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Abstract: Since the development of methods for inserting and expressing genes in 

baculoviruses, a line of research has focused on developing recombinant baculoviruses  

that express insecticidal peptides and proteins. These recombinant viruses have been 

engineered with the goal of improving their pesticidal potential by shortening the time 

required for infection to kill or incapacitate insect pests and reducing the quantity of crop 

damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect 

physiology, degradative enzymes, and other potentially insecticidal proteins have been 

evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran 

host larvae. Researchers have investigated the factors involved in the efficient expression 

and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort 

dedicated to identifying ideal promoters for driving transcription and signal peptides that 

mediate secretion of the expressed target protein. Other factors, particularly translational 

efficiency of transcripts derived from recombinant insecticidal genes and post-translational 

folding and processing of insecticidal proteins, remain relatively unexplored. The discovery 

of RNA interference as a gene-specific regulation mechanism offers a new approach for 

improvement of baculovirus biopesticidal efficacy through genetic modification.  
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1. Introduction 

Baculoviruses have been formulated and deployed as biopesticides to control pest insects since the 

19th century [1]. Baculovirus infection often results in the death of the host insect, and baculoviruses 

cause naturally occurring epizootics in populations of their hosts. As members of an insect-specific virus 

family, Baculoviridae [2,3], that contains no species causing disease in vertebrates, the baculoviruses 

are exceedingly safe options for pest control. Host specificity among the baculoviruses is even more 

stringent than that of other insect pathogens, such as entomopathogenic fungi and the bacterium Bacillus 

thuringiensis, and applications of baculoviruses tend to have little or no impact on non-target insects [4]. 

The preparation and use of baculoviruses as pest control agents have been further facilitated by the 

fact that baculoviruses embed infectious particles in proteinaceous occlusion bodies (OBs) that confer a 

level of stability to virus and can be dispersed with the same equipment and methods used for applying 

chemical pesticides [5,6]. These OBs, also known as polyhedra (for species of the genera 

Alphabaculovirus, Gammabaculovirus, and Deltabaculovirus) or granules (for species of the genus 

Betabaculovirus), occur in environments where larvae of the host feed. The OBs of alphabaculoviruses 

and betabaculoviruses have been used most frequently in biopesticide formulations to control pestiferous 

caterpillars of the order Lepidoptera (moth and butterflies). Larval lepidopteran hosts of 

alphabaculoviruses and betabaculoviruses ingest OBs while feeding on foliage (Figure 1). The 

paracrystalline matrix of the OBs, consisting of the viral protein polyhedrin (Alphabaculovirus) or 

granulin (Betabaculovirus), dissolves in the alkaline environment of the larval midgut [7]. The virions 

liberated from the dissolved OBs, which are referred to as occlusion-derived virus (ODV) establish 

primary infection of the columnar epithelial cells of the larval midgut [8,9]. For alphabaculoviruses and 

many betabaculoviruses, infection spreads to other host tissues by way of a second type of virion 

produced during viral replication known as the budded virus, or BV [10] (Figure 1). Infection and viral 

replication is accompanied by a characteristic disease referred to as nuclear polyhedrosis or granulosis. 

Infected cells lyse, and the internal anatomy is liquefied and the cuticle weakened by degradative 

enzymes encoded by the virus [11–13]. When the larval host dies from the viral disease, the cuticle 

ruptures and liberates progeny OBs produced during infection. 

While baculovirus-infected host larvae become moribund and eventually die in a dramatic fashion, 

the time between the initial infection of the host and its death from viral disease is generally a matter of 

days or even weeks, during which time the host continues to feed and cause agricultural damage. The 

amount of such post-inoculation damage can be reduced by applying high rates of OBs, or by timing 

application of the OBs such that the earliest (and least damaging) developmental stages of the pest are 

infected and killed [14]. However, the slow speed of kill of baculoviruses has meant that baculoviruses 

are infrequently used for pest control. Baculoviruses that have been commercialized for use generally 

target prevalent and highly damaging pest species such as codling moth and gypsy moth, or pests in 
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cropping systems where a relatively high degree of plant damage can be sustained without loss of 

economic value (for example, soybeans) [15]. 

 

Figure 1. Representation of the baculovirus life cycle.  

A solution to the problem with slow speed of kill came with the development of methods for genetic 

engineering of baculoviruses to express foreign genes. The possibility of engineering baculoviruses to 

express insecticidal proteins that would kill infected pests rapidly or halt their feeding, or that exhibit 

other improvements (e.g., greater pathogenicity), was suggested almost as soon as the first papers on 

baculovirus-mediated foreign gene expression were published [16]. Since then, a prodigious amount of 

research has been carried out by many laboratories, resulting in the production of many recombinant 

baculoviruses that express insecticidal peptides. Larvae infected with these recombinant viruses 

generally die sooner than larvae infected with non-recombinant wild-type viruses, due to the toxicity of 

the encoded insecticidal protein rather than the pathology of the infection itself. In general, the viruses 

with which this work has been carried out tend to be alphabaculoviruses for which cell lines that support 

viral replication are available, as procedures for genetic modification of baculoviruses rely upon 

susceptible cell lines. In particular, strains of the baculoviruses Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV) are models of 

baculovirus molecular biology research and have subsequently been the starting points for many of the 

efforts to produce recombinant baculoviruses with improved speed of kill. 
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This review focuses on the generation and laboratory evaluation of recombinant baculoviruses that 

express insecticidal peptides, with an emphasis on the factors involved in expression of insecticidal 

peptides during viral infection and replication that influence the pesticidal properties of recombinant 

baculoviruses. Another type of genetic modification of baculoviruses that has resulted in an 

improvement in their insecticidal performance involves the deletion of selected genes, such as the egt 

gene [17,18]. For information on this sort of modification, as well as other facets of wild-type and 

recombinant baculovirus biopesticides relating to production, formulation, field testing, safety 

assessment, and application, the readers are referred to the comprehensive treatments of these subjects 

by Hunter-Fujita et al. [19] and Kamita et al. [20,21]. 

2. Insecticidal Peptides Expressed by Recombinant Baculoviruses 

Insecticidal peptides that have been used to improve the pesticidal performance of baculoviruses 

include neurotoxic peptides that interfere with axonal membrane function, enzymes and peptide 

hormones that regulate the physiology of the host insect, and degradative enzymes (proteases and 

chitinases) that target extracellular structures, along with a selection of other peptides that do not fit into 

the above categories. In general, these insecticidal peptides exert their influence at the organismal level, 

rather than the cellular level, and thus do not interfere with baculovirus infection and replication. 

Different laboratories have assessed the efficacy of a given insecticidal protein in different ways. Some 

recombinant viruses retained an intact polyhedrin  gene (polh) and were capable of producing OBs, 

which could be fed to host larvae, while other recombinant viruses lacked polh and were usually used in 

bioassays in which BV were injected into the hemocoel or “pre-occluded” ODV were fed to  

larvae [22]. Bioassays of recombinant viruses have featured a plethora of different host species and 

developmental stages, and different methods for estimating the survival time of infected larvae from 

bioassay data have been used [23]. 

2.1. Neurotoxins  

Insect-specific peptide neurotoxins from the venoms of invertebrates were among the first insecticidal 

peptides to be inserted into baculoviruses. These toxins disrupt ion conductance across axonal 

membranes and cause paralysis. Many of the neurotoxic peptides that have been expressed using 

baculoviruses are small (approximately 58–70 amino acids), and it was thus relatively easy to make 

synthetic versions of the coding sequences for these peptides with a codon distribution that was favorable 

for expression in insect cells and with heterologous signal peptide sequences for efficient secretion from 

infected cells. Table 1 lists the recombinant baculoviruses engineered with neurotoxin genes, with the 

promoters and signal peptides used to mediate their expression and the degree of improvement in 

bioassays relative to control viruses. The viruses are listed in order of their chronological appearance in 

the literature, although some viruses (e.g., AcUW2(B).AaIT) have been used in multiple studies, 

sometimes under a different name. 
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Table 1. Recombinant baculoviruses that express peptide neurotoxins. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

vBeIt-1 
BeIT 

(scorpion) 

AcMNPV/ 

T. ni,  

G. mellonella 

polh None 
No larval 

paralysis 
[24] 

vBeIt-2 BeIT 

AcMNPV/ 

T. ni, 

G. mellonella 

polh 
Human  

β-interferon 

No larval 

paralysis 
[24] 

vBeIt-3 
Polyhedrin-

BeIT fusion 

AcMNPV/ 

T. ni,  

G. mellonella 

polh None 
No larval 

paralysis 
[24] 

