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Abstract: The segmented genome of an influenza virus is encapsidated into ribonucleoprotein
complexes (RNPs). Unusually among RNA virysedluenza viruses replicate in the
nucleus of an infected cell, and their RNPs nthstrefore recruit host factors to ensure
transport across a number of cellular compartments during the course of an infection.
Recent studies have shed new light on many of these processes, includegutagon of

nuclear exportgenome packaging, meanisms of virion assembly and viral entry and, in
particular, the identification oRabl1l orrecycling endosomes askey mediatoof RNP
transport and genome assembly. This review uses these recent gains in understanding to
describe in detail the journ®f an influenza A virus RNP from its synthesis in the nucleus
through to its entry into the nucleus of a new host cell.
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1. Intro duction

Influenza infections are caused by members of the orthomyxovirus family. Thetbeistd genus
of the family is the influenza A viruses, the leading cause of influenza in humans and in a wide range
of mammals and birds. Influenza B and C virudse aause influenza in humans and in a more limited
range of mammals, and distinct clinical or veterinary diseases are caused by the other genera of th
family, the Thogoto, Quaranfil and infectious salmon anaemia viruses [1]. The genomes of
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orthomyxovirugs are composed of singgeranded, negativeense RNA, which is divided into
multiple segments (eight in the case of influenza A viruses). Each segment is encapsidated by viral
proteins into a ribonucleoprotein complex (RNFRgure 1). Unlike the majorityof RNA viruses, for

which the replication cycle is confined to the cytoplasm, in the orthomyxovirus family RNPs enter the
nucleus of an infected cell to transcribe and replicate. As a result, a-sywhesised RNP must be
transported through a numbera#llular compartments, as well as between cells, in order to complete
a cycle of infection (Figres 2and3). This requires the RNP to interact with multiple cellular transport
systems, and a number of recesilyblished studies have significantly increased our understanding of
the mechanismthat transport th&NP through different stages of its journdw this review, we will

follow the course of an influenza A virus RNP from its synthesis in the nucleus of an infected cell
through to its entry into another cell’”s nucl
recruits for transport along its way.

2. RNPs: The Basic Units of Orthomyxoviruses

The virions of orthomyxoviruses are involved only irsiagle stageof the replication cyclethe
passage of RNPs from cell to ¢elhd are disassembled upon viral entitye viral RNPs, by contrast,
maintaintheir structural integrity from their synthesis in the nucleus of an infected cell through to their
entry into the nucleus of a newiyfected cell[1]. RNPs are the minimal replicative units of
orthomyxoviruses. When reconstituted in cells they are capattranscription and replication in the
absence of other viral proteins{&, and reconstitution of a full set of RNPs is sufficient to initiate an
infection [6-8]. The virions themselves are pleomorphigpically do not contain enough functional
RNPsto produce infections particles without additional RNPs fromrindecting virions and, in a
co-infection, can package RNPs derived from different strains (discusSadtion 4.4, below)Thus
it is the RNPs, rather than the virions that temporarily @ionthem as they pass between cells, that
provide the basic units of an orthomyxovirus.

Structurally, each RNP consists of a segment of sisiginded negativeense RNA, with the
terminal sequences of the RNA bound by a trimeric Ri¢fiendent RNA polymase and the
remaining sequence bound by multiple copies of nucleoprotein @ijure 1a,jl Bound NP
oligomerises into a doubleelical, rodshaped structure [9,10]; a basic gromrethe NP molecules
binds thephosphatdackboneof RNA without sequence sgificity, leaving the RNA bases exposed
(Figure 1d)[11,12].
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Figure 1. The influenza A virus ribonucleoprotein (RNHAhe negativesense RNA of the
influenza A virus genome is divided into eight segments, each of which is encapsidated
into an RNP. Electron micrographs showfapa negativelystained RNP an¢b) longitudinal

and(c) trarsverse views of budding virionscale bars are 50 nm. () and(c) a complex

of eight RNPs is visible as dark rods or ddi$) Diagram of RNP structure. The NP
backbone is based on reference [9] (PDB 4BBL, illustrated using the Python Molecular
Viewer [14]); the polymerase and viral RNA, including the terminal promoter structure
bound by PB1, are shown schematica(y.f) Locaisation of RNPs in an infected cell.
Infected cells were fixed at 7(e) or 11 h(f) postinfection, and labelled with antibodies
against RNPs (redj and iv) and the Rabll isoform Rabl1A (greéin,andv). The
selected regions are enlarged 3x in frames andvi. As the infection progresses RNPs

