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Abstract: The recent discovery of genetically distinct hantaviruses in multiple species of 

shrews and moles prompted a further exploration of their host diversification by analyzing 

frozen, ethanol-fixed and RNAlater
®

-preserved archival tissues and fecal samples  

from 533 bats (representing seven families, 28 genera and 53 species in the order 

Chiroptera), captured in Asia, Africa and the Americas in 1981–2012, using RT-PCR. 

Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family 

Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles 

(Neoromicia nanus) (family Vespertilionidae), captured in Côte d’Ivoire in 2011. 

Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences 

using maximum likelihood and Bayesian methods, demonstrated that the newfound 

hantaviruses formed highly divergent lineages, comprising other recently recognized bat-

borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses 

opens a new era in hantavirology and provides insights into their evolutionary origins.  

Keywords: hantavirus; Chiroptera; evolution  

 

1. Introduction 

Hantaviruses (genus Hantavirus, family Bunyaviridae) possess a negative-sense, single-stranded, 

tripartite segmented RNA genome, consisting of large (L), medium (M) and small (S) segments, 

encoding an RNA-dependent RNA polymerase (RdRp), envelope glycoproteins (Gn and Gc) and a 

nucleocapsid (N) protein, respectively [1]. To date, 23 hantaviruses, hosted by reservoir rodent species, 

have been recognized as distinct species by the International Committee on Taxonomy of Viruses [2]. 

Several of these rodent-borne hantaviruses cause acute, febrile diseases of varying clinical severity and 

lethality in humans, known as hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary 

syndrome [3]. Though once believed to be restricted to rodents (order Rodentia, family Muridae and 

Cricetidae), the reservoir host range of hantaviruses is far more expansive, as evidenced by the detection 

of divergent lineages of hantaviruses in multiple species of shrews and moles (order Soricomorpha, 

family Soricidae and Talpidae) throughout Asia, Europe, Africa and North America [4–19].  

Despite their phylogenetic relatedness to the European mole (Talpa europaea) within the 

Laurasiatheria [20,21], as well as their rich genetic diversity, vast geographic range and ability to host 

many disease-causing viruses [22–24], bats (order Chiroptera) have not been extensively studied as 

potential reservoirs of hantaviruses. Although serological evidence of hantavirus infection was 

reported in the common serotine (Eptesicus serotinus) and greater horseshoe bat (Rhinolophus 

ferrumequinum) captured in Korea [25], genetic analysis of hantavirus isolates from these bat species 

suggested laboratory contamination [26]. 

The genetic diversity of newfound hantaviruses recently detected in insectivorous bats preclude any 

possibility of contamination: Mouyassué virus (MOYV) in the banana pipistrelle (Neoromicia nanus) 

from Côte d’Ivoire [27]; Magboi virus (MGBV) in the hairy slit-faced bat (Nycteris hispida) from 
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Sierra Leone [28]; Xuan Son virus (XSV) in the Pomona roundleaf bat (Hipposideros pomona) from 

Vietnam [29]; Huangpi virus (HUPV) in the Japanese house bat (Pipistrellus abramus) and Longquan 

virus (LQUV) in the Chinese horseshoe bat (Rhinolophus sinicus), Formosan lesser horseshoe bat 

(Rhinolophus monoceros) and intermediate horseshoe bat (Rhinolophus affinis) from China [30]. The 

primary goal of this multi-national collaborative study was to extend the search for hantaviruses in bats 

and to obtain more of the MOYV and XSV genomes. Our data indicate that bat-borne hantaviruses and 

Nova virus, a hantavirus hosted by the European mole, comprise a highly divergent phylogenetic 

lineage, suggesting that ancestral bats and/or soricomorphs, rather than rodents, may have served as the 

early reservoir hosts of primordial hantaviruses. 

