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Abstract: The introduction, dispersal and establishment of West Nile virus in North 

America were reviewed, focusing on factors that may have enhanced receptivity and 

enabled the invasion process. The overwintering persistence of this tropical virus within 

temperate latitudes was unexpected, but was key in the transition from invasion to endemic 

establishment. The cascade of temporal events allowing sporadic amplification to outbreak 

levels was discussed within a future perspective. 
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1. Introduction  

West Nile virus (WNV) was discovered originally in 1937 during a fever survey in the West Nile 

district of Uganda [1] and has been classified immunologically within the Japanese encephalitis 

serocomplex in the genus Flavivirus, along with Japanese encephalitis in Asia, St. Louis encephalitis 

(SLEV) in the New World and Murray Valley in Australia. Historically, its distribution was limited to 

Africa and Asia, with occasional intrusions into southern Europe, possibly by migratory birds [2]. The 

subsequent arrival of this tropical African virus into the sophisticated concrete jungle of New York 

City (NYC) in 1999 was totally unexpected and immediately captured both media as well as scientific 

attention. The resulting public, veterinary and wildlife health impacts were unprecedented and brought 

together widely disparate groups such as the Nature Conservancy and the American Mosquito Control 

Association to discuss insecticide applications for intervention. New research and public health 

programs supported, in part, by Epidemiology and Laboratory Capacity funding from the US Centers 

for Disease Control and Prevention (CDC), expanded surveillance, testing and reporting programs  

that tracked the rapid invasion of the continental United States (http://www.cdc.gov/ncidod/ 

OPEN ACCESS 



Viruses 2013, 5 2080 

 

dvbid/westnile/index.htm). The resulting volume of research on WNV has been staggering and has 

exploited the recent proliferation of online health and other journals, as evidenced from a March 2013 

search for PubMed titles containing ‘West Nile’ that returned 3033 results. This recent extensive data 

and associated literature has generated a series of excellent reviews that have summarized the virus in 

general [3–11], pathogenesis in human [12–18], equine [19] and avian [20] hosts, epidemiological 

patterns [21,22], ecology [23–26], dispersal [27–31], impact on avifauna [32–35], and mosquito 

bionomics [25,36], experimental vector competence [37,38] and blood feeding patterns [39].  

The current review addresses aspects of the ecology and epidemiology of WNV that have received 

somewhat less attention, although redundancy of thought and content will be inevitable. The resulting 

synthesis benefited from discussions during recent meetings at the American Academy of 

Microbiology’s mini colloquium “FAQ: West Nile Virus” and at the US National Institute of 

Environmental Health Sciences meeting “Extreme Weather, Climate and Health: Putting Science into 

Practice”. My approach will focus first on how anthropogenic change in North America set the stage 

for the successful invasion and dispersal of WNV, and then on the importance of early season events 

including persistence and amplification for the onset of summer outbreaks.  

2. Global Distribution   

West Nile virus is perhaps the widest distributed arbovirus globally, being now found on all the 

continents except Antarctica and from tropical to north temperate latitudes (Figure 1). Like many 

microbial pathogens, the historical distribution and apparent dispersal of WNV may be confounded by 

resources and methods available for detection. However, since its initial isolation in Uganda, WNV 

seems to have spread and/or been initially reported from outbreaks throughout Africa in the 1950s and 

1970s, India during the 1950s, the Mediterranean region and Eastern Europe during the 1990s [2,11], 

and finally the New World in the 2000s [4,40,41]. A distinct grouping in lineage 1b, known as Kunjin 

virus, has been reported in Australia since first isolated in 1960 [42]. In developing countries such as 

Pakistan where WNV appears to be endemic, human disease seems lost among the myriad of 

childhood febrile illnesses and the annual cohort seroconversion rate typically is progressive and 

consistent [43], with older individuals protected via acquired immunity. In contrast, ‘virgin soil’ 

transmission such as seen in eastern Europe, Greece and the United States has produced clinically 

severe neuroinvasive disease in non-immune older age groups [14], similar to that seen with SLEV 

during novel outbreaks in parts of the United States [44].  
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Figure 1. Global distribution of West Nile virus, 2006 [Figure courtesy of the US Centers 

for Disease Control and Prevention.]. 

 

3. Transmission Cycle in the Old World  

WNV is an avian zoonosis, being maintained in nature by transmission among ornithophagic Culex 

mosquitoes and a wide-variety of birds, especially those in the order Passeriformes. Several Culex 

species have been implicated as vectors based mostly on laboratory vector competence studies, 

including Culex univittatus, Culex neavei and perhaps the Culex pipiens complex in Africa [45–47], 

Cx. pipiens complex and perhaps Culex modestus and Culex perexiguus in Europe [48], Culex 

annulirostris and perhaps the Cx. pipiens complex in Australia [49,50], and Culex bitaeniorhynchus, 

Culex vishnui, Culex pseudovishnui, Culex tritaeniorhynchus and Culex quinquefasciatus in India and 