BmAaIT 
AaIT 

(scorpion) 

BmNPV/ 

B. mori 
polh bombyxin 40% [25] 

AcUW2(B).AaIT  

[p10–AaIT; 

AcAaIT; vAaIT; 

Ac.AaIT(p10); 

vAcAaIT.p10] 

AaIT 

AcMNPV/ 

H. armigera, 

H. virescens, 

S. exigua,  

T. ni 

p10 bombyxin 

12%–50%  

(n = 23, 

average 29%) 

[26–34] 

AcST-1 AaIT 
AcMNPV/ 

T. ni 
p10 None 

No neurotoxin 

secretion from  

infected cells 

[35] 

AcST-3 AaIT 
AcMNPV/ 

T. ni 
p10 

AcMNPV 

GP67 
24%, 25% [35,36] 

vEV-Tox34 
TxP-I 

(mite) 

AcMNPV/ 

T. ni 

polh 

(LSXIV) 
native Not estimated [37] 

vETL-Tox34 TxP-I 
AcMNPV/ 

T. ni 

ETL 

(AcMNPV 

ORF ac49) 

native Not estimated [38] 

vCappolh-Tox34 TxP-I 
AcMNPV/ 

T. ni 

vp39/polh 

fusion 
native Not estimated [38] 

vSp-tox34 TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

synXIV native 

33%–59%  

(n = 7, 

average 44%) 

[38–40] 

vSp-tox21A 

tox21A gene  

product 

(mite) 

AcMNPV/ 

T. ni 
synXIV native 34%; 49% [39,40] 

vEV-HA5f10 
Dol m VB 

(hornet) 

AcMNPV/ 

T. ni 

polh 

(LSXIV) 
native 

No larval 

paralysis  

or other effect 

[41] 

vEV-HA5f17 
Dol m VA 

(hornet) 

AcMNPV/ 

T. ni 

polh 

(LSXIV) 
native 

No larval 

paralysis  

or other effect 

[41] 
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Table 1. Cont. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

AcLα22 

(vAcLqαIT) 

LqhαIT 

(scorpion) 

AcMNPV/ 

H. armigera, 

H. virescens 

polh native 

27%–41%  

(n = 3, 

average 34%) 

[42,43] 

AcNPV/RH1 AaIT 
AcMNPV/ 

S. exigua 
p10 bombyxin 31% [27] 

vSp-tox34m TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

synXIV 
modified 

native 
44%; 54% [40] 

vSp-BSigtox34 TxP-I 
AcMNPV/ 

T. ni 
synXIV 

Sarcophaga 

sarcotoxin 

IA 

26% [40] 

vSp-tox21A/tox34 TxP-I 
AcMNPV/ 

T. ni 
synXIV tox21A 36% [40] 

vSp-DCtox34 TxP-I 
AcMNPV/ 

T. ni 
synXIV 

Drosophila 

cuticle 

protein II 

47% [40] 

vpHSP70tox34 TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

Drosophila 

hsp70 
native 41%; 46% [40] 

vDA26tox34 TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

DA26 

(AcMNPV 

ORF ac16) 

native 28%; 39% [40] 

vp6.9tox34 TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

p6.9 native 

56%–59%  

(n = 4, 

average 58%) 

[40] 

vp6.9tox34m TxP-I 

AcMNPV/ 

T. ni,  

S. frugiperda 

p6.9 
modified 

native 
53%; 54% [40] 

TnNPV-AaIT 

(clones 1–4) 
AaIT 

“TnNPV”/ 

T. ni 
synXIV 

AcMNPV 

GP67 
20%–43% [44] 

vMAg4p+ 
μ-Aga-IV 

(spider) 

AcMNPV/ 

T. ni,  

S. frugiperda 

synXIV 
Honeybee 

melittin 

15%–42%  

(n = 7, 

average 27%) 

[30,45,46] 

vSAt2p+ 
As II (sea 

anemone) 

AcMNPV/ 

H. virescens,  

T. ni,  

S. frugiperda 

synXIV 

Sarcophaga 

sarcotoxin 

IA 

25%–38%  

(n = 6, 

average 33%) 

[30,45] 

vSSh1p+ 
Sh I (sea 

anemone) 

AcMNPV/ 

T. ni,  

S. frugiperda 

synXIV 

Sarcophaga 

sarcotoxin 

IA 

35%–42%  

(n = 3, 

average 38%) 

[30,45] 

ie1–AaIT AaIT 
AcMNPV/ 

H. virescens 

hr5 enhancer/ 

ie-1 promoter 
bombyxin 10% [28] 
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Table 1. Cont. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

vAcTalTX-1 
TalTX-1 

(spider) 

AcMNPV/ 

T. ni,  

S. exigua, 

H. virescens 

polh native 

18%–33%  

(n = 4, 

average 24% 

[22] 

vAcDTX9.2 
DTX9.2 

(spider) 

AcMNPV/ 

T. ni,  

S. exigua, 

H. virescens 

polh 
T. ni AJSP-

1 

7%–24%  

(n = 4, 

average 14%) 

[22] 

HzEGTp6.9tox34 

TxP-I 

(inserted  

in egt 

gene) 

HzSNPV/ 

H. zea 
p6.9 native 35% [47] 

HzEGThsptox34 

TxP-I 

(inserted in 

egt gene) 

HzSNPV/ 

H. zea 

Drosophila 

hsp70 
native 32% [47] 

HzEGTDA26tox34 

TxP-I 

(inserted  

in egt 

gene) 

HzSNPV/ 

H. zea 

DA26 

(AcMNPV 

ORF ac16) 

native 39% [47] 

vV8EE6.9tox34 

TxP-I 

(inserted  

in egt 

gene) 

AcMNPV-

V8/ 

S. frugiperda 

p6.9 native 38% [48] 

vV8EEHSPtox34 

TxP-I 

(inserted  

in egt 

gene) 

AcMNPV-

V8/ 

S. frugiperda 

Drosophila 

hsp70 
native 46% [48] 

vhsMAg4p+ μ-Aga-IV 

AcMNPV/ 

H. virescens, 

S. frugiperda, 

T. ni 

Drosophila 

hsp70 

Honeybee 

melittin 

20%–71%  

(n = 11, 

average 47%) 

[30,46] 

vhsSAt2p+ As II 

AcMNPV/ 

H. viresncens,  

S. frugiperda, 

T. ni 

Drosophila 

hsp70 

Sarcophaga 

sarcotoxin 

IA 

50%–61%  

(n = 7, 

average 55%) 

[30,46] 

vDASAt2 

As II  

(in ac16-

negative 

mutant) 

AcMNPV/ 

S. frugiperda, 

T. ni 

synXIV 

Sarcophaga 

sarcotoxin 

IA 

37%–40%  

(n = 4, 

average 39%) 

[46] 

vDAhsSAt2 

As II  

(in ac16-

negative 

mutant) 

AcMNPV/ 

S. frugiperda, 

T. ni 

Drosophila 

hsp70 

Sarcophaga 

sarcotoxin 

IA 

40%–53%  

(n = 5, 

average 47%) 

[46] 

  



Viruses 2015, 7 429 

 

 

Table 1. Cont. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

vhsSSh1p+ Sh I 

AcMNPV/ 

H. virescens, 

S. frugiperda, 

T. ni 

Drosophila 

hsp70 

Sarcophaga 

sarcotoxin 

IA 

45%–55%  

(n = 4, 

average 50%) 

[30,46] 

vMAg4SAt2 
μ-Aga-IV + 

As II 

AcMNPV/ 

S. frugiperda, 

T. ni 

synXIV 

(both 

toxins) 

Honeybee 

melittin, 

Sarcophaga 

sarcotoxin 

IA 

38%–45%  

(n = 5; 

average 41%) 

[30,46] 

vhsMAg4SAt2 
μ-Aga-IV + 

As II 

AcMNPV/ 

S. frugiperda, 

T. ni 

Drosophila 

hsp70 

(both 

toxins) 

Honeybee 

melittin, 

Sarcophaga 

sarcotoxin 

IA 

43%–57%  

(n = 5; 

average 49%) 

[46] 

AcLIT1.p35 
LqhIT1 

(scorpion) 

AcMNPV/ 

H. armigera 
p35 native 16% [49] 

AcLIT1.p10 

(vAcLqIT1) 
LqhIT1 

AcMNPV/ 

H. armigera, 

H. virescens 

p10 native 

24%–28%  

(n = 3, 

average 27%) 

[43,49] 

AcLIT2.pol 

(vAcLqIT2) 

LqhIT2 

(scorpion) 

AcMNPV/ 

H. armigera, 

H. virescens 

polh native 

17%–32%  

(n = 3, 

average 24%) 

[43,49] 

RcHzSNPV 

(RcHzLqh) 
LqhIT2 

HzSNPV/ 

H. zea,  

H. virescens 

hr5 

enhancer/ 

ie-1 

promoter 

bombyxin 

31%–44%  

(n = 11, 

average 38%) 

[32,50] 

AcTOX34.4 
TxP-1 

(tox34.4) 

AcMNPV/ 

T. ni 
p10 native 

Approx. 