2. Results and Discussion 

2.1. Hantavirus Detection and Sequence Analysis  

Exhaustive attempts to detect hantaviruses were unsuccessful in nearly all of the 454 bat tissue 

samples (Table 1 and Figure 1), despite employing oligonucleotide primers and PCR cycling 

conditions used to find MOYV [27] and XSV [29]. In addition, hantavirus RNA was not detected in 

any of the 79 rectal swab and fecal samples. Because LQUV was previously found in four species of 

horseshoe bats in China [30], we expected to find the same or a similar hantavirus in the greater 

horseshoe bat, captured on Jeju Island in Korea. However, this was not the case, in spite of using LQUV-

specific primers. Nevertheless, we did manage to obtain more of the MOYV and XSV genomes. That 

is, the original report of MOYV in the banana pipistrelle (Figure 2A,B) was based on a 423-nucleotide 

region of the L segment [27]. Through repeated trial-and-error efforts, suitable primers were designed 

to obtain an additional 1268 nucleotides of the L segment (Table 2).  

In addition, Arai and colleagues previously reported a novel hantavirus, designated XSV, in one of 

five Pomona roundleaf bats, captured during July 2012 in Xuan Son National Park in Phu Tho 

province in northern Vietnam [29]. In analyzing archival kidney tissues from 44 Pomona roundleaf 

bats trapped in Tuyên Quang and Quang Nam provinces, hantavirus L-segment sequences were detected 

in five animals (Figure 2C,D). Although a 15.7%–19.2% difference was found at the nucleotide level with 

prototype XSV, the high amino acid sequence similarity was consistent with these sequences representing 

genetic variants of XSV. Pair-wise alignment and comparison of the full-length S segment of XSV, 

amplified and sequenced from four bats (Table 2), indicated sequence similarity of 58.9%–60.3% at the 

amino acid level with LQUV, the only other bat-borne hantavirus for which the entire S segment has 

been sequenced. And sequence analysis of a 663-nucleotide (221 amino acid) region of the Gc envelope 

glycoprotein-encoding M segment showed that XSV differed by >45% from representative 

hantaviruses harbored by rodents and most soricomorphs. Collectively, the high level of sequence 

divergence in the N protein and Gc glycoprotein between XSV and other hantaviruses suggests that it 

might represent a new hantavirus species, using the guidelines proposed by Maes and co-workers [31]. 

However, the definitive taxonomic classification of XSV and other bat-borne hantaviruses must await 

their isolation in cell culture. 
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Table 1. Specimen types analyzed for hantavirus RNA. 

Bat Family 
Frozen RNAlater® Ethanol-fixed 

Total 
Lung Liver Kidney Lung Intercostal Muscle Intestine Rectal Swab or Feces Liver 

Hipposideridae   50 7     57 

Molossidae 1   35   6  42 

Nycteridae    1 1    2 

Pteropodidae    42 18    60 

Phyllostomidae 2        2 

Rhinolophidae 150   12     162 

Vespertilionidae 11 17 1 49  45 73 12 208 

Total 164 17 51 146 19 45 79 12 533 

Table 2. Xuan Son virus and Mouyassué virus in insectivorous bats. 

Virus Strain Bat Species Country Province S M L 

XSV 

VN1982 

Hipposideros pomona Vietnam 

Phu Tho 
499 bp 

 
4582 bp 

KC688335 JX912953 

F42640 Tuyên Quang 
516 bp 

 
567 bp 

KF704708 KF704713 

F42682  
1752 bp 663 bp 1160 bp 

KF704709 KJ000538 KF704714 

F44580 Quang Nam 
1728 bp 

 
804 bp 

KF704710 KF704715 

F44583  
1728 bp 

 
1160 bp 

KF704711 KF704716 

F44601  
1728 bp 663 bp 1160 bp 

KF704712 KJ000539 KF704717 

MOYV 

KB576 

Neoromicia nanus Côte d'Ivoire 

Mouyassué   
1691 bp 

JQ287716 

KB577    
372 bp 

KJ000540 
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Figure 1. Geographic origin of 533 specimens from bats, belonging to seven families, were 

analyzed for hantavirus RNA, using RT-PCR. The number of samples and genera and 

species of bats are shown for each country. 

