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Abstract: The introduction, dispersal and establishment of West Nile virus in North
America were reviewed, focusing on factors thatay have enhanced receptivity and
enabledthe invasion proces§he overwintering persistence of this tropical vgr within
temperate latitudes was unexpected, but was key in the transition from invasion to endemic
establishment. The cascade of temporal events allowing sporadic amplification to outbreak
levelswasdiscussedvithin afuture perspective.
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1. Introduction

West Nile virus(WNV) was discovered originally i6937 during a fever survey in the West Nile
district of Uganda[l] and has beenclassified immunologically within the Japanese encephalitis
serocomplex in the genuddavivirus, along withJapanese enceghis in Asia, St. Louis encephalitis
(SLEV) in the New World andMurray Valley in AustraliaHistorically, its distribution was limited to
Africa and Asia, with occasional intrusions irgoutherrEurope, possibly by migratory bird2]. The
subsequenarrival of this tropical African virus into thesophisticatecconcrete jungle of New York
City (NYC) in 1999was totally unexpected and immediately captiboth mediaas well asscientific
attention.The resulting public, veterinary and wildlife heailthpact were unprecedented abdought
togetherwidely disparate groups such as the Nature Conservancy and the American Mosquito Control
Association todiscussinsecticide applications for interventionNew research and public health
programs supported, in part, BEpidemiology and.aboratory Capacity funding from théS Centers
for Disease Control and PreventionOC), expanded surveillancetestingand reorting programs
that trackedthe rapid invasion ofthe continental United Stateghttp://www.cdc.gov/ncidod/
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dvbid/westnile/index.htin The resulting volume of research on WWN has beenstaggeringand has
exploited the recent proliferation ofline health and othefjournals as evidenced from larch2013
searchfor PubMedt i t | es ¢ o nt athatretariged033vesslts Thidlreckntektensivedata
andassociatediteraturehas generated series of excellent reviews that have summarized the wirus
general[3-11], pathogenesis immuman[12-18], equine[19] and avian[20] hosts epidemiological
patterns[21,22] ecology [23-26], dispersal[27-31], impact on avifaung32-35], and mosquito
bionomics[25,36], experimentalzectorcompetencg37,38] and blood feeding patterf39].

The current review addressaspects of the ecology and epidemiology of WNV that have received
somewhaltessattention although redundancy of thought and content will be inevitaltie resulting
synthesis benefited from discussions during recent meetaigthe American Academy of
Mi crobiology’ s mi ni c ol | oaqndiatutm US NatloQd Institviee sof N i
Environment al Health Sciences meeting “EXtr eme
P r a c.tMy apprdach will focudirst on how anthropogenichangein North Americaset the stage
for the successful invasion @ddispersal oMWNV, andthen onthe importace of early season events
including persistace and amplificatiofor the onset of summeautbreaks.

2. Global Distribution

West Nile virus is perhaps the widest distributed arbovirus globally, bemgfound on all the
continents except Antarcticand from tropical to north temperate latitud€sgure 1). Like many
microbial pathogenghe historical distribution and apparent dispersal of WNV may be confounded by
resources and methods available detection.However, fce its initial isolationin Uganda WNV
seems to havspread and/or beenitially reported fromoutbreaks throughout Africa in the 1950s and
1970s, India during the 1950s, the Mediterranesyionand EasternEurope during the 199082,11],
and finally the New World inhe 2000s[4,40,41] A distinct groupingin lineagelb, knownas Kunjin
virus, has beemeported inAustraliasincefirst isolatedin 1960[42]. In developing cantriessuch as
Pakistanwhere WNV appears to be endemibuman diseaseseemslost among the myriad of
childhood febrile illnesges andthe annual cohortseroconversion ratgypically is progressiveand
consistent[43], with older individuals protected via acquiredmmunity. In contrast, vi r g’i n s
transmissionsuch as seen ipastern EuropeGreeceand the United tateshasproducel clinically
severeneuroinvasive disease in nanmune older age grougd44], similarto that seen with SLEV
duringnoveloutbreaksn parts ofthe United Stategl4].
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Figure 1. Global distribution of West Nile virus, 200€ipure courtesy of th&JS Centers
for Disease Control and Preventipn.

3. Transmission Cycle in the Old World

WNV is an avian zoonosis, being maintained in nature bstréssion amongrnithophagicCulex
mosquitoes and a wideriety of birds especially those in the ord®asseriformesSeveralCulex
specieshave been implicated as vectdrased mostly on laboratory vector competence studies
including Culex univittatus Culex neaveiand perhaps th€ulex pipienscomplex in Africa[45-47],

Cx. pipienscomplex and perhap€ulex modestusand Culex perexiguusin Europe [48], Culex
annulirostris and perhapshe Cx. pipienscomplex in Australig49,50], andCulex bitaeniorhynchus,
Culexvishnui, Qilex pseudovishnui, @extritaeniorhynchusand Culex quinquefasciatug India and
Pakistan[51-53]. However, the exact rolef these specieim virus epidemiology has been confusing
due totheir frequentblood feeding on large mammals atige limited numbes of isolationsmade
during outbreaks and ecdadical investigtions [54]. A large variety of migratory and resident birds
species have been found naturally infecf2db5,56] but few host competence steslihave been
conducted to ascertain their importance in transmissioaddition, the apparent repeated introduction
of WNV into Europe seems to have resulted in miniaaghn mortality, despite the fact that several
isolates from outbreaks have contnthe NS3 P49 mutation associated with virulence in
American Gows in North AmericdNA) [57]. Interestindy, mortality in southbound migrating White
Storks Ciconiidag was reported in Israehnd his WNV stain laterwas associated witlide-spread
mortality in domestic geeg4&8] and was closely related to the strain that invad¥« the following
year[40].