30%–50% 
[51] 

BmLqhIT2 LqhIT2 
BmNPV/ 

B. mori 
polh bombyxin Not estimated [52] 

Ro6.9AaIT AaIT 

RoMNPV/ 

H. virescens, 

H. zea,  

O. nubilalis 

p6.9 bombyxin 

19%–37%  

(n = 3, 

average 30%) 

[53] 

Ro6.9LqhIT2 LqhIT2 

RoMNPV/ 

H. virescens, 

H. zea,  

O. nubilalis 

p6.9 bombyxin 

27%–42%  

(n = 3, 

average 37%) 

[53] 

AcUW21.AaIT AaIT 
AcMNPV/ 

H. virescens 
p10 bombyxin 27% [53] 

AcMLF9.AaIT AaIT 
AcMNPV/ 

H. virescens 
p6.9 bombyxin 25%, 26% [53,54] 

AcUW21.LqhIT2 LqhIT2 
AcMNPV/H. 

virescens 
p10 bombyxin 34% [53] 

 



Viruses 2015, 7 430 

 

 

Table 1. Cont. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

AcMLF9.LqhIT2 LqhIT2 
AcMNPV/H. 

virescens 
p6.9 bombyxin 33%, 34% [53,54] 

HaCXW2 

AaIT 

(inserted  

in the egt 

gene) 

HearSNPV/H

. armigera 
polh bombyxin 

8%; 13% 

(relative to 

egt-negative 

control 

virus) 

[55,56] 

vAcLqIT1-IT2 

LqhIT1 

and 

LqhIT2 

AcMNPV/H. 

armigera, H. 

virescens 

p10 

(LqhIT1), 

polh 

(LqhIT2) 

native 24%, 41% [43] 

vAcLqαIT-IT2 

LqhαIT 

and 

LqhIT2 

AcMNPV/H. 

armigera, H. 

virescens 

polh 

(both 

toxins) 

native 29%, 43% [43] 

Ac.LqhIT2(hr5/ie1) LqhIT2 
AcMNPV/H. 

virescens 

hr5 

enhancer/ 

ie-1 

promoter 

native, 

Drosophila 

cuticle protein 

II,  

M. sexta 

adipokinetic 

hormone,  

L. cuprina 

chymotrypsin, 

AcMNPV 

GP67, BjIT, 

AaIT 

Not 

estimated 
[33] 

Ac.LqhIT2(hr5/39K) LqhIT2 
AcMNPV/H. 

virescens 

hr5 

enhancer/ 

39k 

promoter 

bombyxin 
Not 

estimated 
[33] 

Ac.LqhIT2(hr5/lef3) LqhIT2 
AcMNPV/H. 

virescens 

hr5 

enhancer/ 

lef-3 

promoter 

bombyxin 
Not 

estimated 
[33] 

Ac.LqhIT2(hr5/ie1) LqhIT2 

AcMNPV/ H. 

virescens, S. 

exigua, T. ni 

hr5 

enhancer/ 

ie-1 

promoter 

bombyxin 

37%–56%  

(n = 10, 

average 47%) 

[33] 

Ac.AaIT(hr5/ie1) AaIT 

AcMNPV/ H. 

virescens, S. 

exigua, T. ni 

hr5 

enhancer/ 

ie-1 

promoter 

bombyxin 

13%–46%  

(n = 10, 

average 31%) 

[33] 
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Table 1. Cont. 

Recombinant 

Baculovirus 

Insecticidal 

Peptide 

Parental 

Virus/Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 
Reference 3 

HaSNPV-

AaIT 

AaIT 

(inserted  

in the egt 

gene) 

HearSNPV/ 

H. armigera 

Tandem 

polh and 

p6.9 

promoters 

bombyxin 

4%–27% 

(relative to 

egt-negative 

control virus ; 

n = 9, average 

13%); 26% 

relative to 

wild-type 

HearSNPV 

[57,58] 

Px 
Poneratoxin 

(ant) 

AcMNPV/ 

S. frugiperda 
polh none 

No 

improvement 
[59] 

SPx Poneratoxin 
AcMNPV/ 

S. frugiperda 
polh 

AcMNPV 

GP67 
16% [59] 

AcIT6 
BotIT6 

(scorpion) 

AcMNPV/ 

S. littoralis 
polh 

AcMNPV 

EGT 
33% [60] 

vAP10IT2 LqhIT2 

AcMNPV/  

P. xylostella, 

S. exigua,  

T. ni 

p10 bombyxin 

8%–16%  

(n = 4, 

average 12%) 

[61,62] 

vAPcmIT2 LqhIT2 

AcMNPV/  

P. xylostella, 

S. exigua,  

T. ni 

Cytomegalo-

virus 

minimal 

promoter 

bombyxin 

10%–25%  

(n = 4, 

average 15%) 

[61,62] 

vAcAaIT.39K AaIT 
AcMNPV/ 

H. armigera 
39k bombyxin 22% [34] 

ButaIT-NPV 
ButaIT 

(scorpion) 

AcMNPV/ 

H. virescens 
p10 bombyxin 43% [63] 

P10IT2 LqhIT2 
AcMNPV/ 

T. ni 
p10 bombyxin 28% [64] 

Ppag90IT2 LqhIT2 
AcMNPV/ 

T. ni 

HzNV-1 

pag90 
bombyxin 50% [64] 

AcMNPV-

BmK IT 

BmK IT 

(scorpion) 

AcMNPV/ 

S. exigua 
ie-1 native 13% [65] 

SpltNPV- 

Δegt-BmK 

BmK ITa1 

(inserted in 

egt gene) 

SpltNPV/ 

S. litura 
polh 

SpltNPV F 

protein 
15%; 28% [66] 

1 Virus abbreviations: AcMNPV, Autographa californica multiple nucleopolyhedrovirus; BmNPV, Bombyx 

mori nucleopolyhedrovirus; HearSNPV, Helicoverpa armigera single nucleopolyhedrovirus; HzSNPV, 

Helicoverpa zea single nucleopolyhedrovirus; RoMNPV, Rachiplusia ou multiple nucleopolyhedrovirus; 

SpltNPV, Spodoptera litura nucleopolyhedrovirus. “TnNPV” could be either AcMNPV or Trichoplusia ni 

single nucleopolyhedrovirus. Host abbreviations: B. mori, Bombyx mori; G. mellonella, Galleria mellonella; 

H. armigera, Helicoverpa armigera; H. virescens, Heliothis virescens; H. zea; Helicoverpa zea; O. nubilalis, 

Ostrinia nubilalis; P. xylostella, Plutella xylostella; S. exigua, Spodoptera exigua; S. frugiperda, Spodoptera 

frugiperda; S. littoralis, Spodoptera littoralis; S. litura, Spodoptera litura; T. ni, Trichoplusia ni; 2 The 

percentage by survival time is reduced relative to a control is reported for each bioassay that includes the 
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specified recombinant virus. If results of more than two bioassays are reported, a range of percentages is 

reported along with the number of bioassays featuring the virus (n) and an average percentage. “No 

improvement” indicates that survival times achieved with the specified recombinant baculovirus were not 

lower than the control virus, or there was no statistically significant difference with control virus survival times. 

“Not estimated” indicates that survival times were not calculated in a way that allowed for a percentage 

reduction in survival time to be determined; 3 Publications are listed that report the construction of the specified 

recombinant virus as well as any use of the virus in a bioassay. 

The first peptide neurotoxin, and first insecticidal gene, to be expressed in a recombinant baculovirus 

was BeIT insectotoxin-1 from the lesser Asian scorpion, Buthus (now Mesobuthus) eupeus [24]. 