Pakistan [51–53]. However, the exact role of these species in virus epidemiology has been confusing 

due to their frequent blood feeding on large mammals and the limited numbers of isolations made 

during outbreaks and ecological investigations [54]. A large variety of migratory and resident birds 

species have been found naturally infected [2,55,56], but few host competence studies have been 

conducted to ascertain their importance in transmission. In addition, the apparent repeated introduction 

of WNV into Europe seems to have resulted in minimal avian mortality, despite the fact that several 

isolates from outbreaks have contained the NS3 T249P mutation associated with virulence in 

American Crows in North America (NA) [57]. Interestingly, mortality in southbound migrating White 

Storks (Ciconiidae) was reported in Israel, and this WNV strain later was associated with wide-spread 

mortality in domestic geese [58] and was closely related to the strain that invaded NYC the following 

year [40]. 

4. Invasion of North America 

4.1. Setting the Stage 

The colonization of NA by Europeans greatly changed the landscape and markedly increased the 

size of the human population. Intensive agriculture and the need for construction supplies fragmented 
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the deciduous forests. Points of trade by sailing ships produced cities along the eastern seaboard and 

then along major waterways. With a large number of humans and animals concentrated into permanent 

urban settings, waste disposal became a major problem and produced refuse dumps and highly 

eutrophic municipal water systems for waste and storm run-off.  With urbanization came a reduction in 

avian species diversity [59,60], but an expansion of the number and range of commensal species such 

as American Robins, House Finches and American Crows that were able to exploit peridomestic 

habitats. In addition, House Sparrows, European Starlings and Rock Doves were intentionally released 

into Eastern NA and rapidly exploited the expanding urban environment throughout the continent. This 

reduction in urban avian diversity [61] left a guild of commensal species, many of which were 

competent hosts for WNV [62]. The Culex vectors of WNV seemed to be opportunistic feeders able to 

exploit whatever avian or mammalian hosts were abundant in the environment [63–67]. Simplification 

of avian diversity therefore focused vector blood meal acquisition on a few competent species, 

facilitating infection and transmission and increasing the efficiency of viral amplification [68,69].  

The need to carry drinking water for long ocean voyages allowed the unintentional transport and 

introduction of several mosquito species, including members of the Culex pipiens complex that 

included the Northern and Southern House Mosquitoes, aptly named for their close association with 

humans. This complex apparently arose within the Ethiopian region [70], but now is distributed 

circumglobally [71], being able to survive cold northern winters as well as exploit warm southern 

latitudes, with hybrids found at intervening latitudes [72–74]. A third member of the complex, Cx. 

pipiens form molestus seems to have evolved from above ground Cx. pipiens populations [75] to 

exploit underground collections of water in temperate [36], but not tropical latitudes, where these 

underground habitats are exploited by Cx. quinquefasciatus. Females in this complex typically blood 

feed on birds, but southern and admixed populations also feed on humans and dogs [64,67]. Other 

rural Culex such as Culex nigripalpus in the southeast and Culex tarsalis in the west have exploited 

irrigated agricultural landscapes, managed wetlands and some urban habitats. Both species feed  

on both avian and mammalian hosts, but shift to more frequent mammal feeding during late summer, 

thereby functioning effectively as both enzootic and bridge vectors [67,76,77]. 

This mixture of urban birds and peridomestic mosquitoes living in close proximity to humans 

created situations conducive for the transmission of arboviruses, especially SLEV. Although this virus 

is apparently endemic to the New World, it was not discovered until 1933, when there was a large 

outbreak of human disease associated with lower socio-economic housing, poor waste water 

management, large Cx. pipiens populations, and exceptionally hot and dry weather in St Louis 

Missouri [78], conditions now associated with WNV outbreaks. Subsequently, SLEV was found 

throughout NA, where it caused extensive epidemics of human neurological disease, especially in the 

Ohio River Valley during the 1970s [44]. Improved intervention through organized mosquito control 

and urban waste water management seems to have eliminated large epidemics, leaving most human 

and avian populations without acquired flavivirus immunity.  

4.2. The Invasion 

Prior to its discovery in NA, WNV had been a virus on the move, with small outbreaks recorded in 

the Mediterranean region and epidemics of neuroinvasive disease documented in Romania [79] and 
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Russia [9,80–82]. In 1998 there was an outbreak of WNV in Israel, and this virus strain was similar 

genetically to that introduced into NYC [40]. There is frequent air travel between NYC and Israel, and 

it was most likely that the virus was introduced by this frequent and repeated route of travel. 

Similar to the SLEV outbreak in 1933, multiple factors in NYC during 1999 set the stage for the 

successful invasion and outbreak of WNV. The decrease in endemic arbovirus activity in prior years 

resulted in the closing of arbovirus surveillance and most mosquito control programs in the NYC area, 

except for a small program on Long Island retained to control pestiferous salt marsh mosquitoes. The 

summer and especially July of 1999 was the hottest in NYC recorded history and was associated with 

below average rainfall. These weather conditions were conducive for the production of large numbers 

of Cx. pipiens complex mosquitoes from storm water systems partially dammed with debris and 

enriched with leaves. Warm weather typically speeds larval mosquito development, shortens 

population generation times and thereby accelerates growth of mosquito populations. In addition, the 

commensal avian population and most of the human population had no immunity against flaviviruses.  

