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Abstract: Both the presence of latently infected cells and cell-to-cell viral transmission are 

means whereby HIV can partially evade the inhibitory activities of antiretroviral drugs. 

The clinical use of a novel integrase inhibitor, dolutegravir (DTG), has established hope 

that this compound may limit HIV persistence, since no treatment-naïve patient treated 

with DTG has yet developed resistance against this drug, even though a R263K 

substitution in integrase confers low-level resistance to this drug in tissue culture. Here, we 

have studied the impact of R263K on HIV replication capacity and the ability of HIV to 

establish or be reactivated from latency and/or spread through cell-to-cell transmission. We 

affirm that DTG-resistant viruses have diminished capacity to replicate and establish 

infection. However, DTG-resistant viruses were efficiently transmitted via cell-to-cell 

contacts, and were as likely to establish and be reactivated from latent infection as wildtype 

viruses. Both cell-to-cell transmission of HIV and the establishment of and reemergence 

from latency are important for the establishment and maintenance of viral reservoirs. Since 

the DTG and other drug-resistant viruses studied here do not seem to have been impaired 

in regard to these activities, studies should be undertaken to characterize HIV reservoirs in 

patients who have been treated with DTG. 
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1. Introduction 

Highly active antiretroviral therapy (HAART) has greatly improved both the quality of life and 

treatment outcomes for individuals diagnosed with HIV. However, there is still no cure for HIV 

infection and multiple obstacles remain before serious efforts aimed at HIV eradication in patients can 

be contemplated. These obstacles include HIV drug resistance, the efficiency of cell-to-cell viral 

transmission, and the establishment of latently infected cell reservoirs (reviewed in [1–4]). The 

problem of drug resistance necessitates the development of new antiretroviral (ARV) molecules that 

might prevent further viral transmission, both within a single patient and between individuals [5]. The 

most recent class of ARVs are integrase (IN) strand transfer inhibitors (INSTIs) that block integrase 

enzymatic activity by competitive inhibition [6,7]. 

The currently available INSTIs include raltegravir (RAL), elvitegravir (EVG) and dolutegravir 

(DTG). Both RAL and EVG possess moderate genetic barriers to the development of resistance [8], 

while DTG appears to be less susceptible to the emergence of drug resistance mutations [9]. Indeed, no 

resistance against either DTG or the compounds used together with it in treatment of previously  

drug-naïve individuals has ever been reported [10]. Moreover, the use of DTG to treat patients who 

had previously failed multiple drugs but who were naïve to INSTIs resulted in treatment failure in 

relatively few individuals, only two of whom developed the R263K mutation [11]. The latter substitution 

had previously been identified by our group on the basis of tissue culture selection experiments with 

DTG and was shown to diminish integrase enzymatic activity and viral DNA integration into host cells 

while conferring low-level resistance against DTG [12]. Further studies have shown that secondary 

mutations in integrase at positions H51Y and E138K that are associated with R263K failed to restore 

viral fitness [13,14]. DTG-resistant viruses were also unable to develop additional resistance mutations 

and were impaired in their ability to develop resistance against several reverse transcriptase (RT) 

inhibitors [15]. Altogether, these observations suggest that R263K may represent an evolutionary 

dead-end that could explain the scarcity of virological failures and resistance mutations in individuals 

treated with DTG [16]. 

HIV-1 can be transmitted between cells by either cell-free transmission or through direct contact 

between cells, i.e., cell-to-cell transmission [17]. The latter, which results in the direct transmission of 

the virus from one cell to another through a virological synapse, is the primary mode of transmission 

both in vitro and in lymphoid tissues [18,19]; this allows coordinated viral assembly and viral entry, 

resulting in more efficient viral transmission between cells than occurs by cell-free transmission [20,21]. 

Infected cells are able to form polysynapses between one infected cell and multiple uninfected cells, 

which also increases the multiplicity of infection (MOI) of cell-to-cell transmission compared to  

cell-free transmission, whereby a single free virus particle can only infect one cell at a time [22–24]. 

Whether HAART is active against cell-to-cell transmission and what the relative importance is of  

this mode of transmission in the maintenance of the viral reservoir are still under debate [25–28]. 
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Studies of cell-to-cell transmission of drug resistant viruses are warranted in order to determine the 

relationship between viral transmission, viral replicative fitness, and viral pathogenesis. 