 

Figure 2. (A) Banana pipistrelle (Neoromicia nanus); (B) Map of Cote d’Ivoire, showing 

site where Mouyassué virus-infected banana pipistrelles were captured during June 2011; 

inset shows geographic distribution of banana pipistrelle; (C) Pomona roundleaf bat 

(Hipposideros pomona); (D) Map of Vietnam, showing Phu Tho, where Xuan Son virus 

(XSV) was first discovered, and Tuyên Quang and Quang Nam, where Pomona roundleaf 

bats were captured in May 1997 and March 1999, respectively; (E) Comparison of the 

consensus secondary structures of the nucleocapsid protein of XSV, Longquan virus (LQUV), 

Nova virus (NVAV), Thottapalayam virus (TPMV), Imjin virus (MJNV), Hantaan virus 

(HTNV), Dobrava virus (DOBV), Seoul virus (SEOV), Puumala virus (PUUV), Sin 

Nombre virus (SNV) and Andes virus (ANDV), as predicted using methods available on 

the NPS@ structure server [32]. Alpha helices are represented by blue bars, beta strands by 

red bars, and random coils and unclassified structures by magenta and gray bars, respectively.  
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Figure 2. Cont. 

 

2.2. Nucleocapsid Secondary Structure 

In employing software available on the @NPS structure server [32], the overall predicted secondary 

structures of the N proteins were similar. That is, despite the relatively low amino acid sequence 

similarity among the rodent-, shrew-, mole- and bat-borne hantaviruses, the N protein comprised two 

major α-helical domains packed against a central β-pleated sheet (Figure 2E). However, the central  

β-pleated sheet motif of XSV, including the RNA-binding region (amino acid positions 175 to 217), 

was unlike that of other hantaviruses, even that of LQUV, which more closely resembled murid 

rodent-borne hantaviruses, such as Hantaan virus (HTNV 76-118), Dobrava virus (DOBV Greece) and 

Seoul virus (SEOV 80-39) (Figure 2E). The distinctive α-helix motif between two β-strands of the 
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RNA-binding region, observed in the prototype mole-borne hantavirus, Nova virus (NVAV MSB95703), 

as well as HTNV and SEOV, but not in LQUV, may have a significant effect on binding specificity. 

2.3. Phylogenetic Analysis  

Phylogenetic analyses, based on S-, M- and L-genomic sequences, indicated that XSV and MOYV 

shared a common ancestry with other bat-borne hantaviruses (Figure 3). In all analyses, NVAV from 

the European mole segregated with the bat-associated hantaviruses, which was reminiscent of trees 

based on the complete mitochondrial genomes of the European mole and bats [20,21]. The basal 

position of chiropteran-borne hantaviruses and selected soricomorph-borne hantaviruses, such as Nova 

virus in the European mole, Thottapalayam virus in the Asian house shrew and Imjin virus in the 

Ussuri white-toothed shrew, in phylogenetic trees based on the S- and L-genomic sequences suggests 

that soricomorphs and/or chiropterans, rather than rodents, may have been the primordial mammalian 

hosts of ancestral hantaviruses (Figure 3). Geographic-specific clustering was evidenced by the close 

phylogenetic relationship between prototype XSV VN1982 from Phu Tho province and XSV F42640 

and XSV F42682 from neighboring Tuyên Quang province in northern Vietnam. On the other hand, 

XSV F44583, XSV 44601 and XSV 44580 from Quang Nam province in central Vietnam clustered 

together. Although limited differences were present in phylogenetic trees based on each segment, tree 

topologies were generally congruent and supported by significant bootstrap values (>70%) and 

posterior node probabilities (>0.70).  

Figure 3. Phylogenetic trees were generated by maximum-likelihood and  

Bayesian methods, using the GTR+I+Γ model of evolution, based on the S-, M- and  

L-genomic sequences of hantavirus strains. Because tree topologies were nearly identical 

using RAxML and MrBayes programs, the trees generated by MrBayes were displayed. 