During the summer of 1999, large numbers of American Crows were observed dead and dying in 

and around NYC [83], and exotic birds from collections at the Bronx zoo were dying [20]. A virus 

isolated from a deceased Chilean flamingo grouped with lineage 1 of WNV [40]. Interestingly, the 

NY99 virus strain, as well as multiple isolates from outbreaks in Europe, carried the T249P mutation 

in the NS3 region of the viral genome that was associated experimentally with elevated viremias and 

100% mortality in American Crows [57], but not necessarily other corvids. Concurrently, a small 

cluster of neuroinvasive disease cases was recognized and diagnosed serologically, initially as SLEV, 

and then as WNV. Although the actual mechanism or date of WNV introduction probably will never 

be known, it seems likely that the virus was introduced by air traffic from Israel. Humans and equines 

(that also travel frequently by air) are considered to be ‘dead end’ hosts for the virus; however, some 

Culex can infrequently become infected after feeding on fairly low doses of WNV [84]. Alternatively, 

mosquitoes often are inadvertently transported on aircraft that are not routinely and thoroughly dis-

insected. There also is a lucrative trade in smuggled pets, so multiple routes of introduction may have 

been potentially possible.  

Studies done during the summer of 1999 rapidly incriminated the Cx. pipiens complex as the likely 

urban vector [85] and House Sparrows as an important maintenance host [86]; highly infectious 

American Crows [62] likely were important in virus amplification [87]. Seemingly, the combination of 

previously introduced urban mosquitoes and birds exploiting periurban habitats in combination with 

extraordinarily hot weather facilitated the introduction and establishment of WNV.  

Despite a large scale adulticiding response, WNV managed to overwinter successfully and then 

spread slightly in the NE USA during the following summer (Figure 2). During late summer/fall of 

2000, the virus seemed to have been carried by southbound migrant birds along the Atlantic flyway, 

by-passing the midAtlantic states, and becoming established in the Southeast, especially Georgia and 

Florida, where it amplified during 2001, again in association with hot, dry conditions. However, the 

peak of the epidemic occurred following years after the virus invaded the west, with epicenters in 

Chicago and New Orleans in 2002, Colorado in 2003 and Los Angeles in 2004, where Cx. pipiens, Cx. 

quinquefasciatus, Cx. tarsalis/Cx. pipiens, and Cx. quinquefasciatus, respectively, were the likely 

vectors. A hallmark of all these urban epidemics were the huge numbers of American Crows and other 

bird species dying from infection [22,35] as well as large numbers of horse cases with neuroinvasive 
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disease with high case fatality (http://www.cdc.gov/ncidod/dvbid/westnile/index.htm). Interestingly, 

like humans, most equine infections seemed to remain subclinical, resulting in high levels of acquired 

immunity [88]. The equine epidemic was rapidly halted subsequent to 2003 by widespread natural 

and/or intentional vaccination.  

Figure 2. Sequence of maps showing the rapid expansion in the distribution of West Nile 

virus activity and human cases in the eastern United States from 1999 through 2002. 

Circles roughly circumscribe epicenters. [http://www.cdc.gov/ncidod/dvbid/westnile/ 

USGS_frame.html]. 

 

During 2002, WNV acquired another mutation, E159A in the envelope region of the genome, that 

rapidly replaced the invading NY99 genotype. This strain, known in the literature as WN02, appeared 

to enhance Culex transmission by allowing the virus to invade the salivary glands sooner after 

infection than the NY99 strain, especially under warm temperatures [89,90]. Therefore, the virus that 

invaded the western USA contained both the NS3 mutation causing high viremias and mortality in 

American Crows and the E mutation that may have enhanced Culex transmission, as well as other 

genetic differences whose functions were not well understood [91].  

Climate variation has been an important factor historically driving SLEV and now WNV 

transmission to outbreak levels. Typically elevated transmission has been associated with hot, dry 

weather events [92]. In urban landscapes with a large percentage of impervious groundcover, high 

rainfall volumes result in rapid run-off that typically ‘flushes-out’ urban waste water systems [93]. 

Conversely, drought conditions stimulate residence and park landscape irrigation that creates a low 

volume ‘curb drizzle’, daily refreshing underground systems and catch basins without flushing-out 

developing larval mosquito populations. In addition, drought conditions may force avian populations 

into suburban areas where water is more freely available, thereby bringing competent hosts into 

contact with competent urban vectors. Drought conditions typically are associated with elevated 
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temperatures (http://www.pmel.noaa.gov/tao/elnino/la-nina-story.html), and these conditions are 

further exacerbated by urban heat island formation [94]. Because mosquitoes are poikilotherms, their 

body temperature approximates ambient conditions, although Culex may behaviorally adjust their 

temperature by seeking daytime refugia and altering evening activity rhythms [95,96]. In general, 