Similarly, it is important to study the latent HIV reservoir that is comprised of cells that house 

replication-competent proviruses that have been integrated into host chromosomal DNA. The fact that 

this latent population of viruses is not actively replicating means that it may be unaffected by current 

antiretroviral therapy and host immune defenses. However, appropriate stimulation causes latently 

infected cells to produce viral particles that can then infect other cells [29,30]. Both wildtype (WT) and 

drug-resistant viruses can be archived within the latent reservoir; thus, viral rebound due to either 

treatment interruption or failure can result in the production of any viral species that are present in the 

reservoir, allowing for the replication of drug-resistant viruses [31]. Since integrase inhibitors block 

strand-transfer activity, it is possible that mutations within integrase might lead to sites of preferential 

integration that could alter the potential of HIV to either establish latent infection or to achieve 

reactivation, a subject that is relevant to HIV cure research [32–36]. 

Here, we have asked whether DTG-resistance mutations might affect either the ability of HIV-1 to 

be transmitted or to establish latency. Our results show that DTG-resistant viruses can be efficiently 

spread through cell-to-cell transmission and can establish and be reactivated from latency as efficiently 

as WT virus, in spite of being impaired in regard to replication fitness. 

2. Materials and Methods 

2.1. Cell lines, Viruses, and Antiviral Compounds 

Jurkat (clone E6-1) cells were obtained through the NIH AIDS Research and Reference Reagent 

Program and were maintained in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal 

bovine serum (FBS), 1% L-glutamine, and 1% penicillin-streptomycin. pNL4-3-IRES-EGFP (expressing 

enhanced green fluorescent protein) was a kind gift from J. Munch and F. Kirchhoff [37,38]. The 

following constructs containing mutations in the integrase gene were created by site-directed mutagenesis: 

pNL4-3-IRES-EGFP-IN(R263K), pNL4-3-IRES-EGFP-IN(E138K), pNL4-3-IRES-EGFP-IN(E138K/ 

R263K). The following construct containing a mutation in the reverse transcriptase (RT) gene was 

created by site directed mutagenesis: pNL4-3-IRES-EGFP-RT(M184V), as described previously [39]. 

Primers used for the generation of pNL4-3-IRES-EGFP-IN(R263K) have been previously reported [12]. 

The following primers were used for mutagenesis: IN E138K: sense: GGCGGGGATCAAGCAGAAA 

TTTGGCATTCCCTA, antisense: TAGGGAATGCCAAATTTCTGCTTGATCCCCGCC. Replication-

competent reporter viruses were produced by transfection of ~9 × 10
6
 293T cells with 25 μg of plasmid 

DNA using Lipofectamine 2000 (Invitrogen). All transfections were carried out using Opti-MEM 

medium (Invitrogen) supplemented with 2.5% FBS. Virus-containing supernatants were harvested at 72 h 

post transfection, clarified by centrifugation for 5 min at 470× g, and passed through a 0.45-μm-pore 

filter. All viruses were then treated with 50 U/mL benzonase (Sigma) in the presence of benzonase buffer 

(50 mM Tris-HCl [pH 8.0], 1 mM MgCl2, and 0.1 mg/mL bovine serum albumin [BSA]) at 37 °C for 

20 min to digest residual plasmid DNA. Viral titers were determined by enzyme linked immunosorbtion 

assay (ELISA) for viral capsid (p24), using a Vironostika HIV-1 antigen (Ag) kit (BioMérieux). The 
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protease (PR) inhibitor darunavir (DRV) was obtained through the National Institutes of Health AIDS 

Research and Reference Reagent Program. 

2.2. Infectivity Assay in TZM-bl Cells 

Relative infectivity of the recombinant WT and mutant viruses was measured using a non-competitive 

short-term infectivity assay in TZM-bl cells as described previously [12]. Thirty-thousand cells were 

seeded into 96-well culture plates and infected for 48 h with the indicated virus. Luciferase was 

measured using a Luciferase assay system kit (Promega) and a MicroBeta2 Luminometer (Perkin 

Elmer). GraphPad Prism 5.0 software was used to assess relative viral replication capacity based on 

measurement of viral RT activity in culture media. 