Although BeIT toxin proteins (unfused or fused to a heterologous signal peptide or part of the polyhedrin 

gene) were expressed in cells infected with recombinant viruses, no paralysis was observed in larvae of 

lepidopteran hosts Trichoplusia ni and Galleria mellonella or in larvae of the blowfly (Sarcophaga) 

injected with the virus or infected-cell extracts. 

Success in improvement of the pesticidal characteristics of a baculovirus was reported in  

subsequent experiments using the toxins AaIT from the North African scorpion, Androctonus  

australis [25,26,28,29,34–36,44,53,55,56,67] and TxP-I from the straw itch mite, Pyemotes  

tritici [37,38,40,47,51]. Baculoviruses expressing these toxins caused paralysis and significantly reduced 

survival times in infected host larvae. The AaIT toxin in particular has been a popular choice for insertion 

into baculoviruses, and has been used to create a variety of different recombinant strains (Table 1). 

Another neurotoxin that has been frequently expressed in baculovirus vectors is LqhIT2,  

originally identified from the venom of Leiurus quinqestriatus hebraeus, the Israeli yellow  

scorpion [33,49,50,52,53,61,64]. LqhIT2 and AaIT are categorized as depressant and excitatory 

neurotoxins, respectively, on the basis of their effect on blowfly larvae injected with the toxins [68]. 

While AaIT and other excitatory toxins causes an immediate and long-lasting contractile paralysis in 

blowfly larvae, LqhIT2 and other depressant toxins causes a short-term contractile paralysis followed 

by a paralysis characterized by flaccidity of the fly larvae.  

Numerous other venom neurotoxins have been expressed in baculoviruses. Most of these neurotoxins 

have been from scorpion venoms [42,43,49,60,63,65,66], but neurotoxins from the venoms of  

spiders [22,30,45,46], a hornet [41], an ant [59], and a sea anemone [30,45,46] have also been inserted 

into baculoviruses. In most cases, paralysis of infected host larvae and a reduction in survival time is 

achieved with expression of these neurotoxins. Two studies have reported that co-expression of two 

different neurotoxins encoded by a single recombinant baculovirus can sometimes exhibit a synergistic 

increase in the degree of reduction in host survival time that is achieved [43,46]. 

2.2. Physiological Regulators  

Another class of peptides that have been inserted into baculoviruses to improve their insecticidal 

performance includes hormones and enzymes involved in regulating the development, behavior, and 

physiological state of the host insect (Table 2). The concept underlying the use of these physiological 

regulators is that their overexpression, or expression of modified forms of these effectors, during 

baculovirus infection is expected to alter the development, behavior, or homeostasis of the insect host. 

The larval host subsequently succumbs more rapidly to viral infection or stops feeding sooner. 
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Table 2. Recombinant baculoviruses that express regulators of host physiology.  

Recombinant 

Baculovirus 

Physiological 

Regulator 

Parental 

Virus/ 

Host Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 Reference 3 

BmDH5 
M. sexta diuretic 

hormone 

BmNPV/ 

B. mori 
polh 

Drosophila 

cuticle 

protein II 

Approximately 

20% 
[25,69] 

AcRP23.JHE 

H. virescens juvenile 

hormone esterase 

(JHE) 

AcMNPV/T. 

ni 
polh native Not determined [70] 

AcUW2(B).JHE 

(AcJHE) 
H. virescens JHE 

AcMNPV/ 

H. virescens,  

T. ni 

p10 native 
No 

improvement 

[26,31, 

71–73] 

vJHEEGTD H. virescens JHE 

AcMNPV (egt  

deletion 

mutant)/T. ni 

Tandem polh 

(LSXIV) and 

synXIV 

promoters 

native 

No 

improvement 

relative to egt 

deletion control 

virus 

[74] 

vEHEGTD 
M. sexta eclosion 

hormone 

AcMNPV  

(egt deletion 

mutant)/ 

S. frugiperda 

Tandem polh 

(LSXIV) and 

synXIV 

promoters 

native 

No 

improvement 

relative to egt 

deletion control 

virus 

[75] 

AcJHE-SG 
H. virescens  

JHE-SG mutant 

AcMNPV/ 

H. virescens,  

T. ni 

p10 native 

16%–31% (n = 

3, average 25%) 

16%; 29%; 31% 

[31,72] 

AcJHE-HK 
H. virescens  

JHE-HK mutant 

AcMNPV/  

H. virescens 
p10 native 

No 

improvement 
[31,72] 

AcJHE-RH 
H. virescens  

JHE-RH mutant 

AcMNPV/  

H. virescens 
p10 native 

No 

improvement 
[72] 

AcJHE-DN 
H. virescens  

JHE-DN mutant 

AcMNPV/  

H. virescens 
p10 native 

No 

improvement 
[72] 

vWTPTTHM 

B. mori 

prothoracicotropic 

hormone 

AcMNPV/ 

S. frugiperda 

Tandem polh 

(LSXIV) and 

synXIV 

promoters 

Sarcophaga 

sarcotoxin IA 

No 

improvement 
[76] 

vEGT-PTTHM 

B. mori 

prothoracicotropic 

hormone 

AcMNPV (egt 

deletion 

mutant)/ 

S. frugiperda 

Tandem polh 

(LSXIV) and 

synXIV 

promoters 

Sarcophaga 

sarcotoxin IA 

No 

improvement 
[76] 

AcJHE.KK  

(p10-JHE-KK; 

AcUW21.JHE-

KK) 

H. virescens  

JHE-KK mutant 

AcMNPV/  

H. virescens, 

T. ni 

p10 native 
0%–25% (n = 7, 

average 13%) 
[28,29,31,73] 
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Table 2. Cont. 

Recombinant 

Baculovirus 

Physiological 

Regulator 

Parental Virus/ 

Host Species 1 Promoter Signal Peptide 
Improvement 

vs. Control 2 Reference 3 

ie1–JHE–KK 
H. virescens  

JHE-KK mutant 

AcMNPV/ 

H. virescens 

hr5 

enhancer/ 

ie-1 

promoter 

native 
No 

improvement 
[28] 

AcBX-PBAN 

H. zea pheromone 

biosynthesis  

activating 

neuropeptide 

AcMNPV/T. ni polh bombyxin 19%; 26% [77] 

AcJHE-29 
H. virescens  

JHE-29 mutant 

AcMNPV/ H. 

virescens , T. ni 
p10 native 

No 

improvement 
[73] 

AcJHE-524 
H. virescens  

JHE-524 mutant 

AcMNPV/ H. 

virescens , T. ni 
p10 native 

No 

improvement 
[73] 

AcJHE-KSK 
H. virescens  

JHE-KSK mutant 

AcMNPV/ 

H. virescens 
p10 native 17% [31] 

AcJHE-KHK 
H. virescens  

JHE-KHK mutant 

AcMNPV/ 

H. virescens 
p10 native 

No 

improvement 
[31] 

AcHezK-II S 

H. zea  

helicokinin-II  

(one copy) 

AcMNPV/H. zea polh 

Human placental  

alkaline 

phosphatase 

Not estimated [78] 

AcHezK-II M 

H. zea  

helicokinin-II  

(two copies) 

AcMNPV/H. zea 
polh and 

p10 

Human placental  

alkaline 

phosphatase 

Not estimated [78] 

1, 2, 3 See footnotes for Table 1. 

The first physiological regulator to be expressed in a baculovirus and shown to have an impact on 

insecticidal performance was a diuretic hormone from the tobacco hornworm, Manduca sexta [69]. In 

insects, diuretic hormones regulate hemolymph volume by stimulating excretion of excess water, usually 

in response to feeding. Overexpression of the M. sexta diuretic hormone with a recombinant BmNPV 

increased virulence in the virus and speed of kill up to 20% over wild-type BmNPV in B. mori larvae 

injected with the viruses. A significant reduction in host survival time was also achieved with 

baculovirus expression of the Helicoverpa zea diuretic hormone helicokinin II [78]. 

In insects, a group of terpenoids collectively referred to as juvenile hormone (JH) regulate the 

outcome of molting such that a larva-to-larva molt occurs, rather than a larva-to-pupa molt. Since the 

larval stage of pest lepidopteran species is the developmental stage that causes plant damage, reducing 

the titers of JH and causing a larva-pupa molt was considered to be a worthwhile goal. Towards this end, 

recombinant baculoviruses have been produced that over-express the enzyme juvenile hormone esterase 

(JHE), which degrades JH in the hemolymph [70]. While viruses expressing the native JHE from  

H. virescens exhibited no increase or a slight increase in speed of kill [26,71,74], mutant forms of JHE 

showed enhancements in feeding suppression, lethality and speed of kill when inserted and expressed in 

a baculovirus [29,31,72,73].  