warm temperatures increase the rate of larval development and reduce generation time [97], thereby 

rapidly increasing mosquito population size, and reducing the duration of the gonotrophic [98] and the 

extrinsic incubation [99] periods. Therefore, during warm temperature anomalies, there frequently are 

more female mosquitoes, taking more frequent blood meals, thereby increasing host-vector contact and 

the probability of infection, and infected females are able to transmit virus earlier in adult reproductive 

life [100] than during cooler seasons. The dramatic shortening of the extrinsic incubation period by 

warming temperature also compensates for the concurrent decrease in adult survival with warming 

temperature [101]. The impact of warm temperature has been most noticeable in the US prairie states 

where the incidence of human infection markedly increases during warm weather anomalies, such as 

experienced in 2012 (Figure 3).  

Figure 3. West Nile virus activity and climate analomies in the USA during 2012. West 

Nile cases: (A) Distribution; (B) reported case incidence per 100,000; Seasonal climate 

departures from the 1950–1995 average for the Jan–Nov 2012 period: (C) temperature  

in °C, (D) precipitation in cm. (Please confirm the Figure 3 and Figure 4) 

 

Landscape heterogeneity has had a marked impact on the distribution of vector and avian host 

populations and therefore WNV transmission. Epidemiologically, the greatest number of cases have 

been detected in urban areas where the most peoplereside, whereas the risk of infection as expressed 

by case incidence has been highest in rural areas with low human population density, such as the 

northcentral prairie states. Frequently, the distribution of urban human cases has been delineated 

spatially by high mortality rates among periurban or urban corvid populations, especially American 
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Crows [102]. All  corvids produce elevated viremias and frequently succumb from infection [62,103], 

and this provides a virus source for effective vector infection, especially when the birds are ill, less 

mobile and less defensive. In one case control study, residences with dead corvids reported on their 

property were 19.8 times more likely to also have infected mosquitoes than residences without dead 

corvids [104]. When the number of dead American Crows around a large communal roost in Los 

Angeles was delimited spatially using SatScan statistics, the Cx. quinquefasciatus minimum infection 

rate was 8.0 per 1000 within areas circumscribed by dead corvid clusters as opposed to 2.1 per 1000 

outside of these clusters; also, only 41% of the human population resided within clusters of dead 

corvids, but 75% of the laboratory confirmed human cases were reported from within these clusters 

(incidence within = 5.9, without = 1.3 per 100,000 population, respectively) [105]. As pointed out 

previously, transmission within these urban areas with reduced avian species richness tends to be more 

efficient than in rural areas with high species richness, because more blood meals are taken from 

competent hosts. This was shown in recent surveys of Culex blood meal host diversity [67], where 

blood meal host species richness in urban Los Angeles was half that observed in rural wetlands near 

Sacramento, where almost every other blood meal came from a different host species, including many 

that were incompetent hosts for WNV.  

4.3. Movement 

The rapid dispersal of WNV throughout the New World from NYC to Los Angeles and from 

Saskatoon, Canada, to Buenos Aires, Argentina, was unexpected, demonstrated the inability of public 

health interventions to contain an invading vector-borne zoonoses [106], and may have occurred even 

faster than recorded by surveillance programs, based on an analysis of genetic change in time and 

space among available isolates [27]. Long distance movement of WNV initially was attributed to 

migratory birds [28–30], and in support, viremic migrants were collected repeatedly during 

southbound flights from temperate transmission foci [55,58,107]. In contrast, few infected birds were 

detected during northbound flights from the tropics [107,108], thereby questioning this as a 

mechanism of rapid east to west movement. In addition, although evidence of WNV presence has been 

reported repeatedly in the Neotropics and Caribbean [9], foci of human or equine disease have not 

been detected, indicating limited amplification to levels allowing tangential transmission, and therefore 

a limited source of virus to be inserted into northbound migrants. Subsequent modeling studies 

indicated that rapid east-west dispersal could result from post-nesting movement by resident birds and 

perhaps host-seeking by mosquitoes [109]. During 2004, for example, the movement of WNV from 

the Los Angeles Basin across the Tehachapi Mountains and into the Central Valley of California 

occurred after the arrival of Neotropical migrants, but concurrent with post-fledging dispersal by 

resident birds such as House Finches [110]. Mosquito movement by prevailing storm tracks [111] also 

would not seem important for east-west WNV dispersal, because weather fronts in NA typically move 

from west to east and opposite to the dispersal direction of WNV. An unknown was the possible role 

of commerce moving infected mosquitoes by ground or air transport. The infection of a Los Angeles 

International Airport employee with WNV in 2002 before the detection of WNV in California by the 

surveillance program in 2003 may have indicated the long distance transport by an infectious mosquito.  
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5. Virus Persistence 

Establishment of WNV and its subsequent dispersal throughout the New World was contingent 

upon virus survival over temperate winters, when transmission is interrupted and cold conditions drive 

the mosquito vectors into diapause or quiescence. Successful overwintering of a tropical African virus 

in the cold temperate NE USA was not expected, especially since evidence in temperate Europe 

indicated that the virus did not typically persist between seasons and required re-introduction [112]. 

