains to be shown whether these effects are OV-specific, in which case further
understanding of DCs in the context of different OV types is required to optimize DC-mediated
induction of anti-tumor immunity and oncolytic virotherapy.

6. Conclusions

Herein, we have reviewed the role of DCs in viral infections and cancer, highlighting their
capacity to generate an immune response (summarized in Figure 1). Upon detecting infectious
agents or transformed cells, DCs activate immune cells to initiate anti-viral or anti-tumor immunity;,
respectively; both of which are associated with OV-based anti-cancer therapy. Thus, understanding
the contributions of DCs to OV-driven anti-cancer responses is of the utmost importance, and the
knowledge can be used to dampen the detrimental anti-viral immunity or enhance the beneficial
anti-tumor immunity. By further elucidating the interaction between DCs and OVs, one can harness
the DC-OV synergy to overcome the limitations of each constituent. That is, DCs can deliver
OVs to the TME aiding OV-mediated oncolysis and the generation of anti-tumor immunity; while
OVs can overturn impaired antigen presentation of DCs, promote DC maturation, and recruit
more immune cells to the TME. Methods that can enhance DC function, such as the addition of
immunostimulatory molecules or innate immune agonists, should be further explored, particularly
during the administration of OVs that can negatively interfere with DC function. Ultimately, the
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therapeutic goal is to increase patient prognosis and survival by enhancing the efficacy of OV-based
onco-immunotherapy, which may be best achieved through a combination therapy consisting of DCs
and OVs.

A. Viral Infection B. Tumor Microenvironment C. Oncolytic Virus Interaction
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Figure 1. Multifunctional dendritic cells in the generation of anti-viral and anti-tumor immunity.
(A) Upon recognition of viral infections, DCs acquire viral antigens through various mechanisms
and become activated into a matured state that is more adept at antigen presentation. These DCs
induce innate immune responses, in cells such as NK cells and macrophages, through the secretion
of cytokines and chemokines, and also establish an anti-viral state in cells via type I IFNs. The
activated DCs also prime antigen-specific T cells for the induction of adaptive immunity by presenting
viral antigens in MHC molecules, along with co-stimulatory molecules and inflammatory cytokines.
Overall, DCs are critical in the establishment of anti-viral immunity that eradicates the invading
viral pathogen; (B) In the immunosuppressive TME, abnormal DC number and function hinder the
generation of anti-tumor immunity. Tumor-derived factors, such as gangliosides and TGF-$3, can
prevent DC maturation and migration, which impede the activation of allogeneic tumor-specific T
cells. DCs can also be polarized to an inhibitory state with increased PD-L1 and IDO expression,
triggering T cell tolerance. Furthermore, tumor-induced apoptosis of tumor-associated, as well as
circulating, DCs contribute to tumor immune evasion, thereby posing a challenge to anti-tumor
immune responses; (C) During therapeutic OV administration, the interaction between DCs and
OVs can enhance the anti-tumor effects of each constituent. While OVs can directly induce lysis of
cancer cells and anti-tumor immunity, these effects can be enhanced through DC-mediated delivery
of OVs to the TME, which aids OVs in avoiding anti-viral mechanisms. In return, OVs can trigger
DC maturation and overturn impaired antigen presentation, thus overcoming tumor-associated
immunosuppression. Moreover, OV-induced apoptosis of cancer cells releases tumor antigens, which
can be captured and presented by DCs for the activation of tumor-specific T cells.
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