Other physiological regulators that have been inserted and tested in recombinant baculoviruses 

include eclosion hormone, which triggers ecdysis, the emergence of a new developmental stage from the 

cuticle of the previous developmental stage [75]; prothoracicotropic hormone, which triggers the 

secretion of ecdysteroids that initiate molting [76]; and pheromone biosynthesis activating neuropeptide 
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(PBAN), which stimulates mating pheromone biosynthesis [77]. Of these hormones, only PBAN 

reduced the survival time of infected larvae when overexpressed in a baculovirus. 

Table 3. Recombinant baculoviruses that express degradative enzymes. 

Recombinant 

Baculovirus 

Degradative 

Enzyme 

Parental Virus/ 

Host Species 1 Promoter 
Signal 

Peptide 

Improvement 

vs. Control 2 Reference 3 

vAcMNPV.chi M. sexta chitinase 
AcMNPV/S. 

frugiperda 
polh native 22%; 23% [80] 

AcIE1TV3.STR1 Rat stromelysin-1 
AcMNPV/H. 

virescens 

hr5 

enhancer/ 

ie-1 

promoter 

native 
No 

improvement 
[54] 

AcMLF9.STR1 Rat stromelysin-1 
AcMNPV/H. 

virescens 
p6.9 native 

No 

improvement 
[54] 

AcIE1TV3.GEL Human gelatinase A 
AcMNPV/H. 

virescens 

hr5 

enhancer/ 

ie-1 

promoter 

native 
No 

improvement 
[54] 

AcMLF9.GEL Human gelatinase A 
AcMNPV/H. 

virescens 
p6.9 native 12% [54] 

AcIE1TV3.ScathL 
S. peregrina 

cathepsin L 

AcMNPV/H. 

virescens 

hr5 

enhancer/ 

ie-1 

promoter 

native 
No 

improvement 
[54] 

AcMLF9.ScathL 
S. peregrina 

cathepsin L 

AcMNPV/H. 

virescens 
p6.9 native 49%; 51% [54,81] 

AcMNPV-

enMP2 

MacoNPV-A 

enhancin 
AcMNPV/T. ni Native None 

No 

improvement 

at same 

effective dose 

as control 

[82] 

BacVEFPol TnGV enhancin AcMNPV/T. ni p10 None 17% [83] 

AcMLF9.ScathL

.CAT 

S. peregrina 

cathepsin L 

AcMNPV/H. 

virescens 
p6.9 native 54% [81] 

AcMLF9.ScathL

.hsp70/lacZ 

S. peregrina 

cathepsin L 

AcMNPV/H. 

virescens 
p6.9 native 51% [81] 

AcBAC–

polhvfgf 

AcMNPV viral 

fibroblast growth 

factor (stimulates 

protease 

synthesis/activation) 

AcMNPV/S. 

frugiperda, T. ni 
polh none 20%; 23% [84] 

AcMNPV-GFP-

HCB-Polh  

H. armigera 

cathepsin B 

AcMNPV/H. 

armigera 
polh native 11% [85] 

HearNPV-cathL 

S. peregrina 

cathepsin L  

(inserted in egt gene) 

HearSNPV/H. 

armigera 

Tandem 

polh and 

p6.9 

native 26%; 26% [58] 

vSynScathL 
S. peregrina 

cathepsin L 

AcMNPV/S. 

frugiperda 
synXIV native 26%; 65% [86] 

vSynKerat 
Aspergillus 

fumigates keratinase 

AcMNPV/S. 

frugiperda 
synXIV native 33%; 48% [86] 

1, 2, 3See footnotes for Table 1. 
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2.3. Degradative Enzymes  

Insect anatomy presents barriers to the dissemination of baculovirus infection through the body of a 

host insect, and enzymes that degrade these barriers have been evaluated for their capacity to improve 

the insecticidal performance of recombinant baculoviruses (Table 3). The first of these barriers is the 

peritrophic matrix, a network of chitin, glycoprotein, and proteoglycan that lines the lumen of the insect 

midgut. The peritrophic matrix protects the midgut epithelial cell layer from physical and chemical 

threats to its integrity and impedes access of pathogens (including baculoviruses) to the midgut epithelial 

cell layer [79].  

A recombinant isolate of AcMNPV was engineered to over-express the gene for Manduca sexta 

chitinase, an enzyme that digests chitin [80]. This virus killed S. frugiperda larvae faster than wild-type 

AcMNPV in bioassays. However, it was not determined if the overexpressed chitinase had an impact on 

the integrity of the peritrophic matrix. Baculoviruses also encode and express their own chitinase, but 

this chitinase appears to target the chitin fibrils of the host cuticle, weakening the cuticle so that it will 

rupture more easily and release progeny occlusion bodies upon death of the host larva [13]. 

Granuloviruses and some group II alphabaculoviruses encode metalloproteases called enhancins that 

degrade mucin-like proteins in the peritrophic matrix of their hosts and increase access of ODV to the 

underlying epithelital cells [87–89]. Group I alphabaculoviruses do not contain enhancin genes. 

Heterologous expression of enhancin genes from the Trichoplusia ni GV and the Mamestra configurata 

NPV in the group I alphabaculovirus AcMNPV resulted in reductions in the doses required to kill  

larvae (LC50) [82,83]. A significant reduction in survival time was reported by del Rincón-Castro and  

Ibarra [83] but not by Li and coworkers [82]. The survival time reduction in the former study may have 

reflected the impact of a higher effective dose of the recombinant virus on speed of kill. 

Beyond the midgut, the tissues of the internal anatomy are lined with extracellular sheets of proteins 

known as basement membranes [90]. A variety of studies have indicated that virions (specifically, the 

BV) of baculoviruses cannot freely diffuse through the basement membranes surrounding the midgut 

and other tissues [91–93]. Nevertheless, baculoviruses appear to have some capacity to directly penetrate the 

basement membrane surrounding the midgut epithelium by some unknown mechanism [9]. 

Baculoviruses also appear to utilize the host tracheal system as a means to escape the midgut sheath and 

establish infection of other tissues [94]. Specialized extensions of tracheal epidermal cells called 

tracheoblasts are in close proximity to midgut epithelial cells and appear to be the first targets of 

secondary infection by baculoviruses. Most baculoviruses encode homologues of fibroblast growth 

factor (FGF), a paracrine factor involved in a wide variety of host cellular and developmental processes, 

including cell motility and tracheal branch formation [95]. The viral FGF (VFGF), when expressed during 

infection, appears to mimic the host FGF in that it triggers the production and activation of proteases that 

digest basement membrane proteins surrounding the midgut epithelium-associated tracheoblasts [96]. 

While an vfgf mutant baculovirus killed host larvae more slowly [97], a recombinant baculovirus engineered 

to overexpress vfgf killed larvae faster than the wild-type control [84].  

These results suggested that baculovirus systemic infection, along with the death of the host, can be 

accelerated by expressing enzymes that targeted the basement membranes posing a physical barrier to 

the spread of infection throughout the larval host. In an earlier study, recombinant clones of AcMNPV 

were produced that expressed proteases involved in the normal turnover of basement membranes [54]. 
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Three such proteases—stromelysin-1 from rat, human gelatinase A, and a cathepsin L from the fly 

Sarcophaga peregrina (ScathL)—were evaluated for their capacity to increase speed of kill. A virus 

expressing ScathL exhibited the greatest reduction in host survival time. Although the ScathL protease 

did not appear to actually accelerate systemic infection, it did cause severe damage to basement 

membranes overlying the midgut, fat body and muscle tissues in infected larvae, followed by melanotic 

encapsulation of tissues that were no longer covered by basement membrane [93,98]. ScathL was also 

found to be effective in improving the insecticidal performance of different baculoviruses and against 

different host species [58,86]. Other proteases have also been used successfully to shorten survival time 

when expressed in a baculovirus [85,86]. 