are exported from the nucleus (N) and associate with Rabl11 in a perinuclear region for
transport across the cytoplasm, then dissociate from Rabll at the plasma membrane
(arrow).Images in(a) reprinted from15] with permission from Elseviein (b, c) adapted

by permission from Macmillan Publishers Ltdature[16], copyright 006 and in(e, f)
reproducedrom [17] with permission from American Society for Microbiology.
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3. Orthomyxoviruses: The Nuclear Family

Having RNPs enter the nucleus to transcribe and replicate provides orthomyxoviruses with a
problem, but also with a number of advantages. The problem is that of crossing the nuclear envelope
Passage across the nuclear envelope takes place throcighrnpore complexes (NPCs) and for
structures larger tma20-30 kDa this is a tightly regulated process mediated by nuclear transport
receptors, collectively referred to as karyopherins, that shuttle backwards and forwards through the
NPC under thenfluence of a concentration gradient of RamP [13] To gain entry to the nucleus,
viral proteins must contain nuclear localisation signals (NLSs), which are bound in the cytbglasm
karyopherinsknown as importins and released when the importins hassed into the nucleusdin
bind RanGTP. Crossing in the opposite direction requires a nuclear export signal (NES) that is bound
by an exportirRanGTP complex in the nucleus and released, along with@GER, in the cytoplasm.

To exploit the nuclear compganent, orthomyxoviruses must interact with these import and export
pathways. Functioning within the nuclear compartment has advantages for both transcription and
replication. Replication within the nucleus allows viral RNA to be encapsidated into RN#ts kief
encounters the cytoplasmic RNA receptor retinoic acid inducible gene 1-IYRA@& triggers an
antiviral responsg18]. Transcription within the nucleus allows RNPs to associate with host RNA
polymerase Il (Pol I1J19-22], ensuring that they are Wi 0 s i t i 0 nerda tt coh , ' 'shatpl e a \
sequences including the cap structure from nascent host mMRNAs asthg these as primers foiral
transcripts. Cagznatching allows viral proteins to be translated and the resulting degradation of host
trarscripts, along with an increase in Pol Il degradaf&#+25], leads to host shutoff26]. In addition,
positioning viral transcription at the site of host transcription allows the virus to exploit host pathways
of MRNA processing and export and to expahd coding capacity of the viral genome through
splicing[27]. Splicing has been observed in transcripts from all orthomyxovirus genera [1]. In the case
of influenza A virusspliced transcripts are generated from segmenod produce the M2 and M42
protens[28,29]) and segment @o produce the nuclear export protein (NEP) and [8831).

4. From Synthesis to Virions

The assembly of a new RNP and its transport within an infected cell is illustrated in Figure 2 and
described below.

4.1. Synthesis

Synthesis of a new RNP requires replicatiohthe viral genome, as well d@sanscriptionof the
genomeand translation othe viral proteinsthat will encapsida the genomeTranscription is
performed by RNPs within the nucleus which copyirtheegativesense viral RNA to produce
positivesense mRNA. Influenza A virus infection inhibits rcanonical translation in the nucleoli but
not the low levels of neranonical translation that can be detected elsewhere in the nucleoplasm, and
it is therebre possible that some viral proteins are synthesised within the nucleugBd2$etiowever,
the majority of protein synthesis in infected cells appears to occur canonically within the cytoplasm
[32] following mRNA export (reviewed irf27]). This leavesthe problem that newly synthesised
polymerase subunits and NP must be transported into the nucleus for the RNP to assemble.
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To achieve this, the polymerase subunits and NP all contain NLSs (revie{@&])iThe importins
of different species differ sligly in their binding preferences, and consequently NLSs are among the
sites that mutate as influenza A viruses adapt to new host sfresiesved in[34]). Interactions with
import factors are used to chaperone RNP assembly and limit it to the nuclgaerrtoent. The
polymerase acidic (PA) and polymerase basic 1 (PB1) subunits are only efficiently imported into the
nucleus after forming a dimer in the cytoplasm, whereas the polymerase basic 2 subunit is imported
separately and may undergo a conformatiahange on importin binding that promotes its binding to
the PBXPA dimer [35-40]. Influenza viruses recruit cellular chaperones at various stages in their
replication cyclg41-44], and nteractions with importins have been proposed to chaperone PB1 and
NP prior to RNP assemb[$3,45,46]