2.3. Jurkat Cell Latency Model 

Populations of latently infected cells were established as described previously [38], with  

some modifications. Briefly, untreated Jurkat cells were infected through spinoculation with  

NL4-3-IRES-EGFP, NL4-3-IRES-EGFP-IN(R263K), NL4-3-IRES-EGFP-IN(E138K), NL4-3-IRES-

EGFP-IN(E138K/R263K), and NL4-3-IRES-EGFP-RT(M184V) cell-free viral particles, using 600 ng 

p24 per million cells for 2 h at 1200 g, after which cells were washed twice with PBS and cultured for 

7 days in the presence of 1 μM DRV to ensure single-round replication. After 7 days, samples were 

treated for 24 h with tumor necrosis factor α (TNF-α) (20 ng/mL) to reactivate latent viruses, before 

being fixed in 2% paraformaldehyde (PFA) for 20 min. Flow cytometry was performed using a LSR 

Fortessa cell analyzer (Becton Dickinson) and data were analyzed with FlowJo software. Live cells 

were gated by forward and side scatter properties; single cells were then gated based on forward and 

side scatter width and height and levels of EGFP were then measured. 

2.4. Cell-to-Cell Transmission Assay 

Cell-to-cell transmission assay was performed as previously described, with some modifications [40]. 

Briefly, untreated Jurkat cells were infected through spinoculation with NL4-3-IRES-EGFP, NL4-3-

IRES-EGFP-IN(R263K), NL4-3-IRES-EGFP-IN(E138K), NL4-3-IRES-EGFP-IN(E138K/R263K), 

and NL4-3-IRES-EGFP-RT(M184V) cell-free viral particles, using 600 ng p24 per million cells for 2 h 

at 1200 g, after which cells were washed twice with PBS and cultured for 72 h. After 72 h, one-quarter 

of the infected sample were fixed with 2% paraformaldehyde for 20 min, and the other three-quarters 

of the sample (donor cells) were co-cultured with uninfected Jurkat target cells stained with CellTrack 

Violet (Invitrogen) at a ratio of 2:1 infected:uninfected cells for 24 h or 72 h to measure cell-to-cell 

transmission from the infected cells to the uninfected cells. When cell-to-cell contacts were prevented 

through the use of Transwell chambers (Corning) or when culture fluids only were transferred to the 

uninfected Jurkat target cells (cell-free transmission), the infection of target cells was undetectable 

(<0.01%) using the method described below. For the 72 h co-culture only, 1 μM DRV was added at the 

beginning of co-culture to ensure single-round infection. Following co-culture, samples were fixed 

with 2% paraformaldehyde for 20 min. Flow cytometry was performed using a LSR Fortessa cell 

analyzer (Becton Dickinson) and data were analyzed with FlowJo software. Live cells were gated by 



Viruses 2014, 6 3491 

 

 

forward and side scatter properties, and single cells were then gated based on forward and side scatter 

width and height. Viruses transmitted via cell-to-cell contact were selected for by gating the CellTrack 

Violet-stained target cell population, and levels of EGFP were then measured. 

2.5. Statistical Analyses 

One-way analysis of variance (ANOVA) and Dunnett’s Multiple Comparison tests were performed 

using GraphPad Prism 5.0 software. 

3. Results 

3.1. The Drug-Resistant Viruses Tested Are Impaired in Viral Replication 

First, we quantified infectivity using a TZM-bl away and measuring levels of RT that were 

produced following infection (Table 1). The results show that the R263K substitution decreased HIV-1 

infectivity, as did the E138K and both the E138K/R263K mutations in tandem that resulted in 

significant decrease in RT activity. As a control, we also studied M184V-containing 3TC-resistant 

viruses and also showed that it results in lower RT levels, in agreement with previous studies [41]. 

Table 1. Effect of INSTI-resistance mutations on the relative HIV-1 replication capacity 

based on reverse transcriptase activity in TZM-bl cells. 

Backbone Genotype of Mutation RT Activity (% of WT) 95% Confidence Intervals 

NL4.3 WT 100 89 to 113 

 M184V (RT) 77 68 to 88 

 
E138K (IN) 46 42 to 51 

 
R263K (IN) 42 38 to 46 

 
E138K/R263K (IN) 37 34 to 40 

3.2. Drug-Resistant Viruses Are as Effective at Cell-to-Cell Transmission as WT Viruses 

Next, we examined the efficiency of HIV cell-to-cell transmission vs. cell-free transmission using 

DTG-resistant viruses that contained either the R263K, E138K or E138K/R263K mutations [12]. We 

used also a 3TC/FTC-resistant virus containing a M184V mutation in the RT gene as a control [42,43]. 