The evolutionary relationships between Xuan Son virus (XSV), Mouyassué virus (MOYV) 

and other bat-borne hantaviruses, including Magboi virus (MGBV), Longquan virus (LQUV) 

and Huangpi virus (HUPV), are shown, as are representative soricomorph-borne hantaviruses, 

including Nova virus (NVAV MSB95703, S: FJ539168; M: HQ840957; L: FJ593498), 

Thottapalayam virus (TPMV VRC66412, S: AY526097; M: EU001329; L: EU001330), 

Imjin virus (MJNV Cl05-11, S: EF641804; M: EF641798; L: EF641806), Seewis virus 

(SWSV mp70, S: EF636024; M: EF636025; L: EF636026), Kenkeme virus (KKMV 

MSB148794, S: GQ306148, M: GQ306149; L: GQ306150), Lianghe virus (LHEV As217, 

M: JX465406), Boginia virus (BOGV 2074, M: JX990966), Cao Bang virus (CBNV CBN-3, 

S: EF543524; M: EF543526; L: EF543525), Ash River virus (ARRV MSB 73418, S: 

EF650086; L: EF619961), Jemez Springs virus (JMSV MSB144475, S: FJ593499; M: 

FJ593500; L: FJ593501), Qian Hu Shan virus (QHSV YN05-284, S: GU566023; M: 

GU566022; L: GU566021), Tanganya virus (TGNV Tan826, S: EF050455; L: EF050454), 

Azagny virus (AZGV KBM15, S: JF276226; M: JF276227; L: JF276228), Jeju virus 

(JJUV 10-11, S: HQ834695; M: HQ834696; L: HQ834697), Bowé virus (BOWV VN1512, 

M: KC631783; L: KC631784), Asama virus (ASAV N10, S: EU929072; M: EU929075; L: 

EU929078), Oxbow virus (OXBV Ng1453, S: FJ5339166; M: FJ539167; L: FJ593497) 
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and Rockport virus (RKPV MSB57412, S: HM015223; M: HM015219; L: HM015221). 

Also shown are the phylogenetic positions of representative rodent-borne hantaviruses, 

including Hantaan virus (HTNV 76-118, S: NC_005218; M: Y00386; L: NC_005222), 

Soochong virus (SOOV SOO-1, S: AY675349; M: AY675353; L: DQ056292), Dobrava 

virus (DOBV Greece, S: NC_005233; M: NC_005234L: NC_005235), Seoul virus (SEOV 

80-39, S: NC_005236; M: NC_005237; L: NC_005238), Sangassou virus (SANG SA14, S: 

JQ082300; M: JQ082301; L: JQ082302),Tula virus (TULV M5302v, S: NC_005227; M: 

NC_005228; L: NC_005226), Puumala virus (PUUV Sotkamo, S: NC_005224; M: 

NC_005223; L: NC_005225), Prospect Hill virus (PHV PH-1, S: Z49098; M: X55129; L: 

EF646763), Sin Nombre virus (SNV NMH10, S: NC_005216; M: NC_005215; L: 

NC_005217) and Andes virus (ANDV Chile9717869, S: NC_003466; M: NC_003467; L: 

NC_003468). The numbers at each node are posterior node probabilities (left) based on 

150,000 trees and bootstrap values (right) based 1000 replicates executed on the RAxML 

BlackBox web server, respectively. The scale bars indicate nucleotide substitutions  

per site. 

 

2.4. Bats as Hosts of Hantaviruses 

The phylogeny of bats is not fully resolved [21]. The order Chiroptera was traditionally divided in 

two suborders, Megachiroptera and Microchiroptera. However, due to the paraphyly of the 

Microchiroptera, a new taxonomic nomenclature, comprising the suborder Yinpterochiroptera 

(megabats or fruit bats in the Pteropodidae family in Megachiroptera and a few Microchiroptera 

families) and Yangochiroptera (the remaining Microchiroptera families), has been proposed [33]. In 

the former classification, bat species hosting hantaviruses belong only to the Microchiroptera suborder, 
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but in the Yinpterochiroptera-Yangochiroptera classification, they belong to both suborders, 

suggesting that primordial hantaviruses may have emerged in an early common ancestor of bats.  

Within the Microchiroptera, hantaviruses are found in bats belonging to four phylogenetically 

distant families, namely Hipposideridae (Old World leaf-nosed bats) and Rhinolophidae (horseshoe 

bats) in the suborder Yinpterochiroptera, and Nycteridae (hollow-faced bats) and Vespertilionidae 

(vesper bats) in the suborder Yangochiroptera. The families Hipposideridae and Vespertilionidae are 

among the most speciose insectivorous bats, with member species distributed across Africa, Europe, 

Asia, the Americas and Australia. Their vast geographic distribution provides unlimited opportunities 

to search for related bat-associated hantaviruses. 

