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Abstract: Andes virus (ANDV) is highly pathogenic in humans and is the primary 

etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in South America.  

Case-fatality rates are as high as 50% and there are no approved vaccines or specific 

therapies for infection. Our laboratory has recently developed a replication-competent 

recombinant vesicular stomatitis virus (VSV)-based vaccine that expressed the glycoproteins 

of Andes virus in place of the native VSV glycoprotein (G). This vaccine is highly 

efficacious in the Syrian hamster model of HCPS when given 28 days before challenge 

with ANDV, or when given around the time of challenge (peri-exposure), and even 

protects when administered post-exposure. Herein, we sought to test the durability of the 

immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was 

efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination  

(p = 0.025), but animals were not significantly protected following 1 year of vaccination  

(p = 0.090). The decrease in protection correlated with a reduction of measurable 

neutralizing antibody responses, and suggests that a more robust vaccination schedule 

might be required to provide long-term immunity. 
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1. Introduction 

Andes virus (ANDV) is a New World hantavirus (family: Bunyaviridae, genus: Hantavirus) and is 

the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in South America,  

with case fatality rates of 30%–50%. ANDV is a zoonotic virus hosted by the long-tailed pigmy  

rice rat (Oligoryzomys longicaudatus) and upon transmission to humans, can cause HCPS [1,2].  

Human-to-human transmission has also been documented [3–5]. Currently, there is no approved 

vaccine or specific treatment for hantaviruses that cause HCPS, and medical intervention is largely 

supportive. To date, the only animal model that recapitulates human disease caused by ANDV is the 

Syrian hamster [6,7]. Our laboratory has recently reported that a recombinant replication-competent 

recombinant vesicular stomatitis virus (VSV)-based vaccine, engineered to express the glycoprotein 

complex (GPC) of ANDV in place of the VSV glycoprotein (G), provides complete protection from 

disease in hamsters [8]. Hamsters were sterilely protected one month after a single dose of the vaccine 

upon challenge with a consistently lethal dose of ANDV. This vaccine was also efficacious  

post-exposure, with 90% of hamsters protected when the vaccine was administered one day after 

inoculation with ANDV. 

The mechanism(s) by which this vaccine offers protection is not entirely known, and might differ 

depending on the time of challenge, as post-exposure protection is unlikely to rely on the generation  

of neutralizing antibodies, as the VSV-vector expressing an irrelevant glycoprotein also afforded  

peri-exposure protection against ANDV challenge [8]. Nonetheless, the VSV-based vaccine platform 

is known to elicit a strong humoral immune response [9]. In the VSV-ANDV system, neutralizing 

antibodies directed against the GPC are likely important for prophylactic vaccination. Herein,  

we sought to test the kinetics of the neutralizing response elicited by this vaccine and to test the 

duration of immunity following a single-dose vaccination to lethal disease caused by ANDV in the 

hamster model. 

2. Results and Discussion 

Hamsters vaccinated with VSV∆G-ANDV-GPC showed a statistically significant increase  

(p = 0.025) in survival when challenged with a lethal dose of ANDV 6 months after vaccination, with 5 

of 6 of the vaccinated hamsters surviving challenge, whereas a single animal of the 6 unvaccinated 

hamsters survived ANDV challenge (Figure 1A). Conversely, at 12 months after vaccination, the 

VSV∆G-ANDV-GPC-vaccinated group was not significantly protected (p = 0.090) compared to the 

control group, although the vaccine afforded some level of protection (Figure 1B). At this point, only a 

single vaccinated hamster developed signs of disease and was euthanized, 2 of the 6 control hamsters 

survived inoculation, rendering the result at this time point insignificant. It is notable that a single 

mock vaccinated animal survived at 6 months post-vaccination, and two survived at the 12-month  

time point. Our laboratory has extensive experience using the Syrian hamster model of HCPS,  

and experiments are typically, if not always, completed by the time the animals reach 2–3 months of 

age. We have rarely, if ever, observed a control animal survive this dose and route of ANDV 

inoculation in control animals, and thus far, all experiments have been performed using the same stock 

of virus preparation that we used in this study [7,10]. This suggests that age, likely influencing immune 
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status, might play a role in natural protection from disease. Other studies using older hamsters have 

resulted in more variability in lethality, supporting that older hamsters might be more immune to 

disease, although this needs to be addressed experimentally and it is difficult to compare studies using 

different routes of infection, stocks of viruses, and sources of animals [11,12]. A limitation of our 

study is the relatively small group sizes, which makes it difficult to resolve differences between the 

potential survival of aged control animals, and discriminating this from the durability of the vaccine. 

Repeating this study, using larger group sizes as well as additional time points would both lend insight 

into age-related affects of survival and long-term efficacy of the vaccine. 