4. Invasion of North America
4.1. Setting th&tage

The colonization of NA by Europeargreatlychanged thdéandscapeand markedly increased the
size of the human populatioimtensive agricultur@and the need for construction supplies fragmented
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the deciduous forestPoints of trade by sailing ships produced cities along the easterrasgahd
thenalongmajorwaterwaysWith a large number of humans and animals concentrated into permanent
urban setting waste disposal became a major probland producedefuse dumpsand highy
eutrophic murgipal water systems for waste astdrmrun-off. With urbanizatiorcame a reduction in
avian species diversif$9,60], but an expansion athe number and range of commensal spesueh

as AmericanRobing HouseFinchesand AmericanCrows that were ablgo exploit peridomestic
habitats In addition, Housé&parrows, Europea8tarlings and Roclooves were intentionally released
into Eastern NAand rapidly exploited thexpandingurbanenvironmenthroughout the continenthis
reduction inurban avian divesity [61] left a guild of commensal species, many of which were
competent hosts for WNY62]. The Culexvectors of WNV seemed to be opportunistic feeders able to
exploit whatever avian or mammalian hosts were abundant in the envirof68e&7]. Simplification

of avian diversitytherefore focused vector blood meal acquisition oa few competent species,
facilitating infection andtransmission and increasing the efficiency of viral amplificaf@g$)69].

The need to carry drinking watésr long oceanvoyagesallowed the unintentional transport and
introduction of several mosqa species, including members of ti@&ulex pipienscomplex that
included the Northern and Southern House Mosquitoes, aptly named forctbe@& association with
humans This complexapparentlyarosewithin the Ethiopian regiorf70], but now is distributed
circumglobally[71], being able to survive cold northern winters as well as exploit warm southern
latitudes, with hybrids found at intervening latitudé2—74]. A third member of the complexCx.
pipiens form molestus seemi have evolvedrom above groundCx. pipiens populations[75] to
exploit underground collections of water temperate[36], but nottropical latitudes where tlese
undergrounchabitat are exploited byCx. quinquefasciatug-emales intiis complex typically blood
feed on birds, but southern and admiyepuations also feed on humans atolgs[64,67] Other
rural Culexsuch asCulex nigripalpusin the soutkastand Culextarsalisin the westhaveexploited
irrigated agricultural landscagemanaged wetlandand some urban habitatBoth speciesfeed
on both avian and mammalian hqdtsit shift to more frequent mammal feeding during late summer,
therebyfunctioning effectively as both enzootic and bridge ves{6i7,76,77]

This mixture of urbarbirds andperidomesticmosquitoesliving in close proximity to humans
created situatiaconducive for the transmission of arboviruses, especliyV. Although his virus
is apparentlyendemic to the New Worldt was notdiscovered until 1933when there was a large
outbreak of human disease associated with lower smooaomic housing poor waste water
management, larg€x. pipiens popuations and exceptionally hot and dry weather in St Louis
Missouri [78], conditions now associated with WNbwutbreaks Subsequently, SLEV was found
throughout NA, where it caused extensagdemicsof humanneurologicaldisease, especially in the
Ohio River Valley duing the 1970444]. Improved intervention through orgaa mosquito control
and urbanwastewater managemergeemsto haveeliminatel large epidemicsleaving most human
and avian populations withoatquiredflavivirus immunity.

4.2.Thelnvasion

Prior toits discovery in NA, WNV hadeen a virus on the mowejth small outbreaks recorded in
the Mediterranean region and epidemics of neuroinvasive disease documeRtadania[79] and
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Russia[9,80-82]. In 1998 there wasreoutbreak of WNV in Israeland thisvirus strain was similar
geneticallyto that introduced into NY@40]. There is frequent air travel between 8'éndlsrael and
it was most likely that the virus was introducedthig frequent andepeatedoute oftravel

Similar tothe SLEV outbreakin 1933, multiple factors in NY@uring 1999 set the stage for the
successfulnvasionand outbrealof WNV. The decrease in endemic arbovirus activitypiior years
resulted in the closing of arbovirus surveillance amstmosquito control programa the NYC area
except for a small program on Long Island retained to control pestiferous salt marsh mosgbéoes.
summerandespecially July of 1999 was the hottest in NYC recorded history and was associated with
below average rainfallThese weather conditions were conducive for the production of large numbers
of Cx. pipienscomplex mosquitoes frorstorm water systems partially dammed with debris and
enriched with leavesWarm weathertypically speeds larvalmosquito development, shortens
populationgeneration times anherebyaccelerates growth of mosquito populatiomsaddition,the
commensaavian population and most of the human population had no immunity against flaviviruses.