Other tropical flaviviruses transmitted by African mosquito vectors such as yellow fever virus 

historically have been a recurring health problems in the NE USA, but did not overwinter and required 

annual re-introduction [113].  

WNV persistence was achieved most likely either by long-term mosquito and/or avian infections. 

Culex pipiens, the vector of WNV in the NYC area, is capable of entering a facultative diapause [36] 

and was well-adapted to surviving winter conditions. Previous experiments had shown that the F1 

progeny of infected Cx. pipiens females may become infected vertically [114], thereby providing a 

mechanism for inserting virus into the next generation without these F1 females taking a blood meal. If 

these vertically infected females enter diapause/quiescence in response to cool temperature and 

shortening day length during late summer/fall, then this could provide the mechanism for infecting 

female mosquitoes collected WNV positive during winter [115–118]. The following spring when the 

weather warms, WNV theoretically replicates and these infected mosquitoes become infectious, 

thereby renewing the transmission cycle. Proof of principal was provided by laboratory experiments, 

where the F1 progeny of field WNV-infected Cx. pipiens females were induced to enter diapause, 

diapause ‘terminated’ the following ‘spring’, and these F1 female progeny fed on hamsters that 

became infected [119,120]. Recent field studies provided evidence of frequent vertical transmission by 

infected females collected during late summer and fall [121].  

WNV also has been shown to persist as long term infections in avian hosts that survive acute 

infection. Viral RNA initially was detected in kidney and spleen tissues from multiple species of 

experimentally infected passerines that were necropsied 6–8 weeks post infection [122]. Subsequent 

studies showed that RNA could persist for up to 8 months in both experimentally and naturally 

infected birds [123,124], and that these infections may explain the long term persistence of high titered 

neutralizing antibody [125]. In agreement, WNV RNA was detected repeatedly in the sera of some 

birds up to 7 weeks post-infection [126]. In contrast, birds experimentally infected with SLEV rarely 

established persistent infections and neutralizing antibody titers frequently declined rapidly over  

time [127,128]. Based on the frequency distributions of qRT-PCR Ct scores from kidney tissues tested 

for WNV from dead birds submitted by the public, chronic infections with WNV seem to occur 

frequently in nature, especially among House Finches, House Sparrows and American Robins [129]. 

The significance of these findings remains uncertain, because virus bound with antibody was not able 

to infect mosquitoes [84]. However, variation in immune status could play an important role in 

recrudescence. For example, experimental infection of Rock Doves with WNV showed that some birds 

developed intermittent viremias over time and that antibody titers increased following detection of 

infectious virus in sera [130]. In agreement, imperfectly antibody-bound WNV was able to infect a low 

proportion of susceptible mosquitoes [84], indicating that immunosuppression related to co-infection 

or the stress of territoriality and nesting during spring could allow some virus to ‘escape’ and infect 
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blood feeding mosquitoes. Other avian pathogens transmitted by Culex spp. such as Plasmodium 

relictum, somehow detect seasons and utilize a vernal recrudescence to renew summer transmission [131]. 

Continued transmission during winter provides an alternate means of virus persistence at both 

northern and southern latitudes. At temperate latitudes where mosquitoes are inactive throughout the 

cold winter months, WNV has been detected repeatedly in dead birds. In upstate NY WNV 

transmission was found to continue at a communal American Crow roost by bird-to-bird transmission, 

possibly through fecal-oral contamination (feces under the roost were positive), preening (ectoparasites 

tested positive), and/or cannibalism of carcasses (dead birds were positive) [132]. Bird species positive 

during winter frequently have been corvids or raptors [133,134] that may have been infected orally, 

perhaps by eating acute or chronically infected birds. After WNV became established at southern 

latitudes in the USA, infected birds and mosquitoes were collected throughout the winter months in 

southern California (Figure 4) and Texas [135], and sentinel chickens in Florida were found to 

seroconvert to WNV and SLEV throughout the year (http://www.doh.state.fl.us/Environment/ 

medicine/arboviral/surveillance.htm). Although difficult to separate from patterns of progressive 

vernal warming at increasing northern latitudes, northbound migrants appear to acquire WNV 

infections during migration at southern temperate latitudes and then transport virus northward during 

spring. For example, northbound birds collected along the Pacific flyway in the Central Valley of 

California had higher infection rates than those collected at stop-over points along the Salton Sea near 

Mexico [108,136]. Similar findings were reported for the Mississippi and Atlantic flyways for  

WNV [107] and other arboviruses [137,138]. 

Figure 4. Seasonal activity of West Nile virus in (A) Coachella Valley and (B) Los 

Angeles, Southern California summarized from 2003–2011. Graphs plot the total number 

of mosquito pools tested and positive for WNV per month. Mosquitoes were collected 

host-seeking at CO2 traps or attempting oviposition at gravid female traps and therefore 

were reproductively active. Red arrows show months when there were no WNV  

positive pools.  