Transcription and replication are two distinct modes of RNP function (review§l7jh Both
involve copying the negativeense viral RNA (VRNA) to produce a positisense reverseomplement
A transcribing RNP produsea partial copy of the vVRNA template, which is capped and polyadenylated
In contrast, a replicating RNP produces a-fatigth complementary RNA (cRNA), which must be
copied again to produce a new copy of the VRNA. Nesyiythesised VRNA is encapsidated
co-transcriptionally by a viral polymerase and free NP to form an [RI0F48] Early in infection
transcribing RNPs dominate, with replication becoming more common as the infection progresses
[25,49] What causes an RNP to replicate its RNA rather tremstribe it is unclear, though a number
of factors have been implicatgdl7]. Recent studies suggest that the two modes of activity differ in the
source of the polymerase. Transcribing polymerases can functics, inopying the RNA of their
RNP. Replicabn, by contrast, requires a free polymerase, such as that assembled from newly
translated and imported virgroteins[50]. The cRNA-containing RNP appears to be a replicative
intermediate and does not accumulate to high lefgdls53]. While cRNA-containing RNPs do not
appear to be exported from the nuclgas], vVRNA-containing RNPs must be exported if the infection
is to proceed.

4.2. Nuclear Export

As the infection advances other viral proteins also accumulate in the nucleus. The matnx protei
M1 contains an NLY55], and its import into the nucleus and SUMOylation allow it to bind the
newly-synthesised RNP through interactions with &el possibly also with viral RNfS6-60]. The
nuclear export protein (NEP) is only 14 kDa in size and semallgh to pass through the nuclear pore
without binding to importinsit binds in turn to M161-64]. NEP contains two NESs, both recognised
by the exportin Crm]65-67]. M1 andNEP link the RNPtoCrmx hough a ‘dai sy <c¢h
(reviewed in[68]). Additional roles in mediating nuclear export have been suggested for NP and
M1 [69,70], both of which have recently been shown to contain NESs recognised by iG@rudifion
NP hasbeen reported to havevd CrmZindependent NESH)1,72] Crml is actiated for nuclear
export by binding to RaTP, which is generated in the nucleus by the chrorltimd Ran guanine
exchange factor RccPrior to exportRNPsare tethered tthe same regions of chromatin as Rcat
association which presumabtycreagsthe efficiency of nuclear expd3].
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Figure 2. Transport of an RNP from synthesis to packagiBghematic showing the
synthesis and transpost an RNP within an infected cell. Viral proteins drenslatedn

the cytoplasm and imported into the nudepottom left). Here, some encapsidate
replicating viral RNA, forming RNPs, and others bind to thessvly formed RNPs.
Assembled RNPs are exported from the nucleus and attach to recycling endosomes (RE) at
the nuclear periphery. On REs they associatertm complexes and are transported away
from the microtubule organising centre (MTOC) to the cell surfaop).( At the cell
surface, complexes of RNPs are packaged with other viral proteins into virions, which can
be spherical or filamentous in morphojo&ee text for further details.
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The nuclear export of RNPs is a regulated process, with a number of separate mechanisms
promoting export at late time points in infection. The progression of infection triggers the apoptotic
pathway, promoting RNP expothrough the activation of caspase[?4,75] possibly because
activated caspase 3 increases the diffusion limit of nuclear poéésAccumulation of the viral
surface protein haemagglutinidA) at the cell surface late in infection activates the mitegetivated
protein kinase (MAPK) signalling cascafié’], which in turn enhances RNP expfr8]. Although
this effect is presumably mediated by a kinase in the cascade, inhibition of Hveapadid not
detectably alter M1, NP or NEP phosphorylationvivo, and the mechanism of action is currently
unknown [78]. Conversely, although a phosphorylation site on NEP has been mapped to a short
interhelical loop between the two NESs an arrangemensimilar to other proteins in which
phosphorylation regulates the exposure of an NE®e kinase that modifies this site has not yet been
identified [79]. The bestuunderstood mechanism regulating RNP export is the slow accumulation of
NEP during an infeé@n. NEP mRNA is generated by splicing at a weakgice sitgl80], resulting in
a low rate of NEP synthesis compared to protgmserated from unspliced viral mMRNAA recent
study showed that NEP levels correlate with RNP export, and that the stonmdation of NEP
resul ts in a ‘“molecul ar ti mer’ t hat promotes
(Figure 1e,f)[81].