2.4. Other Insecticidal Proteins  

Other proteins that don’t fit into the above categories have been evaluated for the ability to shorten 

host survival time when expressed in baculoviruses (Table 4). Several studies have been published on 

the expression of the crystalline (Cry) toxins of B. thuringiensis. Baculovirus expression of Cry toxin 

genes does result in the production of toxin proteins that will kill lepidopteran larvae when  

infected-cell extracts are fed to them [99,100]. Since intrahemocoelic injection of Cry toxins has also 

been reported to cause mortality among lepidopteran larvae [101], it was thought that secretion of active 

fragments of the Cry toxins from baculovirus-infected cells and tissues would accelerate the onset of 

mortality arising from baculovirus infection. However, recombinant baculoviruses carrying full-length 

and truncated versions of Cry protein genes did not exhibit improvements in speed of kill when injected 

into larvae, even though the all versions of the toxins were insecticidal when fed to larvae [102]. In a 

subsequent study, the signal peptide sequence of H. virescens JHE was added to the N-termini of  

full-length and “mature” (active) Cry toxin sequences to promote secretion of the Cry toxins [27]. The 

“mature” Cry toxin sequence, which represented the proteolytically activated form of the toxin, proved 

to be cytotoxic to the extent that recombinant viruses expressing this form of the toxin could not produce 

OBs. The full-length toxin with the JHE signal peptide was not secreted from infected tissue culture 

cells, and viruses expressing this form of the toxin did not exhibit a speed of kill that was significantly 

different from wild-type virus. Bioassays were complicated by the presence of contaminating Cry toxin 

in recombinant virus OB preparations, and the researchers found it necessary to purify OBs by density 

gradient centrifugation. A more recent study reported a reduction in LD50 with a baculovirus expressing 

a truncated form of Cry1Ab toxin, but bioassays had been carried out with cell extracts, suggesting that 

the investigators in this report were measuring the oral activity of the expressed toxin rather than an 

improvement on the performance of the virus [103]. 
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Table 4. Recombinant baculoviruses that express other insecticidal proteins. 

Recombinant 

Baculovirus 

Insecticidal 

Protein 

Parental 

Virus/ 

Host 

Species 1 

Promoter 
Signal 

Peptide 

Improvement 

vs.  

Control 2 

Reference 3 

Ac(PH+)Bt 
B. thuringiensis 

CryIA(c) 

AcMNPV/ 

T. ni 
polh none Not determined [99] 

AcBtm 

B. thuringiensis 

CryIA(b)  

(full-length) 

AcMNPV/ 

H. virescens 
polh none 

No 

improvement 
[102] 

AcBt5 

B. thuringiensis 

CryIA(b)  

(N-terminal 

truncated) 

AcMNPV/ 

H. virescens 
polh none 

No 

improvement 
[102] 

AcBt3 

B. thuringiensis 

CryIA(b)  

(C-terminal 

truncated) 

AcMNPV/ 

H. virescens 
polh none 

No 

improvement 
[102] 

AcBt5/3 

B. thuringiensis 

CryIA(b)  

(N- and C-

terminal 

truncated) 

AcMNPV/ 

H. virescens 
polh none 

No 

improvement 
[102] 

BV13T Z. mays URF13 
AcMNPV/ 

T. ni 
polh native Not estimated [106] 

Bv13.3940 
Z. mays URF13 

mutant 

AcMNPV/ 

T. ni 
polh native Not estimated [106] 

AcNPV/JM2 

B. thuringiensis 

CryIA(b)  

(C-terminal 

truncated) 

AcMNPV/ 

S. exigua 
p10 none 

No 

improvement 
[27] 

AcNPV/FW3 

B. thuringiensis 

CryIA(b)  

(C-terminal 

truncated) 

AcMNPV/ 

S. exigua 
p10 

H. 

virescens 

juvenile 

hormone 

esterase 

No 

improvement 
[27] 

vHSA50L 

PBCV-1 cv-PDG 

(pyrimidine 

dimer-specific 

glycosylase) 

AcMNPV/S. 

frugiperda, 

T. ni 

Drosophila 

hsp70 
none 

No 

improvement vs. 

T. ni; 48% vs. S. 

frugiperda 

[107] 

vHSA50LORF PBCV-1 cv-PDG 

AcMNPV/S. 

frugiperda, 

T. ni 

Drosophila 

hsp70 
none 

No 

improvement vs. 

T. ni; 41% vs. S. 

frugiperda 

[107] 

ColorBtrus 

AcMNPV 

polyhedrin-B. 

thuringiensis 

Cry1A(c)-green 

fluorescent protein 

fusion 

AcMNPV/ 

P. xylostella 
polh None 63% [105] 

1, 2, 3 See footnotes for Table 1. 
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A recently-pursued strategy to exploit Cry toxin expression for improvement of baculovirus 

insecticidal efficacy involved fusing a Cry toxin sequence to the polyhedrin gene and producing 

recombinant clones of AcMNPV with a native polh and a polh-cry chimeric sequence. Je et al. [104] 

found that a baculovirus expressing both a native polyhedrin and a polyhedrin with the green fluorescent 

protein fused to the C-terminus would produce fluorescent OBs in tissue culture cells, while a virus 

encoding only a polyhedrin-GFP fusion did not produce OBs. An immunogold EM staining experiment 

intended to determine if the polyhedrin-GFP fusion was incorporated in the OBs did not take background 

staining of the protein-rich OB matrix into account, and it is unclear from this study if the polh-GFP 

fusion was present in the paracrystalline matrix of the OBs, or merely associated with the OB surface or 

packaged within the ODV. In a subsequent study, the same authors produced a recombinant virus 

encoding a native polyhedrin protein and a fusion protein consisting of a Cry toxin sequence fused at the 

N-terminus with polh and at the C-terminus with GFP [105]. Bioassays with OBs produced by this 

recombinant generated concentration-response and time-response curves that were very similar to curves 

produced with equivalent quantities of purified Cry toxin. No effort was made to determine and quantify 

the causes of larval death in their bioassays. Given the propensity for baculovirus-expressed Cry protein 

to contaminate OB preparations and influence the results of bioassays [27], the possibility remains that 

most of the mortality in the bioassays in this study was due to toxicity from Cry peptides derived from 

the polh-cry-GFP fusion sequence that may have been contaminants of the OB preparation.  

Other proteins that were found to reduce survival time when expressed in baculoviruses include a 

maize mitochondrial membrane protein [106] and a viral pyrimidine-dimer DNA repair enzyme [107]. 

3. Factors Involved in Successful Improvement of Baculovirus Pesticidal Performance with 

Insectidal Protein Expression  

3.1. Choice of Promoter  

Baculovirus genes can be classified on the basis of when they are transcriptionally active during the 

baculovirus replication cycle. Early genes are active prior to the onset of baculovirus DNA replication, 

and can be further sub-divided into immediate-early genes, which do not require prior protein expression 

to be transcribed, and delayed-early genes, which do require protein expression [108]. Late genes are 

transcribed concomitantly or after the beginning of viral DNA replication, and are characterized by the 

presence of a tetranucleotide motif, TAAG, in which transcription initiates [109]. The late genes include 

a sub-category, very late genes, whose transcription begins some hours after the onset of other late genes 

and results in the accumulation of very high steady-state levels of RNA [109]. 

The polyhedrin gene is a very late gene, and its strong promoter was a significant selling point for the 

use of baculovirus expression vectors to drive recombinant protein expression. During infection, 

polyhedrin accumulates to a significant proportion of the total intracellular protein in infected cells, and 

this high quantity is attributable to the strength of the polh promoter [110,111]. Thus, recombinant 

baculoviruses engineered with coding sequences for insecticidal proteins often used the polh promoter 

to drive expression at first [24,37,69].  

However, the polh promoter is one of the last promoters to be activated during baculovirus infection. 

This can be a problem for proteins intended to act as insecticidal peptides, as these proteins need to be 
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secreted. The secretory pathway in baculovirus-infected cells tends to deteriorate as infection proceeds, 

and the efficiency of protein secretion at the time that the polh promoter is activated is significantly 

lower than it is in uninfected cells [112]. Thus, it was suggested that survival time can be shortened 

further by using a promoter that is activated earlier than polh [28]. 

Several other viral promoters as well as cellular promoters have been investigated as possible 

alternatives to the polh promoter. The baculovirus p10 gene is also a very late gene that is expressed at 

high levels, but its promoter is activated a few hours earlier post-infection than that of polh [113]. The 

promoter of the late gene p6.9, activated after viral DNA replication but before p10, has also been 

evaluated, as research with this promoter suggests that it can drive expression of both intracellular and 

secreted marker proteins at higher levels than p10 or polh [114]. Synthetic promoters consisting of both 

late and very late promoter elements were developed to take advantage of both the beneficial earlier 

timing of late gene transcription initiation and the quantity of transcription associated with the polh 

promoter [38,115], as have tandem arrays of late and very late promoters [57,58,74–76]. A plethora of 

baculovirus early promoters and promoters from other sources have been tested, including promoters of 

the baculovirus early genes ie-1 [28,50,54,65], AcMNPV ORF ac16 (also called DA26) [40,47], 

AcMNPV ORF ac49 (also called ETL) [38], p35 [49], lef-3 [33], and 39k [33,34]; and promoters from 

the Drosophila melanogaster hsp70 gene [40], a minimal promoter from human cytomegalovirus 

(CMVm) [61], and the nudivirus HzNV-1 pag90 promoter [64]. In some cases, the viral promoters tested 

were combined with the homologous repeat region hr5, which acts as an enhancer of baculovirus 

transcription [28,33,50,54]. 