 



Viruses 2013, 5 2089 

 

6. Outbreaks  

6.1. Onset of Amplification  

The mechanisms and exact timing of the onset of vernal transmission remain obscure, because 

transmission is inefficient and infrequent, amplification slow, and virus difficult  to detect at these low 

levels. In California, for example, WNV can be detected in an occasional dead bird or mosquito pool 

in December or January, followed by a period of cessation until May or June [122]. However, it cannot 

be certain if these occasional positive specimens represent the elongated end of the fall transmission 

season, winter persistence or transmission, or the onset of new vernal transmission events. For Culex 

mosquitoes that enter winter diapause, the transition in photoperiod after the winter solstice appears to 

stimulate juvenile hormone production and ovarian development to pre-hosting arrest at ovarian stage 

I-II , characterized by associated changes in ovarian morphometrics [118,139,140]. This transition from 

diapause to the arrest stage and the initiation of host-seeking appears to be temperature dependent, 

occurring shortly and abruptly after the winter solstice in late December at southern latitudes [141], but 

later and more gradually at more northern latitudes [118,142]. It is not clear, however, if diapause 

termination actually marks the onset of transmission, because vertically infected and overwintering 

mosquitoes typically contain minimal amounts of virus that is often difficult to isolate [116,118], 

indicating that warming and considerable replication is necessary prior to transmission. Viral 

replication may be exceedingly slow at this time, because few hours/days exceed the 14.3 °C 

developmental threshold for WNV, resulting in minimal heat accrual until summer hot spells and the 

increase in nocturnal temperatures [143]. By comparison, Culex quiescence is not constrained by 

photoperiod and winter blood feeding activity may be facilitated by warm periods. However, a 

concurrent autumnal/winter cessation and winter/vernal initiation of WNV transmission seems to 

occur at southern latitudes such as Los Angeles, where Cx. quinquefasciatus is the primary  

vector [144], because temperatures are too cold for efficient WNV transmission. In general, 

transmission in most of the USA seems constrained until the warm summer period, most likely due to 

the thermodynamics of transmission efficiency described above. Although the slopes of the 

amplification curve was generally similar [Figure 4], peak activity occurred a month earlier in the hot 

dry desert of Coachella Valley than in cool coastal Los Angeles.  

Alternatively and coincidental with the initial detection of WNV during May/June, virus may 

persist in avian hosts and then recrudesce in association with the nesting season. Temperatures at this 

time are usually sufficient for virus replication in the mosquito host, thereby enabling the possibility of 

transmission and resulting amplification. However, as discussed previously, additional research is 

needed, because there are no data to indicate that infections in previously infected birds ever 

recrudesce and develop viremias sufficient to infect host-seeking Culex [126].  

The level of virus activity during the previous transmission season seems to dictate the probability 

of viral amplification to outbreak levels. During the invasion phase of the on-going epidemic, WNV 

typically assumed a three year cycle, with quiet invasion during year one, explosive amplification to 

outbreak levels during year two, and subsidence during year three [21]. The frequency with which this 

pattern has been repeated led some investigators to suspect that WNV was actually introduced into 

NYC in 1998, but was not recognized until 1999. Subsidence during year 3 actually may commence 
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during outbreak year 2 due to the accrual of herd immunity in maintenance host populations such as 

House Finches and House Sparrows and the depopulation of amplification hosts such as American 

Crows [34,35,144]. In Los Angeles, for example, the termination of the 2004 outbreak appeared to 

commence during September 2004, soon after antibody prevalence in peridomestic passerines 

collectively exceeded 25% [144]. Subsequent Los Angeles outbreaks during 2008 and 2011 followed 

periods when avian ‘flock’ (aka herd) immunity decreased to less than 10% [68]. In agreement, the 

large almost nationwide resurgent WNV outbreak during 2012, with the epicenter in Dallas, TX, 

followed several years of minimal virus activity that undoubtedly allowed flock immunity to be diluted 

by recruitment and the natural turnover rate of immune birds. Using genetic methods, this subsidence 

period optimistically was heralded as the waning of the current epidemic [145]. The size and immunity 

level within competent avian host populations is especially critical during early spring, because at this 

time Culex feed almost exclusively on passerine birds [66,77,146,147] that were potentially exposed to 

virus during the previous season. In addition, immune parental birds transfer immunity to nestlings 

through the egg further preventing or at least delaying transmission. So even though host selection 

favors feeding on competent hosts during the spring period, low flock immunity levels seem critical 

for efficient virus transmission and amplification [68]. Delay until naïve nestlings are available seems 

to retard amplification until summer thereby inhibiting large outbreak generation [148,149].  