During the summer of 1999, large nbens of AmericarCrows were observed dead and dying in
and around NY(83], and exoticbirds fromcollectionsat the Bronx zoo were dyinf20]. A virus
isolated from adeceased Chileaflamingo groupedwith lineage 1 of WNV[40]. Interestingly, the
NY99 virus strainas well as multiple isolates from outbreaks in Euraaeriedthe T249P mutation
in the NS3 region of the viral genome thahs associated experimentally welevatel viremias and
100% mortality in AmericanCrows [57], but not necessarily other corvidSoncurrently, a small
cluster of neuroinvasive diseasasesvasrecognized and diagnosed serologicaiytially as SLE/,
and therasWNV. Although the actual mechanism or dateV@lV introductionprobablywill never
be known,it seems likely that the virus was introducedaytraffic from IsraelHumans and equines
(thatalso travel frequently by giare consideretb be ‘dead endhostsfor the virus; however, some
Culexcan infrequently become infectadter feeding orairly low dosesof WNV [84]. Alternatively,
mosquitoesoften are inadvertently transportemh aircraft hat are not routinelyand thoroughlydis-
insected There also is a lucrative trade in smuggled petsn@itiple routes ofintroduction may have
beenpotentiallypossible.

Studies done during the summer of 198pidly incriminatedthe Cx. pipienscomplexas the likely
urban vector[85] and HouseSparrows as an important maintenance H8&Y; highly infectious
AmericanCrows[62] likely wereimportant invirus amplification[87]. Seemimgyly, the combination of
previouslyintroduced urban mosquitoes and biedgloiting periurban habitat; combinationwith
extraordinaity hot weathefacilitated the introduction and establishment of WNV.

Despite a large scale adulticiding resporid®&yV managed to overwinter successfully and then
spreadslightly in the NE USAduring the following summeKfFigure 2). During late summeffall of
2000, the virusseemed tdavebeen carriedby southbound migrant birddong the Atlantic flyway,
by-passingthe mdAtlantic statesand becomingestablishedn the Sutheast especially Georgia and
Florida, where it amplifiedduring 2001 againin associaibn with hot, dry conditionsHowever, the
peak of the epidemic occurred following yeafter the virusinvadedthe west, with epicenters in
Chicago and New Orleans in 2Q@lorado in 200&nd Los Angeles in 20Q04vhereCx. pipiens, Cx.
quinquefasciatusCx. tarsalis/Cx. pipiensand Cx. quinquefasciatysespectively,were the likely
vectors.A hallmark ofall these urban epidemics were the huge numbers of AmeCicams and other
bird species dying from infectiof22,35] as well as large numbers bbrsecaseswith neuroinvasive
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diseasewith high case fat#y (http:/www.cdc.gov/ncidod/dvbid/westnile/index.htminterestingly,

like humansmost equinanfections seened to remainsubclinical resulting in high levels of acquired
immunity [88]. The equine epidemic was rapidly halted subsequent to 2003 by widespread natural
andor intentional vaccination.

Figure 2. Sequence of maps showing the rapid expansion idigtebution of West Nile

virus activity and human cases in the eastern United States from 1999 through 2002.
Circles roughly circumscribe epicenterghttp://www.cdc.gov/ncidod/dvbid/westnile/
USGS_frame.htril

Invasion of the United
States by WNV

.

[National Center for Infectious Diseases
West Nile Virus Activity

mmulative results for 2001 calendar year

National Center for Infectious Diseases
West Nile Virus Activity ny .
Cumulative results for 2002 calendar year reported as of April 15, 2003 & Blue = WNV aCthlty

Red = human cases reported

During 2002, WNV acquired anothemutation E159Ain the envelope regiorof the genomethat
rapidy replaed the invading NY99enotype This strain, known in the literature a8/N02, appeared
to enhanceCulex transmission by allowing the virus to invade the salivary glands sooner after
infectionthan the NY99 strainespecially under warm temperatuf89,90] Thereforethe virus that
invaded the westn USAcontained both the NS3 mutation causing hiwyemias andmortality in
AmericanCrows and theE mutation thatmay haveenhancedCulex transmissionas well as other
genetic differencewhose functios werenot well understoo®1].

Climate variation has den an important factor historically driving S¥Eand now WNV
transmissionto outbreak levelsTypically elevatedtransmission has been associated with hot, dry
weatherevents[92]. In urban landscapes with a large percentage of impervious dgouer, high
rainfall volumes result in rapid rem f f t hat tegopu tc’a lwhstebvaatdisysiernso3].
Conversely, drought conditiorstimulateresidenceand parklandscapdrrigation that createa low
vol ume ‘' c udaily refebstingaidérgrdund systems and catch basins withiloishing-out
developing larvamosquitopopulations In addition, drought conditionsay force avian populations
into suburban areas where waterm®re freelyavailable thereby briging competent hostinto
contact withcompetenturban vectorsDrought conditions typically are associated with elevated
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temperatures(http://www.pmel.noaa.gov/tao/elninoffanastory.htm), and these conditions are
further exacerbatedby urban heat island formatid@4]. Because mosquitoes are poikilothermsjrthe
body temperature approximates ambient conditions, althdDglex may behaviorally adjust their
temperatureby seekingdaytime refugia andaltering eveningactivity rhythms[95,96] In general,
warm temperatures inease the rate of larval development and reduce generatiofSihehereby
rapidly increasing mosquito population sjizmndredudng the duration of the gonotrophi@8] and the
extrinsic incubatiof99] periods. Thereforeduring warm temperature anomaliéiserefrequentlyare
morefemalemosquitoestaking more frequent blood meatisereby increasing Isbvector contact and
the probability of infectionandinfected females arable to transmivirus earlier in adulteproductive
life [100] than during cooler seass The dramatic shortening of the extrinsic incubation periyd
warming temperaturealso compensates for theoncurrentdecrease iradult survivalwith warming
temperaturg101]. The impact of warntemperaturdas bea most noticeable in the USairie states
wherethe incidence othumaninfection markedly increaseduring warm weather anomaljesich as
experienced 2012 EFigure3).