The epithelial cells infected by influenza are polarised, and in order to spread to new cells RNPs
assemble into virions dhe apical plasma membraf&2]. Intriguingly, indirect immunofluorescence
imaging of NP suggests that RNPs begin to move towards the apical surface even before nucleal
export, and accumulate near the apical face of the inner nuclear merf@8hnehe mehanism for
this apical polarisation of the nuclear compartment is unknown.

4.3. Trafficking to the Plasma Membrane

Nuclear export transports RNPs to the perinuclear cytoplasm, where they can be seen to accumulat
by immunofluorescence (Rige 1le) [17,84-87]. This region contains the microtubu@gganising
centre (MTOC) and the accumulation of RNPs here may be partly explaindédbiox Binding
protein 1 (YB1), which binds to RNPs in the nucleus and is able to interact with microtubules after
nuclear expd [88]. The cellular Human immunodeficiency viriev Binding protein (HRB) may
assist in dissociating CrrlRanGTP from the complex, and in facilitating onward trafficking of the
RNP [89]. Near to the MTOC, RNPs are able to interact with recycling emlesqRES) through
Rabll, a GTPase which associates with REs in a-@&pendent manndi7,87,96-92]. The viral
polymerase, possibly through PB2, binds to the active (@dumhd) form of Rabl11, which in turn can
bind to the RE and to various interacting part that mediate vesicular transport to the apical plasma
membrand87,91,92] Rabl11 has two isoforms. To date most studies with influenza have concentrated
on the role of Rab11A, though Rab11B has also been shown to be required for viral replication in a
high-throughput screef®3].

By interacting with Rab1l1l on REs RNPs are able to use the vesicular transport system to move
through the cytoplasm along the microtubule networkuiédle) [85,87,90,91] Disruption of the
microtubule network has been showenreduce apical accumulation of RNB$,87], but it is not the
only means by which RNPs are transported through the cytopfasme RNPs appear to migrate
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slowly away from the perinuclear region by diffusif8v,91,94] whereas others make shoange
movements along actin filamenf87,91] At late time points in infection RNPs accumulate on large,
RablZXcontaining structures adjacent to the plasma memifafje From there RNPs migrate to the
apical plasma membrane, but Rab11 does not transfer with émeinmor is it incorporated into virions
(Figure 1f) [17,95] The RNPs have been released, presumably due to the hydrolysis of GTP
converting Rabl1l-bourwfoimt s ‘inactive’ GDP

In addition to transporting RNPs to the apical plasma membrane, the B&depa platform for
RNPs to come together and interact. Consistent with thidpoadisation of RNPs is significantly
higher when they are bound to Ralj26]. As each RNP only contains a segment of the viral genome,
the chances of a successful infectame greatly increased if the RNPs of different segments can
associate with each other when they are packaged into virkinghe point of packaging (see
Section 4.4, below), complexes of eight parallel and closely apposed RNPs can be observed
(Figure 1b,c). Electron tomography has shown that these are composed of segments of distinctive
lengths, with only a small number of the possible orderings of segments obges\@&&100]. RNA
packaging signals are used to bring specific segments together orqplex (reviewed if101]), thus
increasing the likelihood of all eight segments being packaged. Packaging signals are known to reside
in the terminal regions of each segment, including both coding andating sequencgd01,102]
and may also involve IRA across the entire length of a segm@%,100] Recenin vitro studies have
shown that RNA bases in the packaging signals interact directly to bring segments t[8yetde}
These i nteractions appear t o result i n a
notably segments 1 and 7, having particular importance #ordioating interactions between
RNPs[101,103-109]. It seems likely that binding to Rabll facilitatdgese specific interactions
between RNPs as it increases their local concentratipgses a consistent orientation on them, and
reduces their movement from free diffusion in three dimensions to lateral diffusion across two
dimensions on a membrafg0].