Climate variation is also critical for vernal amplification. Warm winters and early termination of 

mosquito overwintering seem to lead to early season virus amplification. As described previously, with 

warmer temperatures, there are more vectors, biting more frequently due to shorter gonotrophic 

periods, potentially transmitting virus earlier in adult life, leading to rapid amplification of virus to 

outbreak levels earlier during the transmission season than during cooler temperatures. This results in 

more frequent tangential transmission of virus to humans, especially as vectors shift avian blood 

feeding patterns to feed more frequently on mammals [77,146,150]. Anthropogenic factors 

undoubtedly influence transmission during these outbreaks. Summer heat waves contribute to 

tangential transmission by altering human dress (less clothing worn when it is hot exposing more skin 

surface to mosquitoes) and behavior (tendency to postpone physical activities until after sunset when 

vectors are active). Often in summer manual labor associated with agriculture and other outdoor 

activities are shifted to after sunset and during the host-seeking period of the primary vector species, 

such as Cx. tarsalis and Cx. quinquefasciatus [96,151,152]. In contrast, television viewing and air 

conditioning combine to keep people indoors behind closed windows and thereby may serve as 

important protective measures limiting host-vector contact and infection [153]. However, in maritime 

or northern areas with infrequent warm spells, few homes have air conditioning and people therefore 

may spend more time with open windows or outdoors during hot weather, thereby increasing  

vector contact. 

6.2. Economics and Heath Priorities Impact Transmission Dynamics 

The economic crisis in US real estate starting in 2006 led to marked increases in home 

abandonment during 2007–2008. In Bakersfield, CA, for example, there was a 300% increase in the 

notice of delinquency from the 3
rd

 quarter of 2006 until the 3
rd

 quarter of 2007, and this increase was 

associated with a comparable and concurrent increase in the number of human cases of WNV, 
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attributed to an undetected increase in the numbers of abandoned and unmaintained swimming  

pools [154]. Interestingly, this altered suburban/urban landscape dotted with large-sized larval habitats 

was exploited by the rural vector, Cx. tarsalis, as well as the urban vector, Cx. quinquefasciatus. The 

extent of this problem was revealed subsequently using aerial photography and satellite imagery [155], 

triggering targeted intervention.  

The extent and type of mosquito control also may impact outbreak evolution and patterns. In 

California, most mosquito control districts employ surveillance directed larval treatments, thereby 

continually pressuring vector populations and reducing adult abundance. Although these methods and 

improved water management seemed to have eliminated WEEV and SLEV, WNV has remained a 

public health problem, since its introduction during 2003. Different agencies in different areas of the 

state respond to surveillance data differently, producing different patterns of virus recurrence and 

human infection (Figure 5). In Los Angeles, for example, aerial adulticide applications are almost 

impossible, because of the number of large airports and complex air traffic control issues, and ground 

applications are complicated by traffic problems. Here, districts respond by public education and 

enhanced larvicide applications, but these activities seem to allow avian flock immunity to increase 

and perhaps preclude amplification during years immediately subsequent to outbreaks [68]. In contrast, 

in Sacramento, the mosquito control program responds rapidly to escalating risk by extending 

surveillance to delineate the spatial extent of transmission and then by focused aerial adulticide 

applications to interrupt transmission. These applications seem effective in reducing transmission to 

humans [156,157] and perhaps to avian hosts as well, thereby precluding elevated flock immunity and 

allowing effective virus amplification during subsequent years. A similar pattern was observed in 

Bakersfield, but there the bifurcation of mosquito infection rates and human cases was related to rapid 

ground adulticide response to surveillance data as well as an intensive program to locate and treat 

unmaintained swimming pools. These activities seem to have lowered mosquito abundance and the 

probability of human infection, but have not altered mosquito infection rates. 

Elsewhere in the USA, mosquito control programs frequently are a part of local health departments, 

and therefore focus and funding is often diverted by complex and changing health priorities. Here, 

outbreak response may be delayed, because skeletal surveillance may not recognize the intensity of 

amplification and limited resources are available for prompt intervention. Emergency control delayed 

until a marked increase in human disease incidence is recognized, typically is too late to protect much 

of the public as well as limit avian infection. The following season surveillance and control typically 

attracts more fiscal support, but with elevated avian immunity and enhanced control, repeat outbreaks 

rarely ensue [21]. Again, with waning transmission and health impact, resources become diverted and 

avian populations recover, setting the stage for subsequent outbreak transmission, similar to as 

observed in Dallas, TX, and elsewhere during 2012. Continued enzootic surveillance remains the only 

method of detecting amplification and directing timely intervention to protect the public health.  
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Figure 5. Annual number of human cases and mosquito infection rate per 1000 tested from 

2003–2012 for the (A) Greater Los Angeles County Vector Control District [GRLA];  

(B) Kern Mosquito and Vector Control District [KERN] and (C) Sacramento-Yolo 

Mosquito and Vector Control District [SAYO]. Mosquito infection rate was calculated by 

the maximum likelihood estimate. (confirm the quality of the figure) 

 

7. A look to the Future 

Host-vector-virus transmission systems are dynamic and typically evolve over time, and this seems 

to be occurring within the WNV-transmission system. As indicated, the invading virus acquired and 

retained at least one significant mutation that may have enhanced vector competence and perhaps 

transmission dynamics under warm [158], but not necessarily moderate [159] temperatures. In 