Figure 3. West Nile virus activity and climate analomies in the USA during 2012. West
Nile cases:(A) Distributiory (B) reported case incidence per 100,000; Seasonal climate
departures from the 1950995 average fothe JarNov 2012 period:(C) temperature

in °C, (D) precipitation in cm(Pleaseconfirm theFigure3 andFigure4)

Temperature Anomalies (C)
Jan to Nov 2012
Versus 1950-1995 Longterm Average

-3.0 -20 -1.0 0.0 1.0 2.0 3.0
Precipitation Anomalies (cm)
D Jon to Nov 2012
Versus 19501995 Longterm Average

http://www.cdc.gov/ncidod/dvbid -
/westnile/surv&control.htm T

2460 ~400 340 ~280 20 166 ~105 45 5 w5 46

http://www.esrl.noaa.gov/psd/data/usclimdivs/

Landscape heterogeneity has had a marked impatheo distribution ofvector andavian host
populations and therefoM/NV transmission Epidemiologically, thegreatest number afases have
been detected in urban aremserethe most peopleeside whereas the risk of infection as expressed
by caseincidence has been highest in rusaéas with low human population densisuch as the
northcentral prairie states.Frequently, the distribution ofirban human cases has been delineated
spatially by high mortality rates among periurban or urlganvid populations, especially American
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Crows[102]. All corvids produce elevated viremias and frequently succumb from inf¢620103]

and this provides &irus source foreffective vector infection especially when the birds are ill, less
mobile and less defemne. In one case control studyesidences with deacbrvidsreported on their
property were 19.8 times more likely to also have infected mosquitoes than residences without dead
corvids [104]. When the number of dead Americadrows around a largeommunal roost irLos
Angeleswasdelimited spatially using SatScastatistics, theCx. quinquefasciatusiinimum infectin

rate was 8.0 per 1000ithin areas circumscribed yjeadcorvid clusters as opposed to 2.1 per 1000
outside oftheseclusters;alsg only 41% of the human population resided within clusters of dead
cowids, but 75% of thdaboratory confirmechuman cases wemreported fromwithin these clusters
(incidence within = 5.9, without = 1.3 per 100,000 populati@spectively [105]. As pointed out
previously, trasmission within these urban areas with reduced avian species richness tends to be more
efficient than in rural areas with high species richness, because more blood meals are taken from
competent hosts. This was shown in recent surveySutdéx blood meal bst diversity[67], where

blood meal host species richness in urban Los Angedsshalf that observed in rural wetlanusar
Sacramentowhere almost every other blood meal came from a different host speciading many

that were incompetent hosts for WNV

4.3. Movement

The rapid dispersal of WNV throughout the New World from@¥ Los Angeles and from
SaskatoonCanadato Buenacs Aires, Argentina,wasunexpecteddemonstratethe inability of public
heath interventions to contaimanvadingvectorborne zoonosegd 06], and may have occurrez/en
faster tharrecoded by surveillance program$ased on an analysis of genetic change in time and
spaceamong available isolatd27]. Long distance movement of WNV initiallwas attributed to
migratory birds [28-30], and in support viremic migrants were collectedrepeatedly during
soutlboundflights from temperate transmission f46b,58,107] In contrastfew infected birds were
deteted during northbound flights from the tropi¢407,108] thereby questioninghis as a
mechanism ofapid east to west movemeit.addition, although evidence of WNV presence has been
reported repeatedlyn the Neotropics and Caribbed®)], foci of human or equine disease have not
been detectedndicating limited amplificatiorio levels allowing tangential transmissi@amd therefore
a limited sourceof virus to be insered into northbound migrantsSubsequent modeling studies
indicated that rapigast-westdispersakould resultfrom postnestingmovementoy resident birds and
perhapshostseeking bymosquitoed109]. During 2004,for example the movement of WNV from
the Los Angeles Basiacross the Tehachapi Mountains antb the Central Valley of California
occurred after the arrival of Neotropical migrants, but concurrent pottfledging dispersalby
resident birds such as Houseches[110]. Mosquito movement by prevailinggorm trackg111] also
would not seem important fazastwestWNV dispersalpecause weathdérontsin NA typically move
from west to east and opposite to the dispetgattionof WNV. An unknown was the possible role
of commerce moving infected mosquitoes by ground or air transpiwetinfection of a Los Angeles
International Airport employee with WNV in 2002 before the detection of WNV in California by the
surveillance program in 2003 may have indicated the long distance transport by an infectious mosquito
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5. Virus Persistence