Until they begin to associate on the surface of REs, RNPs appear to be essentially independent o
each othef96,110] The high error rate of the viral polymerase and the possibility-arifeation of a
cell by more than one virus means that there isidenable diversity in the pool of newtppied
RNPs. At the REs different combinations from this pool can assemble into complexes of RNPs that
comprise different reassortments of the viral genobwring natural ceinfections between closely
related strais this reassortment of the genome has been shown to occur with extremely high
efficiency[111]. It allows influenza viruses to combine rapid genetic drift with the ability to restore
genomes free of deleterious mutations, as in-afextion between virses with lesions in different
segments reassortment allows the restoration of a genome without [@€ibjis2,113]

Reassortment of genomes between distaneliyted viruses within the same genus may be less
efficient, partly because of incompatibilsie bet ween t he v [li4lasdalsd becgusen e |
of divergence between the packaging signals of avian and mammalian y8#8ke#/hen genomes
from distantlyrelated viruses do reassort however, the genetic shift that results can greatbtdacilit
viral evolution, replacing epitopes to which the host has existing immunity and introducing
hostadaptation and drug resistance traits. Genetic shift has played a major part in the evolution of
most modern influenza pandem[d91,115,116]
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4.4. Virion Assembly

As the infection progresses, the apical plasma membrane becomes enriched with viral proteins,
which together cerdinate the budding of virions around the complexes of RM{3sreviewed
in [117], the glycoproteins haemagglutinin (HA) and neni@dase (NA) span the membrane and are
concentrated in lipid raft microdomains. The membrane is also spanned by the ion channel M2, which
accumulates on the boundaries of lipid rafts. On the cytoplasmic face of the membrane, the matrix
protein M1 interact with the cytoplasmic tails of HA, NA and M2 and with the membrane itself. Both
M1 and M2 can interact with RNPs, aHd\, NA, M1 and M2can, when individually oveexpressed,
cause the budding of virdi&e particles. How viral proteins interact duringetformation of an actual
virion is, however, still poorly understood. It is reasonable to assume that in an infection budding is
promoted by the arrival of complexes of RNPs at the cell surface. Indeed, mutations in genome
packaging signals that disruptetfiormation of complexes of RNPs can reduce budding, though this
effect appears to be at least partly-tgtle dependerftl01,104] It has been suggested that RNPs may
mediate budding through interactions with M1. The conformational change of M1 upohiRMNRY
may cause it to polymerise, driving capsid formation, or may reduce the ability of M1 to alter
membrane curvature and so allow for the elongation of a budding event initiated by HA and NA.
However, evidence to support these models is currentlynig¢kl7]. In addition to viral factors, host
factors required for budding include-fisotein and kinase activity, as well as ATPLFoATPase
activity and actin filamentgl18-121]. Rab11 has been shown to be required for budding, though this
may be due to its role in transporting RNPs to the cell suf&%62]. An interaction between M1 and
RACK1, an adaptor protein involved in RE trafficking, is also required for viral budd2)j.

Although the precise mechanism of virus budding is unknasffects can be clearly visualised
by electron microscopy. The plasma membrane, densely packed with HA and NA, extrudes outwards
from the cell. Inside, underneath a layer of M1, a compleparallel RNPs occupies the distal tip of
the nascent viriorfFigure 1b). Electron tomography shows that, despite their different lengths, the
RNPs are aligned at the distal end of the virion, and make close connections with each other within a
‘'t rtainosni zone’ | arge enough to §6,9v98100)Buddimgis t er
completed by membrane abscission, mediated by the M2 pfa&3h In laboratory strains this often
occurs more or less immediately after the packaging of RNR®mirfg spherical virions around
100 nm in diameter. However, in clinical strains many virions often continue the budding process until
they have formed extended filamentdyich still contain only one complex of RNHRsit can bemany
microns in length{16,124-129]. The production of filamentous virions is cgfpe dependenil30]
andhas a particular requirement for actin and for the Rab11 family interacting protein 3 (FIP3), which
interacts with cortical actin through Arf@84,130,131] Despite their appant abundance in clinical
strains, filamentous viruses are rapidly selected against by passage in tissue culture and in
embryonated chicken eggs, and the most widalgied laboratory strains only produce spherical
virions [132-135]. In part because offits, the biological function of filaments is obscure.
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Figure 3. Transport of an RNP from virion to nucleus. Schematic showing viral entry and
the passage of RNPs to the nucleus. Sphetefa) and filamentousright) virions bind to
sialicacid bearing receptors on the cells surface and are imported by clatddiated
endocytosisléft) or macropinocytosisright). The increasing acidity of their environment
(indicated by yellow shadingksults inconformational changes in M2, causinfaifnents

to fragment ight). Changes in pH are transmitted through M2 to the virion interior, where
they cause M1 to dissociate from RNPRe increasing acidity also causes conformational
changes inHA, which inserts ito the endosomal membrane and mexiamembrane
fusion, expelling a complex of uncoated RNPs into the cytoplasm. The complex of RNPs
interacts with the classical nuclear import pathway and dissociates in the nboltosj.