Compared to the multitude of hantaviruses reported from approximately 50% of soricomorph 

species tested [34,35], the cumulative number of newly recognized bat-borne hantaviruses is exceedingly 

low, if one considers the 533 bat samples tested in the present study, along with the nearly 1200 bat 

specimens analyzed in four other studies [27–30]. The modest proportion of hantavirus RNA detection 

in bat tissues may be attributed to the highly divergent nature of their genomes, as well as the very 

focal or localized nature of hantavirus infection, small sample sizes of bat species, primer mismatches, 

suboptimal PCR cycling conditions, and variable tissue preservation with degraded RNA [27,29]. 

Alternatively, bats may be less susceptible to hantavirus infection or may have developed immune 

mechanisms to curtail viral replication and/or persistence. For answers to such questions, and myriad 

others, reagents need to be developed and multidisciplinary collaborative studies must be designed to 

collect optimal specimens to isolate and characterize these newfound bat-borne hantaviruses. Only 

then will a better understanding be gained about their evolutionary origins and phylogeography,  

co-evolution history, transmission dynamics and pathogenic potential. 

3. Experimental Section  

3.1. Samples  

Archival frozen, ethanol-fixed and RNAlater
®
-preserved tissues from bats, captured during 1981–2012 

in Brazil, China, Cote d’Ivoire, Guinea, Korea, Republic of Georgia, Vietnam and the United States 

(Figure 1 and Table 1), were tested for hantavirus RNA by RT-PCR, using newly designed and 

previously employed oligonucleotide primers [12,18,27,29]. Of the 533 samples tested, the majority 

consisted of lung (310) and kidney (51) tissues (Table 1). RNA extracted from rectal swabs and feces 

(79) were also tested. Bats were from seven families (Hipposideridae, Molossidae, Nycteridae, 

Pteropodidae, Phyllostomidae, Rhinolophidae and Vespertilionidae), 28 genera and 53 species  

(Figure 1). The University of Hawaii Institutional Animal Care and Use Committee approved the use 

of archival tissues as being exempt from protocol review. 

3.2. Genome Detection and Sequencing  

Total RNA extraction from tissues, using the PureLink Micro-to-Midi total RNA purification kit 

(Invitrogen, San Diego, CA, USA), and cDNA synthesis, using the SuperScript III First-Strand Synthesis 

Systems (Invitrogen) with random hexamers, were performed as described previously [9,12,18]. 

Oligonucleotide primers used to amplify S-, M- and L-genomic segments of bat-borne hantaviruses are 
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listed on Table 3. First- and second-round PCR were performed in 20-μL reaction mixtures, containing 

250 μMdNTP, 2.5 mM MgCl2, 1 U of Takara LA Taq polymerase (Takara, Shiga, Japan) and 0.25 μM 

of each primer [16]. Initial denaturation at 94 °C for 2 min was followed by two cycles each of 

denaturation at 94 °C for 30 s, two-degree step-down annealing from 46 °C to 38 °C  

for 40 s, and elongation at 72 °C for 1 min, then 30 cycles of denaturation at 94 °C for 30 s, annealing 

at 42 °C for 40 s, and elongation at 72 °C for 1 min, in a GeneAmp PCR 9700 thermal cycler  

(Perkin-Elmer, Waltham, MA, USA) [6,9,11,12,16]. PCR products, separated using MobiSpin S-400 

spin columns (MoBiTec, Goettingen, Germany), were sequenced directly using an ABI Prism 3130 

Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) [9,16].  

Table 3. Oligonucleotide primers used to amplify Xuan Son virus and Mouyassue virus 

from insectivorous bat tissues. 