Establishment of WNVand its subsequent dispersal througit the New Worldwas contingent
uponvirus survival overtemperatavinters, when transmissiois interrupted and cold conditions drive
the mosquito vectors into diapause or quiesceBecessful gerwinteringof a tropical African virus
in the cold temperate NE USA was not expected, especially since evidence in temperate Europe
indicated that the virus did naygpically persist between seasoeusd requirede-introduction[112].
Other tropical flaviviruses transmitted by Africamosquito vectors such as yellow fever virus
historically have been a recurring health proldémthe NE USA, butdid not overwinter andequired
annual reintroduction[113].

WNV persistence was achievaabst likely either by longterm mosquitcandbr avian infections.
Culex pipiens the vector of WNV inlhe NYC area,is capable of entering a facultative diapa{3g]
and was well-adaptedto surviving winter conditions Previous experimentshad shown that lie F1
progeny of infectedCx. pipiensfemalesmay become infected verticalljl14], thereby providing a
mechanism for inserting virus into the next generation wittiwegeF1 females taking blood meallf
these vertically infected femalesnter diapaugquiescencein response to cool temperature and
shortening day lengtduring late summer/fallthen thiscould provide themechanismfor infecting
female mosquitoes collectafNV positive during winter[115-118]. The following spring when the
weather warms, WNMWheoretically replicates and these infected mosquitoes become infectious,
thereby renewing the transmission cyd®oof of principal was provided by laboratory experimgnts
wherethe F1 progeny offield WNV-infectedCx. pipiensfemales were induced to enter diapause,
d i a p aamngnated ‘the following ‘spring, and these F1 female progerfed on hamsters that
became infectefll19,120] Recent ield studies provide evidence ofrequentvertical transmission by
infectedfemales collected during late summer and[fe2(].

WNV also has been shown tpersist as long term infections in avian hosts that suracwde
infection. Viral RNA initially was detected in kidney and splegssues from multiple species of
experimentally infected passeeis that were necropsied&weeks posinfection [122]. Subsequent
studies showed that RNA could persist for up to 8 months in both experimentally and naturally
infected bird4123,124] and that these infections may explain litveg termpersistence of higtitered
neutralizing antibody125]. In agreement, WNV RNA was detected repelgtaa the sera of some
birds up to 7 weks postinfection[126]. In contrast, birds experimentally infected W&hEV rarely
established persiit infections and neutralizing antibody titers frequently declingpidly over
time [127,128] Based on the frequency distributionsgb¥T-PCRCt scoredrom kidney tissuesested
for WNV from dead birds subitted by the publi¢ chronic infectionswith WNV seem to occur
frequently in natureespecially among Houdgénches, Housé&parrows and AmericaRobins[129].

The significance of these findingemains uncertajrbecause viruboundwith antibodywas not able

to infect mosquitoes[84]. However, ariation in immune status could playr amportantrole in
recrudescencéor exampleexperimental ifection of RockDoveswith WNV showed thasomebirds
develod intermittent virenms over time and that antibody titers increased following detection of
infectious virus in serfl30]. In agreement, imperfectly antibodypundWNV was able to infect a low
proportion of susceptible mosquitog®!], indicating that immunosuppression related teinfection

or the stress of territorialitgndn e st i ng during spring could allo
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blood feeding mosquitoes. Other avian pathogens transmittedul®x spp. such asPlasmodium
relictum,somehow detect seasons and utilize a vernal recrudescence to renew summer trafis3tission

Continued transmissioduring winter provides an alternate means of virus persistence at both
northern ad southern latitudes\t temperate latitdes where mosquitoeseainactive throughout the
cold winter months,WNV has beendetectedrepeatedly indead birds.In upstate NY WNV
transmissiorwas found tacontinue at a communal Americ&now roost by birdto-bird transmission,
possibly through fedeoral contaminatiorifecesunder the roosivere positie), preeningectoparasites
testedpositive), andor cannibalism of carcassédead birds were positiy§l32]. Bird species positive
during winterfrequently have been corvids or raptos33,134]that mayhave beeninfected orally,
perhaps by eatingcute orchronically infected birdsAfter WNV became established aouthern
latitudesin the USA infected bids and mosquitoesere collected throughout the winter months in
southernCalifornia Figure 4) and Texad135], and sentinel chickens in Floridaere found to
seroconvert to WNV and SLEV throughout the ye@ttp://www.doh.state.fl.us/Environmént
medicine/arboviral/surveillance.hjmAlthough difficult to separatdrom patterns ofprogressive
vernal warming at increasing northern latitudes, northbound migrareppear toacquire WNV
infectionsduring migrationat southerrtemperatdatitudes andhen transport virus northward during
spring. For example,northbound birds collected along the Pacific flyway in the Central Valley of
California had higher infection rates thdmosecollected at stojpver points along the Salton Sea near
Mexico [108,136] Similar findings were reported for the Mississippi and Atlantic flyways for
WNV [107] and other arbovirus¢$37,138]