Quantitation of infectivity with an assay that measured GFP expression in donor cells showed that 

the drug-resistant viruses had moderately lower infection efficiency than WT viruses, corresponding 

the results of Table 1 (Figure 1A). Using trans-well chambers that inhibit direct cell-cell contacts, we 

have previously shown the inefficiency of cell-free viral transmission in this system [40]. We can, thus, 

conclude that any GFP detected in the target cells after co-culture is the result of cell-to-cell transmission. 

We also found that cell-to-cell transmission of the various mutated viruses that were tested was slightly 

decreased compared to WT but that the differences were insignificant after 24 h co-culture (Figure 1B,C). 

Co-culture of donor and target cells for 72 h yielded similar results (Figure 1D–F), with slightly higher 

cell-to-cell transmission rates than after 24 h, since there was more time for viral spread. The modest 

decreases in infectiousness of INSTI-resistant viruses are in agreement with the results of the 

diminished replication fitness of the INSTI-resistant viruses. 

Thibault
Texte surligné 
Please correct for "assay"
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Figure 1. Cell-to-cell transmission by WT and drug-resistant viruses. (A,D) Relative 

reporter virus GFP expression of infected donor cells prior to co-culture for 24 h or 72 h 

respectively, compared to WT. Mutant viruses were less infectious than WT. (B,E) 

Relative reporter virus GFP expression of infected target cells after co-culture for 24 h or 

72 h, respectively, compared to WT. Fewer target cells were infected with the mutant 

viruses than with WT. (C,F) Relative proportion of cells infected via cell-to-cell 

transmission by measurement of GFP expression by reporter virus after 24- or 72-h co-culture, 

respectively. No statistical differences in the rates of cell-to-cell transmission were observed 

between the different viruses. Relative expression of GFP in target cells compared to WT 

after the co-culture was assessed on the basis of relative expression of GFP in donor cells 

compared to WT prior to co-culture. Statistically significant differences between drug-resistant 

mutated viruses and WT viruses are indicated. The absence of an asterix indicates no 

statistical difference from WT. Error bars represent standard error of the mean (SEM, four 

independent experiments were performed for 24 h co-culture, two independent experiments 

were performed for 72 h co-culture. All experiments were performed in triplicate). 

3.3. Drug-Resistant Viruses Are as Able to Establish Latent Infection as WT Viruses 

To determine whether drug resistance mutations in IN might affect the establishment of and 

reactivation from latency, we used a modified version of a previously described Jurkat model [38]. As 

shown above, mutations within IN were shown to result in insignificant decreases in infectivity 

compared to WT over a period of seven days, this time using an assay that measures number of 

infected cells, based on GFP reactivity with the Nef protein (Figure 2A). After seven days of infection, 

TNF-α was used to treat the infected cells to cause viral reactivation from potential latency, as 

described in Materials and Methods. The results show that the treatment resulted in a ~50% increase in 

the number of GFP-positive cells compared to non-treatment (Figure 2B). The presence of E138K 
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mutation alone caused only slight decreases in GFP expression, both before and after TNF-α treatment, 

and the combination of E138K and R263K mutations together had no additional effect on GFP 

expression (Figure 2B). These trends in GFP expression are consistent with the data on cell-to-cell 

transmission presented above (Figure 1). 

 

 

Figure 2. Establishment of and reactivation from latency by WT and drug-resistant viruses. 

(A) Expression of GFP reporter virus in Jurkat cells cultured in the presence of DRV after 

7-days of infection. GFP expression in this experiment represents the background of 

actively replicating viruses that have not achieved latency. No statistically significant 

differences were observed between the various viruses; (B) Expression of GFP reporter 

virus in Jurkat cells grown in the presence of DRV for 7-days after infection, following 

overnight TNFα treatment to reactivate latent proviruses. DRV was used for the purpose of 

ensuring that only a single round of infection would occur. Only E138K resulted in a 

decrease in the proportion of infected cells (*); (C) Relative proportion of GFP-expressing 

reporter proviruses that became reactivated following TNFα treatment. The results show 

the relative GFP expression of reporter virus after TNFα treatment divided by relative GFP 

expression of reporter virus before TNFα treatment. No statistically significant differences 

were observed between the various viruses; (D) Comparison of TNFα-treated samples and 

untreated samples for each virus tested. No statistically significant differences were 

observed between the various viruses. Statistically significant results for drug-resistant 
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mutated viruses compared with the WT control are indicated. Error bars represent standard 

error of the mean (SEM, two independent experiments, performed in triplicate). 