Figure 1. A single dose of a vesicular stomatitis virus (VSV)-based Andes virus (ANDV) 

vaccine affords significant protection from ANDV disease at 6 months, but not 12 months 

post-vaccination. Groups of 12 animals were either mock-vaccinated or vaccinated with 

105 PFU of VSV∆G-ANDV-GPC i.m., and six animals per group were challenged with 

200 focus forming units (FFU) of ANDV i.n. 6 months (A) or 12 months (B) after 

vaccination. Animals were monitored for clinical signs of disease and survival for 42 days. 

Survival was statistically evaluated using a log-rank (Mantel-Cox) test with significance 

set at 0.050. 

 

To examine the kinetics of the immune response to vaccination over the course of this study,  

we obtained serum from animals at 1, 2, 6 and 12 months (for the animals remaining after the 6 month 

challenge experiment) post-vaccination. These sera were tested for their neutralizing activity by 

performing a FRNT80 assay, along with the sera from the unvaccinated animals. None of the  

mock-vaccinated animals developed measurable neutralizing antibodies (data not shown). All 

vaccinated animals achieved a titer of at least 320 by 1 month, and three of the 12 animals achieved 

titers of 640 (Figure 2). In all but two cases, neutralizing titers dropped by 6 months of vaccination, 

and for a single animal, which developed disease when challenged at 12 months post-vaccination, the 

titer dropped below 40 (animal #14) (the minimum dilution used for this assay). The hamster that 

developed disease at 6 months post-vaccination had a neutralizing titer of 80 (animal #1). Two other 

hamsters in this group also had titers of 80, but did not develop disease, whereas the other three 

animals had titers of at least 160. For the surviving hamsters that were challenged at 12 months, two 

had titers of 40 and three had titers of 80. Although all had titers of 80 or less, the observation that they 

were protected, when the non-protected animal at 6 months had a titer of 80, suggests that the greater 
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age of the animals could contribute to protection. This correlates with the observed increase in survival 

of the non-vaccinated control animals in the 12-month group, where two survived at this time point, 

and only one survived at 6 months.  

Figure 2. Neutralizing antibodies to ANDV are induced upon vaccination with VSV∆G-

ANDV-glycoprotein complex (GPC). Sera were collected from animals at the time points 

indicated on the z-axis and used for an ANDV focus reduction neutralization test 80% 

(FRNT80) as described in the Experimental Section. (A) Animals 1–6 were challenged 6 

months after vaccination and (B) animals 13–18 were challenged with ANDV 12 months 

post-vaccination and are indicated on the x-axis. Animals 1 and 14 developed disease upon 

ANDV challenge and were euthanized. 

 

In a previous study, we observed that a single dose of this vaccine provided sterile immunity in 

most hamsters when challenged 28 days after vaccination [8]. To test whether the surviving animals in 

this study were sterilely protected from ANDV at 6 and 12 months post-vaccination, we performed  

an ELISA to detect anti-ANDV-N antibodies (Table 1). All animals that survived challenge, mock 

vaccinated or vaccinated, developed ANDV-N antibodies, suggesting that sterile immunity was not 

achieved. This difference could be attributed to the longer time period between vaccination and 

challenge in this study, and is likely related to our observed decrease in neutralizing antibody titers. 

We used different routes of inoculation herein, making it difficult to directly compare this study with 

our previous study. We chose to inoculate hamsters intranasally (with the same infectious dose of  

virus used previously) to more closely mimic human exposure or transmission, as opposed to the 

intraperitoneal route, which was previously reported. Mucosal immunity might be more difficult to 

achieve and confer sterile immunity, which might allow the virus to infect cells of the respiratory tract 

before being neutralized by the humoral immune response elicited by the vaccine. 

Vaccination with VSV-based vaccine vectors has provided potent long-term protection in other 

systems. Mice vaccinated with VSV expressing the spike protein (S) of severe acute respiratory 

syndrome virus were protected from lethal challenge 4 months later, following a single dose 

administration [13]. VSV expressing the HA of influenza virus were protective up to a year after 

vaccination, although these mice were given a boost of a heterologous VSV-based vaccine prior to 

challenge [14]. Differences in the platform and animal species used might account for differences in 

the immune response to this vaccine in the hamster. 
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Table 1. Anti-ANDV N ELISA titers in hamsters that survived i.n. challenge with 200 FFU 

of ANDV. 