Figure 4. Seasonalactivity of West Nile virusin (A) Coachella Valley andB) Los
Angeles, Southern California summarized from 2808 1. Graphs plot the total number

of mosquito pools tested and pos for WNV per month.Mosquitoes were collected
hostseeking at C@traps or attempting oviposition at gravid female traps and therefore
were reproductively activeRed arrows show months when there were no WNV
positive pools.
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6. Outbreaks
6.1.Onse of Amplification

The mechanisms and exact timing) the onsetof vernal transmissiomemain obscure, because
transmission is inefficierand infrequentamplificationslow, andvirus difficult to detectat these low
levels In California,for example WNV can be detected in an occasional dead bird or mosquito pool
in December or January, followed by a perio@¢@dsatioruntil May or Jung122]. However, i cannot
be certain if hese occasional positive sp@einsrepresent the elongated endtloé fall transmission
seasonwinter persistencer transmissiongr the onset of newernaltransmission eventsor Culex
mosquitoes that enter winter diapause, the transition in photoperiod after the winter sofpstaes &0
stimulate juvenile hormone production and ovarian development thgsteng arrest at ovarian stage
I-11, characterized by associated changes in ovarian morphonjgli®;439,140] This transitionfrom
diapauseto the arrest stagand the initiation of hosteeking appears to be temperature dependent,
occurring shortly and abruptbfter the winter solstice late December at southern latitud®41], but
later and more gradually at more northern latitudes8,142] It is not cleay however,if diapause
terminationactually marks the onset of transmission, becausetically infectedand overwintering
mosquitoes typicallycontain minimal amounts of virughat is often difficult to isolat¢116,118]
indicating that warming and considerable replication is necessary prior to transmissioral
replication may be exceedinglyslow at this time because fewhoursflays exceed the 14.3C
developmental threshold for WNVesultingin minimal heat accrualntil summerhot spellsand the
increase in nocturnal temperatsifd43]. By comparison Culex quiescence isiot constrained by
photoperiod andwinter blood feedingactivity may be facilitated by warmperiods However, a
concurrentautumnabvinter cessation andvinter/vernalinitiation of WNV transmissionseems to
occur at southern latitudesuch as Los Angeleswhere Cx. quinquefasciatusis the primary
vector [144], because temperatures are too cold for efficlf{lV transmission In general,
transmissiorin most of the UB seems constrained until the warm summer permaast likely due to
the thermodynamicsf transmission efficiency described abowlthough the slopes of the
amplification curve was generally simildfifure 4], peak activity occurred a month earlier in the hot
dry desert of Coachella Valley than in cool coastal Los Angeles.

Alternatively and coincidental with theénitial detection of WNV during May/Juneyirus may
persistin avian hostandthenrecrudese in associabn with the nesting seasomemperatures at this
time are usually sufficient for virus replication in the mosquito ,ibsteby enablinghe possibility of
transmission andesulting amplification. However, as discussed previoushdditional research is
needed becausethere are no data to indicate thafections in previously infected birdsever
recrudesce andevelop virenias sufficient to infect hosteekingCulex[126].

The level of virus activity during the previotrmnsmissiorseasorseems to dictate the probability
of viral amplification to outbreak level®uring theinvasionphase of the@n-going epidemic WNV
typically assumed a three year cycle, with quiet invasion during grearexplosive amplification to
outbreak levels during ye&wo, andsubsidence during ye#liree[21]. The frequency with which this
pattern has been repeatied some investigators to suspect that WNV was actually introduced into
NYC in 1998, but was not recognized until 198ubsidence during year 3 actuathay commence
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during outbreak yeaf dueto theacaual of herd immunity immaintenance hogiopulatiors such as
HouseFinchesand House Sparrowsand the depopulation of amplification hosts such as American
Crows [34,35,144] In Los Angelesfor exanple, the termination of the 2004 outbreakpeared to
commence duringSeptember2004 soon after antibody prevalencein peridomestic passerines
collectively exceeded 25%il44]. Subsequentos Angelesoutbreaksduring 2008 and 2011 followed
peri ods wh e nakaher) immunity tidcreas#ko’ less than 10%68]. In agreementthe
large almost nationwideresurgentWNV outbreak during 2012, with the epnter in Dallas, TX,
followed severayears of minimal virus activityhiat undoubtedly allowed flock immunity to be diluted
by recruitment and theatural turnover ratef immune birdsUsing genetic methodshis subsidence
periodoptimisticallywas heraldeas thewaning of the current epidem(it45]. The size andmmunity
level within competent avian host populatiosgspecially critical during early springecauseat this
time Culexfeedalmostexclusively on passerine birf86,77,146,147hat were potentially exposed to
virus during the previous seasoim addition, immune parental birds transfer immunity to nestlings
through the egg further preventimg at least delayingransmissionSo eventhough host selection
favors feethg on competent hosts dng the springperiod, low flock immunity levels seencritical

for efficient virustransmission and amplificatig68]. Delay until naivenestling are available seems
to retardamplification untilsummertherebyinhibiting largeoutbreak genermn [148,149]