A number of studies have compared the extent to which different promoters drive expression  

of insecticidal proteins and reduce survival time of infected hosts. In general, when levels of baculovirus-

expressed neurotoxins were measured, the late and very late promoters appeared to produce noticeably 

more neurotoxin as assessed by western blot than the early promoters [28,40]. Likewise, the late p6.9 

promoter drove higher levels of protease expression compared to an hr5-ie1 enhancer/promoter 

assembly, as measured by gel zymography and enzyme assays [54]. In some cases, higher levels of 

insecticidal protein expression led to shorter survival times in bioassays with viruses using the stronger 

late promoters compared to viruses using the weaker early or cellular promoters [28,49,54]. However, 

some recombinant viruses that used an early promoter for expression killed larvae as fast as, or faster 

than, recombinant viruses using a very late promoter (polh or p10) [33,34,40]. The relative performance 

of the same hr5/ie-1 promoter construct has varied from study to study. Jarvis and coworkers [28] found 

that it failed to mediate a significantly faster speed of kill than the p10 promoter even though AaIT was 

secreted into the medium of infected cells far earlier after infection when AaIT expression was under  

ie-1 promoter control. Conversely, a similar study by van Beek and coworkers [33] found that viruses 

using this construct did kill some host species and developmental stages faster than viruses using the 

p10 promoter. Similarly, the late p6.9 promoter was found to mediate faster speeds of kill than the 

synXIV and p10 promoters when used to drive toxin expression in recombinant viruses [40,53].   

3.2. Choice of Signal Peptide  

Since many insecticidal proteins are usually secreted, they bear a signal peptide at the N-terminus 

that directs the protein into the endoplasmic reticulum, which is the first step in the pathway leading to 
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secretion from the cell. For some of the neurotoxins selected for expression in baculoviruses, the only 

sequence data available was of the amino acid sequence of the mature peptide (e.g., [59,63]). Such a 

sequence would be missing the signal peptide, which is cleaved off upon translocation of the nascent 

toxin peptide chain into the endoplasmic reticulum. Hence, it was necessary in such cases to add a signal 

peptide sequence when synthesizing the coding sequence for the neurotoxin. In addition, native signal 

peptides of some insecticidal proteins (Hez-PBAN, B. mori PTTH) did not appear to mediate processing 

and secretion of the encoded protein when expressed with a baculovirus, necessitating the replacement 

of the native sequence with a heterologous signal peptide [76,77]. In addition, an early study found that 

modifying the signal peptide could drive a higher level of secreted recombinant protein expression from 

a baculovirus vector [116]. 

Heterologous signal peptides from multiple sources have been used in baculoviruses expressing 

insecticidal proteins, including signal peptides from human beta-interferon [24], human placental 

alkaline phosphatase [78], D. melanogaster cuticle protein II [40], B. mori bombyxin [25], H. virescens 

juvenile hormone esterase [27], T. ni acidic juvenile hormone-suppressible hemolymph protein  

(AJSP-1; [22]), flesh fly sarcotoxin IA [40,69], honeybee melittin [45], M. sexta adipokinetic  

hormone [33], Lucilia cuprina (Australian sheep blowfly) chymotrypsin [33], AcMNPV  

GP67 [33,35,59], AcMNPV EGT [60], Spodoptera litura NPV EFP (envelope fusion protein) [66], and 

the venom neurotoxin signal peptides from the mite toxin encoded by tox21A [40] and neurotoxins AaIT, 

LqhIT2, and BjIT (from the scorpion Hottentota judaicus) [33]. In two studies, signal peptides from 

different sources were compared to identify a sequence that drove optimal levels of protein secretion. In 

a study utilizing TXP-I, the highest levels of intracellular and secreted toxin as assessed by western blot 

were obtained in tissue culture with the native TXP-1 signal peptide and the signal peptides of 

D. melanogaster cuticle protein II and the tox21A gene [40]. The recombinant viruses using these signal 

peptides exhibited the swiftest time to paralysis in bioassays, but the other viruses, which generated little 

to no detectable toxin in tissue culture, still caused paralysis in infected larvae. In a later study utilizing 

LqhIT2, no data on toxin protein levels were reported, but of eight signal peptides compared, five 

(bombyxin, adipokinetic hormone, chymotrypsin, GP67, and the native LqhIT2 sequence) mediated 

sufficient LqhIT2 expression to cause larval paralysis [33]. Of these five, the recombinant virus using 

the bombyxin signal peptide resulted in the fastest time to paralysis. Three signal peptides did not appear 

to drive enough LqhIT2 secretion to cause paralysis. Surprisingly, the D. melanogaster cuticle protein 

II signal peptide, which was the most effective signal peptide used with TXP-I, evidently was not 

effective in mediating sufficient quantities of toxin protein secretion when combined with LqhIT2 [33]. 

3.3. Translational Efficiency and Post-Translational Processing 

In transgenic plants expressing B. thuringiensis Cry toxins, modification of the cry coding sequences 

was found to boost the quantity of Cry toxin produced [117]. A similar strategy has been followed for 

insecticidal proteins expressed in baculoviruses that consisted of relatively small peptides  

(e.g., [52,59,63,69]. Synthetic versions of the coding sequences for these insecticidal proteins were 

produced with a codon distribution that reflected the codon bias of the baculoviruses into which the 

genes were to be inserted. However, no data has been reported on whether this approach results in higher 

levels of insecticidal protein expression or better performance in bioassays. 
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As mentioned above, protein secretion in baculovirus-infected cells becomes less efficient as 

infection proceeds. This is likely due to a global shutdown in host gene transcription that occurs in 

baculovirus-infected cells [118,119]. This shutdown could also cause other problems with  

post-translational processing required for the functionality of insecticidal protein expressed during 

baculovirus infection. A study of AaIT secretion from infected cell culture revealed that, in cells infected 

with a baculovirus that utilized the p10 promoter to drive expression, much of the AaIT protein was 

misfolded, insoluble, and inactive [120]. Co-infection with a baculovirus that expressed a chaperone that 

aids protein folding resulted in a larger proportion of soluble AaIT. Although there was no increase in 

the proportion of active AaIT in this study, the results suggest that incorporation of genes that facilitate 

folding and other forms of necessary post-translational processing may improve the expression of 

functional insecticidal protein during viral infection. Reductions in the quality and extent of protein  

N-glycosylation of proteins expressed late during baculovirus infection have been documented [121]. 

Protein N-glycosylation plays a role in protein folding and can affect the behavior and activity of a 

protein. Consequently, impairment of the pathway that glycosylates proteins and processes the added 

glycans can conceivably reduce the effectiveness of a baculovirus-expressed insecticidal protein.  

3.4. Interaction with Host Physiology 

In some cases, insecticidal proteins expressed during baculovirus infection have interacted with the 

physiology of the larval host in unanticipated ways. Sometimes, this interaction is beneficial in that it 

enhances the pest control properties of the insecticidal protein, and sometimes the interaction is negative 

in that it reduces the effectiveness of the protein. While it is desirable to exploit or ameliorate the effects 

of this interaction, doing so has not always been straightforward or possible. 