Primer Sequence (5’-3’) Segment Polarity 

Han-5’end-EcoRI CTC GAA TTC TAG TAG TAG AC S + 

Shrew-S777R AAN CCD ATN ACN CCC AT S - 

Shrew-S764R CCA TNA CWG GRC TNA TCA S - 

XSV-S627F AGA AGA ATT GAC ACC TGG GCG AT S + 

XSV-S1040F CAT TCT TTT CAC TGT TGC AGG A S + 

XSV-S1235R GTT CTT CTG AGA TAT GAC TGA TA S - 

Bat-3’endR TAG TAG TAK RCT CCC T S - 

G2F1 TGG GCT GCA AGT GC M + 

Han-M2957R GAR CCC CAN GCN CCN TCW AT M - 

Han-M2631R CAT NAY RTC NCC RGG RTC NCC M - 

Han-L1880F CAR AAR ATG AAR NTN TGT GC L + 

Bat-L1929F ATG AAR NTN TGT GCA YTG TTT GA L + 

Han-L2520F ATN WGH YTD AAR GGN ATG TCN GG L + 

Bat-L2810F GAR GAY TAY TAT GAT G L + 

Han-L3000R GCN GAR TTR TCN CCN GGN GAC CA L - 

Han-L2970R CCN GGN GAC CAY TTN GTD GCA TC L - 

MOYV-L2683R GCT GGA TAA CAG TCG GGT TTA ATC L - 

MOYV-L2612R TAA GTG CCC ATC TTC TTG TA L - 

Bat-L3442R ACC ART CWG AMC CAT CAT C L - 

Bat-L3613R GTA GAG AGA AAC TCT GCA TTT GT L - 

3.3. Phylogenetic Analysis 

Maximum likelihood and Bayesian methods, implemented in RAxML Blackbox webserver [36] 

and MrBayes 3.1 [37], under the best-fit GTR+I+Γ model of evolution [38] and jModelTest version 0.1 

[39], were used to generate phylogenetic trees. Two replicate Bayesian Metropolis–Hastings Markov 

Chain Monte Carlo runs, each consisting of six chains of 10 million generations sampled every 100 

generations with a burn-in of 25,000 (25%), resulted in 150,000 trees overall. The S, M and L 

segments were treated separately in phylogenetic analyses. Topologies were evaluated by bootstrap 

analysis of 1000 iterations, and posterior node probabilities were based on 2 million generations and 

estimated sample sizes over 100 (implemented in MrBayes) [18].  
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4. Conclusions 

Mammalian reservoirs of zoonotic viruses typically do not display host restrictions within a given 

taxonomic order. Also, infection is usually chronic, persistent and subclinical. For example, rodents of 

multiple genera and species, belonging to four subfamilies in the order Rodentia, serve as reservoirs of 

hantaviruses in Eurasia, Africa and the Americas and do not exhibit clinical disease or survival 

disadvantage. In addition, recently, hantaviruses exhibiting far greater genetic diversity have been 

detected in healthy-appearing shrews and moles representing many genera in six subfamilies within the 

order Soricomorpha in Eurasia, Africa and North America. Similarly, as mentioned earlier, bat species 

belonging to both suborders of Chiroptera host hantaviruses without evidence of apparent disease. 

However, some might contend that the low prevalence of hantavirus RNA in a few bat species, and the 

absence of hantavirus infection in the majority of bat species analyzed to date, would argue against a 

long-standing hantavirus-reservoir host relationship, and instead support spillover or host switching. 

That is, the gleaning feeding behavior of some bats, such as Nycteris, presents the possibility of 

acquired infection from excreta of well-established terrestrial reservoirs of hantaviruses. However, this 

seems highly improbable because bat-borne hantaviruses are among the most genetically diverse 

described to date.  

With the discovery of divergent hantavirus lineages in three taxonomic orders of placental 

mammals, there is renewed interest in investigating their genetic diversity, geographic distributions, 

and evolutionary dynamics [34,35]. Newfound knowledge that insectivorous bats harbor a distinctly 

divergent lineage of hantaviruses emphasizes the truly complex evolutionary origins and phylogeography 

of a group of viruses once thought to be restricted to rodents. At this point, it would not be surprising if 

hantaviruses are found in small mammals belonging to other taxonomic orders, such as Erinaceomorpha 

(hedgehogs) and even Afrosoricida (tenrecs). Such anticipated discoveries may provide additional 

insights into the dynamics of hantavirus transmission, potential reassortment of genomes, and 

molecular determinants of hantavirus pathogenicity. As importantly, a sizable expansion of the 

hantavirus sequence database would provide valuable tools for refining diagnostic tests and enhancing 

preparedness for future outbreaks caused by emerging hantaviruses. 
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