Figure 2C confirms these observations on the basis of the ratios between levels of GFP expression 

between infected cells that were treated or not with TNF-α. Furthermore, Figure 2D presents a direct 

comparison of the treated vs. untreated cells in terms of GFP expression. 

Thus, the INSTI-resistant viruses seem to be as capable of establishing latent infection as WT 

viruses. Any differences in viral expression before or after TNF-α treatment may simply be due to 

differences in relative viral fitness and infectiousness of the viruses tested. 

3.4. Viral Reactivation Determined by Flow Cytometry 

The results of representative studies in which viruses were reactivated from latency by treatment 

with TNF-α are shown in Figure 3. The percentage of cells that have expressed reactivated virus, based 

on GFP expression, is shown within the gate for each of the viruses that were studied. In each case, the 

percentage of cells expressing GFP is approximately 50% higher than for untreated cells. 

 

 

Figure 3. Reactivation of latently infected Jurkat cells. Jurkat cells that were either 

infected or uninfected with WT or INSTI-resistant viruses were cultured for 7 days in 1 μM 

DRV to inhibit new infections before reactivation with 20 ng/mL TNF-α. Representative 
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results are shown here. As shown in Figure 2, there were no statistical differences between 

the mutants and WT viruses. Gating strategy is shown, and the percent of reactivated virus 

is denoted within the gate. SSC-A, side scatter area. GFP represents activated virus. 

4. Discussion 

We have hypothesized that the R263K mutation in HIV integrase may contribute to the prevention 

of virological failure in patients who are treated with DTG in combination with other ARVs [16]. 

Since cell-to-cell transmission and the establishment of latency reservoirs are two major obstacles to 

HIV eradication, we measured how DTG-resistance might impact these two activities. Here, we have 

confirmed the decrease in fitness of DTG-resistant viruses by demonstrating reduced infection 

efficiencies, as measured in both TZM-bl cells (Table 1) and by the percent of GFP-expressing cells 

(Figure 1). 

We noted that the mutated viruses, in general, shared the same capacity for cell-to-cell transmission 

as WT viruses (Figure 1B,E). We hypothesize that drug-resistance mutations have little effect on either 

cell-free transmission or transmission via virological synapses. Cell-to-cell transmission is highly 

efficient [18,44]; if a mutation were to lead to increased facility of transmission, this could result in 

increased challenges for treatment. Although this does not seem to happen, it is also significant that 

viruses that are resistant to RT and protease inhibitors can spread between cells as efficiently as WT 

viruses [25,28]. Ours is the first study to demonstrate this in integrase-resistant viruses. 

Similar results were obtained in regard to the establishment of and reactivation from latency. After 

seven days of infection, low-level background expression of virus remained, as determined by GFP 

fluorescence and flow cytometry, probably due to residual active infection (Figures 2A and 3). When 

these basal active infections are taken into account, all viruses, including drug-resistant mutants and 

WT, showed an approximate 50% increase in virus expression following TNF-α treatment (Figure 2C). 

This demonstrates that the ability of virus to establish latency depends on both fitness and infectiousness 

and that all the viruses tested possessed similar ability to establish and be reactivated from latency. 

This conclusion is supported by the fact that M184V-containing virus for which viral replication 

capacity is also diminished compared to WT also sustained similar levels of cell-to-cell transmission as 

well as establishment of and reactivation from latency. 

At present, researchers are developing ways to reactivate expression of latent virus in order to purge 

HIV reservoirs [35,36]. As shown here and elsewhere, both WT and drug resistant viruses can 

establish latency, and reactivation will doubtless result in infection of both uninfected and previously 

infected cells, leading to possible recombination in the latter situation [31]. We have previously 

reported that cells can be reactivated by superinfection and that recombination can result in the 

emergence of multi-drug resistant variants, if both the latent and superinfecting viruses contain drug 

resistance mutations [45]. 

The findings presented here show that DTG-resistant viruses are not impaired in their ability  

to participate in cell-to-cell transmission or to establish and/or reemerge from latency, despite the  

fact that the mutated viruses that we studied were diminished in replication capacity. Although  

cell-to-cell transmission and the establishment of latency and reactivation from it are not impaired in 

DTG-resistant viruses, it will still be important to investigate whether DTG-treatment and/or drug 
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resistance impacts on the size and quality of viral reservoirs, including those in patients who are 

successfully treated with DTG or who may ultimately develop resistance against this drug. 
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