Baculovirus expression of arthropod venom neurotoxins has benefited from advantageous 

interactions with host physiology. Even when expression levels of neurotoxins are low or undetectable 

in tissue culture, recombinant viruses that suffer from low neurotoxin expression still sometimes cause 

paralysis in larvae [40]. This observation extends to expression levels in infected larvae. A recombinant 

virus expressing LqhIT1 from the early p35 promoter did not produce levels of LqhIT1 that were 

detectable by western blot, yet larvae injected with this virus exhibited paralysis [49]. Similarly, while 

AaIT could be easily detected by western blot in the hemolymph of H. virescens larvae infected with an 

AaIT-expressing recombinant virus, the neurotoxin was barely visible in western blots of hemolymph 

from infected larvae of the European corn borer, Ostrinia nubilalis, even after AaIT in the hemolymph 

samples was concentrated by immunoprecipitation [53]. Nevertheless, significant reductions in survival 

time were observed with recombinant virus-infected O. nubilalis larvae. Research on the localization 

and binding of toxic neuropeptides in toxin-injected larvae and larvae infected with toxin-expressing 

recombinant baculovirus indicated that venom neurotoxins injected in the hemolymph normally bind 

only at the sites of neuromuscular junctions [122], while baculoviruses are able to infect glial cells and 

trachea surrounding axons and express and secrete neurotoxins into the channel between the glia and the 

axons [123]. The neurotoxins are thus able to bind to ion channels all along the length of axons adjacent 

to infected glial cells. The effectiveness of the toxin is thus enhanced by baculovirus expression, a 

phenomenon referred to as toxin potentiation.  
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Toxin expression in baculovirus-infected larvae also results in larvae falling from their position on a 

plant and dying on the ground, while wild-type baculovirus-infected larvae tend to climb and die in a 

higher position on a plant [124,125]. The climbing behavior of baculovirus-infected larvae is thought to 

augment the distribution of progeny OBs from a cadaver and facilitate dissemination [126]. Thus, the 

final position of recombinant virus-killed larvae may result in a reduction in horizontal transmission, and 

a higher quantity of recombinant virus OBs present in the soil. 

Initial efforts to use JHE as an insecticidal protein were disappointing. Later research disclosed 

evidence of JHE being taken up and degraded in the pericardial cells of infected hosts [127]. In an effort 

to boost the half-life of JHE in larval host hemolymph, two lysine residues on JHE predicted to be 

associated with lysosomal targeting and degradation were replaced with arginine by site-directed 

mutagenesis [128]. A recombinant virus that encoded a JHE gene with both lysines mutated to arginine 

(JHE-KK) was found to exhibit a much-improved speed of kill in bioassays and reduced larval feeding 

relative to wild-type virus-infected larvae [73,128]. The JHE-KK mutant enzyme did not have an 

increased half-life in hemolymph compared to wild-type JHE, but significantly less JHE-KK was found 

in the lysosomes of pericardial cells compared to wild-type JHE or JHE forms where only one lysine 

had been mutated [128].  

It is generally assumed that larvae infected with a recombinant baculovirus that expresses an 

insecticidal protein tend to die from the protein being expressed, or from the combined effects of the 

insectidal protein and the pathology caused by the viral infection. Host death occurs before the virus is 

able to complete its life cycle in the host. Thus, it is not surprising that a number of laboratories have 

observed that larvae infected with fast-killing recombinant baculoviruses tend to produce significantly 

reduced numbers of progeny OBs [29,81,129]. Because large-scale production of OBs for baculovirus 

pesticides is carried out using host larvae, reduced OB production by recombinant baculoviruses poses 

a problem for commercial production of biopesticides using recombinant viruses. One way around this 

problem is to use a cell culture-based system for large-scale baculovirus OB production. Although there 

has been much research on the development of such systems [15], no baculovirus pesticide to date has 

been produced for the market using cell culture. Researchers at DuPont developed a means to suppress 

expression of genes encoding insecticidal proteins during baculovirus infection by placing the 

insecticidal gene under the control of tetracycline-repressible regulatory sequences, such that the 

insecticidal protein was not produced in the presence of a tetracycline analog [130]. Simply adding this 

analog to the virus inoculum prior to applying to diet surface suppresses expression of the insecticidal 

protein, leading to a viral infection that results in normal levels of OBs in virus-killed larvae. 

Finally, in some studies in which bioassays were conducted against more than one larval instar 

(developmental stage) or host species, differences in the trends regarding the degree of improvement 

achieved with expression of an insecticidal peptide or protein were noted among different larval instars 

and species [46,86]. The reasons for the observed differences in such studies are unclear, and a 

systematic exploration of how different developmental stages and host species respond to baculovirus 

expression of any given insecticidal peptide or protein remains to be carried out. 
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4. Looking Forward: Insecticidal RNAs?  

While the focus of this review has been on the baculovirus-mediated expression and delivery of 

insecticidal proteins in pest insects, two studies report the production of recombinant baculoviruses 

where the insecticidal molecules produced by the viruses consisted of RNA. In these studies, full-length 

or partial coding sequences for JHE and human c-myc were inserted into baculoviruses behind very late 

promoters in an anti-sense orientation [113,131]. In virus-infected S. frugiperda tissue culture cells, a 

protein species that reacted with c-Myc antibodies disappeared more rapidly from cells infected with the 

antisense RNA-producing virus than wild-type virus, and expression of the c-myc antisense RNA 

correlated with reduced feeding and survival time in infected larvae [131]. Infection of larvae with a 

virus expressing antisense JHE RNA resulted in reduced hemolymph JHE titers compared to infection 

with viruses that lacked any JHE sequences, and approximately 25% of the antisense RNA-producing 

virus-infected larvae underwent an abortive larva-pupa molt [132].  

It is not entirely clear how the antisense RNA expression in the above recombinant viruses mediated 

reductions in gene expression. The apparent explanation is that gene expression was shut down by RNA 

interference (RNAi), a method of post-transcriptional gene silencing in which double-stranded RNA 

triggers the degradation of specific transcripts [133]. Specifically, the c-myc and JHE antisense RNAs 

may have formed duplexes with sense transcripts for Myc-like proteins and JHE, and these RNA 

duplexes would have been processed into 20–23 bp duplexes. One strand of these  

short RNA duplexes would then be assembled into an RNA-induced silencing complex (RISC).  

RNAs complementary to the RISC–associated RNA would then be targeted for destabilization or 

repression of translation.  

Regardless of the actual mechanism by which antisense RNAs eliminated gene expression in  

cells infected with the antisense-c-myc and –JHE recombinant viruses, their example suggests a means 

for improving baculovirus insecticidal efficacy through the expression of hairpin-loop or double-

stranded RNAs that serve as RNAi triggers. This approach could be used to target any gene in the host 

for silencing. The gene targeted for silencing could be involved in defense response to baculovirus 

infection. In addition to genes associated with resistance to baculovirus infection that already have been 

identified [134,135], transcriptomic analyses of baculovirus-infected hosts is expected to reveal the 

genetic networks involved in response to baculovirus infection [136]. Targeting such genes could 

conceivably lower the dose of virus required to kill host larvae, or even expand the host range of the 

virus expressing the RNAi trigger, perhaps by eliminating immune responses that block transmission of 

baculovirus infection beyond the midgut [137–140]. Also, the RNAi trigger could itself be insecticidal, 

by shutting down expression of a gene required for host viability [141]. The attempts at using RNAi to 

shut down gene expression in lepidopteran larvae have had mixed results [142]. However, in a few  

 cases, feeding RNAi triggers to insects resulted in gene silencing in tissues beyond the gut sheath, 

indicating that it is possible under some circumstances for the silencing signal to be propagated to other 

tissues [143–145]. By producing an RNAi trigger directly in a cell, baculoviruses circumvent problems 

with oral delivery of RNAi triggers [146], which may make the establishment of a transmissible RNAi 

signal more efficient. With the use of an early or cellular promoter to drive expression of the RNAi 

trigger, a systemic RNAi-mediated suppression of target genes could conceivably occur even if 

baculovirus infection fails to proceed beyond the midgut.  
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5. Conclusions 

A great deal of effort was expended towards the commercial development of biopesticides utilizing 

genetically modified baculoviruses expressing insecticidal proteins. A large amount of data on efficacy, 

field performance, and safety of recombinant viruses was generated in the process, by academic, 

government, and corporate laboratories. This review has summarized the research on the various types 

of insecticidal proteins that were evaluated for improvement of baculovirus control efficacy, and the 

factors that control the expression of these proteins. 

Unfortunately, the pesticide-manufacturing companies in the USA that were involved in bringing a 

recombinant baculovirus biopesticide to market ceased their activities and did not complete the 

registration process for their recombinant viruses. The reasons behind these decisions have not been 

formally or fully explained, but likely involved the prospects of competing pest control technologies. 

With increasing restrictions on chemical pesticides and difficulties with achieving public acceptance of 

genetically modified plants in some parts of the world, naturally occurring insect pathogens such as 

baculoviruses have become more popular pest control options, and there has been more interest recently 

in commercial development of pesticides based on these pathogens. This trend hopefully will lead to a 

renewed interest in recombinant insecticidal protein-expressing baculoviruses and the exploitation of the 

discoveries summarized in this review.  
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