Climate variation is also criticdbr vernal amplification Warm winters and early terminatiaf
mosquitooverwinteringseento lead toearly seasomirus amplification.As described previougl with
warmer temperatures, there are more vectors, biting more frequirelyto shorter gonotrophic
periods,potentially transmitting virus earlier in adult life, leading to rapid amplification of virus to
outbreak levels earlier during the transmissseasorthan during cooler temperatur&his results in
more frequent tangential transmissioh virus to humans especially as vectsrshift avian blood
feeding patterns to feed more frequently on mamnials,146,150] Anthropogenic factors
undoubtedly influencetransmission during theseutbreaks. Summer lat waves contributdo
tangentiatransmissiorby altering human dregtess clothingvornwhen it is hotexposing more skin
surface to mosquitoesnd behvior (tendency to postpone physical activitiggil after sunset when
vectors are actiye Often in summer manual labor associated with agricultured other outdoor
activitiesare shifted to after sunset and during the keestking period of the primamector species,
such asCx. tarsalisand Cx. quinquefasciatuf96,151,152] In contrast, ¢levision viewing and air
conditioning combine to keep people indodmshind closed windowsind thereby may serve as
important protective measures limiting hestctor contacand infection153]. However, h maritime
or northernareas withinfrequentwarm spells, few homes have awnditioning and peopléherefore
may spend more time with open windows or outdodusing hot weatherthereby increasing
vector contact.

6.2.Economics andHeath Priorities Impact Transmission Dynamics

The economic crisis iNUS real estate starting in0OR6 led to marked increases in home
abandonment during 206Z008.In Bakersfield,CA, for example, there was a 300#crease irthe
notice of delinquency from thé“juarter of 2006 until the'3quarter of 2007, and thiacreasevas
associated with aomparable and concurremcrease in the number of human cases of WNV,
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attributed to a undetected increase ithe numbers ofabandoned and unmaintained swimming
pools[154]. Interestingly, thisalteredsuburba/urban landscape dotted widrgesized larval habitats
was exploited by the rural vectdZx. tarsalis as well as the urban vect@x. quinquefasciatushe
extent of this problem was revealed subsequently using aerial photography and satellitg [(b3&der
triggeringtargeted intervention.

The extent and type ahosquito control also majmpact outbreak evolution and pattertn
California, most mosquito control districts employ surveillance directed latuwatments thereby
continually pressuring vector populatioasd reducing adult abundan@dthough these methods and
improved water management seemed to have eliminated WEEV and SLEV, WNV has remained
public healthproblem since its introduction durg 2003 Different agencies in different area$the
staterespond to surveillance data differentproducing different patterns of virus recurreread
human infection(Figure 5). In Los Angelesfor example,aerial adulticide applications are almost
impossible because of the number of large airp@isl complex air traffic control issueand ground
applications are complicated by traffic problerktere, districts respond by public education and
enhanced larvicide applicatigrisut these activitieseemto allow avianflock immunity to increase
andperhapgpreclude amplificatiomluring years immediatelgubsequertb outbreakg68]. In contrast,
in Sacramentothe mosquito controlprogram respong rapidly to escalating risk by extemd)
surveillance to delineate theatial extent oftransmissionand thenby focusedaerial adulticide
applicationsto interrupt transmissionrhese applications seem effectiver@ducing transission to
humang156,157]and perhaps to avian $is as well, therebgrecluding elevateiock immunity and
allowing effectivevirus amplification during subsequent yea#s.similar pattern was observed in
Bakersfield, buthere the bifurcation of mosquito infectiomtesand human cases was relatedapid
ground adulticide response to surveillance data as well as an intensive program to locate and trea
unmaintained swimming pool3.hese activities seeto have lowered mosquito abundance and the
probability of human infection, but have not altered guat® infection rates.

Elsewhere in the USA, mosquito control programs frequently are a part of local health departments,
and therefore focus and funding is often diverted by complex and changing health prideties.
outbreak response may be delayeeduse skeletal surveillance may not recognize the intensity of
amplification and limited resources are available for prompt interveriorergency control delayed
until a marked increase in human disease incidence is recognized, typically is toglatedtb much
of the public as well as limit avian infectiohhe following season surveillance and control typically
attracts more fiscal support, but with elevated avian immunity and enhanced control, repeat outbreaks
rarely ensug21]. Again, with waning transmission and health impact, resources become diverted and
avian populations recover, setting the stage for subsequent outbreak transmission, similar to as
observed in Dallas, TX, and elsewhere during 2@dhtinued enzootic surveillance remains the only
method of detecting amplification and directing timely intervention to protect the public health.
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Figure 5. Annual number of human caseslanosquito infection rate pef@0 tested from
2003-2012 for the(A) Greater Los Angeles County Vector Control District [GRLA]
(B) Kern Mosquito and Vector Control District [KERN] an@) Sacramentorolo
Mosquito and Vector Control DistricSAYO]. Mosquito infection rate was calculated by
the maximum likelihood estate (confirm the quality of the figude
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7. A look to theFuture