Challenge 6 months post-vaccination Challenge 12 months post-vaccination 

Animal Vaccine Titer Animal Vaccine Titer 

1 VSV∆G-ANDV-GPC NA 13 VSV∆G-ANDV-GPC ≥3200 
2 VSV∆G-ANDV-GPC 800 14 VSV∆G-ANDV-GPC NA 
3 VSV∆G-ANDV-GPC 1600 15 VSV∆G-ANDV-GPC ≥3200 
4 VSV∆G-ANDV-GPC 1600 16 VSV∆G-ANDV-GPC 1600 
5 VSV∆G-ANDV-GPC ≥3200 17 VSV∆G-ANDV-GPC 800 
6 VSV∆G-ANDV-GPC ≥3200 18 VSV∆G-ANDV-GPC ≥3200 
7 Mock NA 19 Mock ≥3200 
8 Mock NA 20 Mock ≥3200 
9 Mock NA 21 Mock NA 

10 Mock NA 22 Mock NA 
11 Mock 1600 23 Mock NA 
12 Mock NA 24 Mock NA 

NA = Animals that did not survive challenge. 

3. Experimental Section 

3.1. Hamster Vaccination and Challenge 

Female Syrian hamsters 5–6 weeks of age (Harlan Labs, Indianapolis, IN, USA) were administered 

105 PFU of VSV∆G-ANDV-GPC by intraperitoneal injection (i.p.), or sterile medium as a control. The 

VSV∆G-ANDV-GPC was prepared as previously published [8]. Serum samples were obtained at the 

indicated times post-vaccination by retro-orbital bleeding. The blood was centrifuged at 2,000× g for 

10 min at room temperature and the serum was removed and frozen for the measurement of 

neutralizing antibodies. Either 6 or 12 months after vaccination, groups of 12 hamsters (6 mock-

vaccinated and 6 vaccinated with VSV∆G-ANDV-GPC) were challenged with ANDV. Two hundred 

focus forming units (FFU) of ANDV (strain 9717869), which is equivalent to 100LD50 when 

administered i.p., as used in our previous studies, was diluted in 100 μL of sterile medium and was 

delivered intranasally (i.n.) while the animals were under inhalational isoflurane. Hamsters were 

monitored daily for signs of disease and were euthanized upon showing signs of severe clinical 

disease, or at 42 days post challenge, at which time a terminal blood sample was collected to measure 

serum antibodies. 

 

3.2. Andes Virus Neutralization and ELISA 

To measure the neutralizing antibody response to vaccination, 2-fold serial dilutions of sera were 

mixed 1:1 with approximately 100 FFU of ANDV and incubated for 1 h at 37 °C in a humidified 

chamber. This mixture (200 μL) was then used to inoculate Vero E6 cells (ATCC) for 1 h at 37 °C, 5% 

CO2. The inoculum was then removed and 500 μL of 1.2% carboxymethylcellulose in Modified Eagles 

Medium (MEM) containing 2.5% FBS was added to the cells and incubated at 37 °C, 5% CO2. Seven 
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days later, an immunofocus assay was performed and sera resulting in a greater than 80% reduction in 

foci were considered positive (FRNT80) as previously described [15]. To examine whether hamsters 

that survived challenge (42 days post inoculation) developed anti-ANDV antibodies, we performed an 

ELISA to detect antibodies directed against the ANDV nucleocapsid protein (N) as described 

previously [10]. 

 

3.2. Statistics 

To determine whether vaccination resulted in significant protection from ANDV-induced disease, 

we compared the survival curves between mock-vaccinated and VSV∆G-ANDV-GPC-vaccinated animals 

using a log-rank (Mantel-Cox) test with significance set at 0.05. Analysis was performed using Prism 

software version 6 (GraphPad Software, Inc., La Jolla, CA, USA). 

 

3.3. Biosafety and Ethics 

All work with ANDV-infected hamsters and potentially infectious material was conducted in the 

BSL4 facility at the Rocky Mountain Laboratories, Division of Intramural Research, National 

Institutes of Allergy and Infectious Diseases, National Institutes of Health. Sample removal from the 

BSL4 was performed according to approved standard operating procedures. This animal experiment 

was approved by the Institutional Animal Care and Use Committee and performed following the 

guidelines of the Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC) by certified staff in an AAALAC-approved facility. 

4. Conclusions 

Vaccination of hamsters with a single dose of a VSV-based ANDV vector provided long-term 

protection from lethal virus challenge 6 months after administration. We have shown that this vaccine 

has a high degree of efficacy when administered between 28 days pre-, and 1 day post-challenge, 

indicating its use in emergency situations, or for laboratory-acquired infections, might prove viable. 

The decline in neutralizing antibodies at 6 and 12 months indicates that the durability of this vaccine 

after a single-dose application, at least in hamsters, is questionable. Booster immunizations might 

improve the durability of this vaccine candidate. Although other disease models have yet to be 

developed for HCPS-causing hantaviruses, further evaluation of vaccine approaches, specifically 

measurement of antibody responses, could be warranted in other non-disease animal models. 
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