California, experimental infections of House Finches [an important maintenance host] comparing the 

replicative fitness phenotype of the invading WNV 2003 strain carrying a temperature sensitive  

allele [160] against WNV isolates from four biomes made in 2007-2008 indicated that the founding 

strain has been replaced by more competitive strains as the virus invaded areas of California such as 

the Los Angeles Basin and the Central Valley where amplification in corvid populations was important 

for transmission (Worwa et al., unpublished). Interestingly, there seems to be little concurrent 

selection for viral change in replicative fitness in House Finches from the SE deserts or for replication 

within the vector, Cx. tarsalis. In addition, repeated estimates of the ID50 (virus dose required to infect 
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50% of exposed mosquitoes) among field Culex populations for the NY99 strain of WNV during the 

invasion of California [161] indicated that there was minimal concurrent change in the vector 

competence of Cx. tarsalis and Cx. pipiens complex field populations and that these changes were not 

associated with outbreaks of human disease. In contrast, progressive sweeps through susceptible avian 

species populations seem to have selected for resistant phenotypes. This notion was supported by 

reduced viremia and mortality among House Sparrows and House Finches during successive 

experimental infection studies [103,123,126,162] (Worwa et al. unpublished). Among birds submitted 

by the public during the 2010–2011 seasons, these two species also showed a greater frequency of 

chronic than acute infections as indicated by qRT-PCR Ct scores at necropsy, indicating the frequent 

natural survival of acute infection [129]. In addition, American crows have been collected with WNV 

antibody and some dead crows have shown elevated qRT-PCR Ct scores, perhaps indicating they also 

survived acute infection and died of other causes when chronically infected [129]. Collectively, these 

data may indicate adaptive changes in avian populations that could reduce the efficiency of 

transmission unless offset by increases in the virus’s ability to infect vector populations. However, 

regardless of these apparent trends, the dramatic resurgence of WNV during 2012 certainly indicated 

that the WNV-transmission system has remained sufficiently intact throughout much of the USA to 

support widespread epidemic transmission. 

Figure 6. Number of human cases of WNV reported by the Canadian government per year, 

2003–2008, and the mean monthly temperature in Regina Saskatchewan in °C for the  

50 year average [1950–2000], 2003 and 2007. Horizontal line in bottom panel shows the 

14.3 °C threshold for WNV replication. 
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Regardless of the causal mechanisms and projected rate of temperature change, the earth is 

becoming warmer, especially at northern latitudes, and these changes will facilitate vector-borne 

pathogen transmission. Epidemic transmission of WNV in the Canadian prairie provinces with the 

epicenter in Saskatchewan may serve to illustrate this scenario (Figure 6). Surveillance in Canada 

recorded epidemics during 2003 and 2007, years when the mean mid-summer temperature in Regina, 

Saskatchewan, averaged almost 10 °C above the previous 50 year average. This warming dramatically 

increased the duration of the transmission season when temperatures were above the 14.3 °C 

replicative threshold for WNV [99] from 3 months on average to 5 and 6 months, respectively, during 

the 2003 and 2007 epidemic years. Although less dramatic, similar warming trends would be expected 

to elongate the transmission season and allow efficient transmission in cooler maritime habitats along 

the cool US West Coast or at higher elevations. In California, the infection of Steller’s Jays with WNV 

in the Lake Tahoe area at >1900 m [163] was unexpected, but may serve to illustrate the impact of 

warming trends on the distribution of transmission.  

At present, options for public health intervention appear limited to surveillance directed prevention 

or emergency responses by organized mosquito control agencies. Surveillance is needed to monitor 

WNV activity levels within the basic bird-Culex transmission cycle to anticipate when and where 

tangential transmission to humans is likely to occur. The ‘fiscal cliff’, the ‘sequester’ and related 

national financial problems have combined to seriously alter the US budget devoted to arbovirus 

surveillance at the national and state levels and thereby direct timely control. WNV has seriously 

impacted human, animal and wildlife health and cost the US hundreds of millions of dollars in medical 

costs and emergency intervention. The virus is now firmly established throughout the continental US, 

remains capable of widespread resurgence as seen in 2012, and most likely will continue to recrudesce 

whenever environmental conditions support efficient transmission. However, WNV will most 

assuredly not be the last invasive or re-emerging arbovirus that public and veterinary health agencies 

have to cope with. This is especially problematic, because most current surveillance systems target 

laboratory testing specifically for WNV. Although this allows for high throughput diagnostics useful 

for intervention decision support, these programs will not find what they are not looking for—i.e., 

other viruses. As with WNV, the establishment of other exotic mosquito vectors, such as Aedes aegypti 

in the Central Valley of California and Aedes albopictus throughout the Eastern USA and now Los 

Angeles elevate the risk for the successful introduction of associated viruses, such as dengue or 

chikungunya, that have resurged globally and have been repeatedly introduced by travelers within the 

US [164]. Currently, improved housing and an ‘indoor lifestyle’ seem to be sufficient to preclude 

autochthonous transmission and establishment [165], but the changes necessary to ’tip’ this balance in 

favor of these and other viruses are unknown.  
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