Hostvectorvirus transmission systenae dynamic antlypically evolveover time andthis seems
to be occurringwithin the WNV-transmissiorsystem As indicated the invading virus acqred and
retainedat least onesignificant mutation thatmay haveenhanced vector competence and perhaps
transmission dynamics under warfh58], but not necessarily moderaf&59] tempeatures.In
California, experinental infectiors of HouseFinches an importantmaintenance hostjomparing the
replicative fitness phenotypeof the invadingWNV 2003 straincarrying a temperature sensitive
allele [160] agairst WNV isolates from four biomes made 20072008 indicatd that the fourding
strainhasbeen replaced bsnore competitive strainas the virus invaded areas of California such as
the Los Angeles Basin and the Central Valley where amplification in cpogdlations was important
for transmission(Worwa et al., unpublishedl Interestingly, thereseens to be little concurrent
selection forviral changein replicative fitness ilHouseFinches from the SE deserts or feplication
within the vectorCx. tarslis. In addition, repeated estimates of thedvirus dose required to infect
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50% of exposed mosquitoes) among fi€ldlex populations for the NY99 strain of WNV during the
invasion of California[161] indicated that there wasiinimal concurrent change ithe vector
competence®f Cx. tarsalisandCx. pipienscomplexfield populationsandthatthese changes were not
associated with outbreaks of human disehseontrast, progressive sweeps throsghceptibleavian
speciespopulationsseem to have selected for resistant phenotypbis. notion was supported by
reduced viremia and mortality among HouSparrows and Housd-inches during successive
experimental infection studig¢$03,123,126,162{Worwaet al.unpublishefl Among birds submitted

by the public during the 2032011 seasons, these two species also showed a greater frequency of

chronic than acute infections as indicated by ¢ROR Ct scores at necropsydicating the frequent
natural survival of acute infectidi29]. In addition, Americarcrows have beenollectedwith WNV
antibodyand some dead crows have shown elevg®BPCRCt scoresperhapsndicating theyalso
survived acute infection and died of other causksen chronically infectefll29]. Collectively, these
data may indicate adaptive chamsg@ avian populationsthat could reduce the efficiencygf
transmission unless offset ligcreases irthe viruss ability to infect vector populationglowever,
regardless of these appat trendsthe dramatic resurgence of WNV during 2012 certainly indicated
that theWNV-transmission system hasmainedsufficiently intact throughout much of the US#
supportwidespreadepidemictransmission

Figure 6. Number of human cases ofNV reported by the Canadian government per yeatr,
2003-2008, and the mean monthly temperature in Regina Saskatchewanfam the

50 year average [1952000], 2003 and 200Horizontal line in bottom panel shows the
14.3°C threshold for WNV replication.
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Regadless of the causal mechanisms and projected rate of temperature change, the earth is
becoming warmer, especially at northern latitudes, and these changes will facilitatebeecéor
pathogen transmissioEpidemic transmission of WNV in the Canadianipeaprovinces with the
epicenter in Saskatchewan may serve to illustrate this sceragiorg 6). Surveillance in Canada
recorded epidemics during 2003 and 2007, years when the meaumider temperature in Regina,
Saskatchewan, averaged almostCalove the previous 50 year averagéis warming dramatically
increased the duration of the transmission season when temperatures were above ti@ 14.3
replicative threshold for WN\99] from 3 months on average 5 and 6 months, respectively, during
the 2003 and 2007 epidemic yeakithough less dramatic, similar warming trends would be expected
to elongate the transmission season and allow efficient transmission in cooler maritime habitats along
thecool USWest Coast or at higher elevatiohsn Cal i forni a, the infecti
in the Lake Tahoe area at >1900[163] was unexpected, but may serve to illustrate the impact of
warming trends on the distribution of transmission.

At present, options for public health intervention appear limited to surveillance directed prevention
or emergency responses bgganized mosquito control agenci&urveillance is needed to monitor
WNV activity levels within the basic bir€ulex transmission cycle to anticipate when and where
tangential transmission to humans is likely to ocduh e * f i sc al c | and rfelated t h e
national financial problems have combined to seriously alter the US budget devoted to arbovirus
surveillance at the national and stateels and therebylirect timely control. WNV has seriously
impacted human, animal and wildlifedth and ost the US hundreds dfillions of dollars in medical
costs and emergency interventidine virus isnow firmly established throughout the continental,US
remains capable of widespread resurgence as seen in 2012, and most likely will continue to recrudesc
whenever environmental conditions support efficient transmissioflowever, WNV will most
assuredly not be the lastvasive or reemergingarbovirusthat public and veterinaryealthagencies
have to cope withThis is especially problematidecausamnost current surveillance systenarget
laboratory teting specificallyfor WNV. Although this allowsfor high throughputdiagnosticsuseful
for intervention decision support, these programs will not find what they are not lookirg.dqr
other virusesAs with WNV, the establishment atherexotic mosquitovectors such ashedesaegypti
in the Central Valley of Californiand Aedes albopictushroughout the Eastern US&nd now Los
Angeles elevatethe risk for the successfuintroduction of associatedviruses such as denguer
chikungunyathat have resurgedglobally and have been repeatediyroduced by traveleraithin the
US[164]. Current | vy, i mproved housing and an ‘“indo:
autochthonous transmission aestablishmenfl65], butthechangs necessary to 't
favor of these and othevirusesare unknown.
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