See text for details.
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Extensive studies have shown that influeerfz virions do not typically package more than eight
segments[16,97,98,100,101,136]with each segment typically present no more than once per
virion [137-141]. Studies of lowmultiplicity infections show that the vast majority of virions are not
indepenlently infectious and fail to express one or more viral genes on entering [A02E109]
Interestingly, this effect appears to vary betwesdrains ofvirus—for example, the filamentous
influenza A/Udorn/307/72 virus produces a higher proportion ofyfaflectious virions than the
spherical influenza A/Puerto Rico/8/1934 vifd®9]. Failure todetecta particularsegment could be
due to the packaging od defective RNP, or to inefficient packaging of RNPs. Both of these
deficiencies have been showndocur. As well as point mutations, segments of influenza are subject
to large internal deletions, producing defective interfering (DI) RNA$. Pairwise measurements of
segment cdocalisation suggest that viriomentaining segment 1 package the other seven segments of
the genome very efficientpd41]. However, inferring the true packaging efficiency is complicated by
the hierarchical nature of packagirgegment 1 has a particularly strong influence on the pagkag
of other segmentsandthe efficiency of packaging in any segmédnieficient viruses is likely to be
reduced[103,105,108] Consistent with some degree of ungeackaging,viruses containing only
seven segments can be produced artificially and cadebected in natural infectionNd42,143]
Whether because of incomplete genome packaging or the packaging of defective RNPs, the majority of
RNPs that are packaged into virions will subsequently requirerigtiplicity infections in order to
propagatg109].

Once the virion is released the RNPs have no direct influence on their jofitiey the virion he
complexof RNPs may becomsomewhatdisordered with closelypacked bundles of eight parallel
segments less apparent in viriofts01,136] Despite tis, the RNPs appear to maintain their
association with each other while the virion drifts away from the infecte{P&ll

5. From Virions to the Nucleus

The entry of RNPs into newdynfected cells and their transport into the nucleus is illustrated in
Figure 3 and described below.

5.1. Entry

Influenza virions attach to glycoproteins on the apadl surface, an interaction brought about by
viral HA binding to terminal sialic acids [1]. This leads to uptake of the virus either through
clathrinrdependen receptormediated endocytosis, an ARindependent procesthat utilisesthe
adaptor epsin 1, othrough macropinocytosi§144-148]. The efficiency of uptake is increased by
signalling events triggered when HA binds to receptor tyrosine kij446% Filamentous virions are
too large to fit into a clathricoated pit and must enter the cell through macropinocyf®4i].
Spherical virions can use either route, and the balance between routes of entry appears-tgpee cell
dependat [146,150] Theinternalised virions are trafficked to an endosomal compartment; in the case
of clathrinrmediatedendocytosis by dynamidependent trafficking to a rapidipaturing dynamic
early endosome and in the case of macropinosomes via an unknown, dym@dapenden
route[145,146,148,151]As the endosome maturdbe acidity of the endosomal lumen increases to
around pH 5.2152]. This triggers a number of changes in the virion. In response to increasing acidity,
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M2 undergoes conformational changes that in tuter ahe curvature of the viral membrane,
fragmenting filamentous virions into spherical partidi#44]. M2 also functions as an ion channel,
allowing the virion interior to acidify153]. As a resultthe changing pH causes M1 to dissociate from

the RNPs [154]. Finally, the acidic conditions of the endosomal lumen cause a dramatic
conformational change in HAexposing a fusion peptide. This inserts into the endosomal membrane,
and HA then folds back on itself to britige viral and endosomal membranes ébiger, forcingthe
membrans to fuse and releasing the viral contents into the cytol&SHj. It appears that between a

third and a half of virions fail to escape from the endosome before it fuses with a lysosome and are
degraded156,157] For those thado manage téuse in time, the uncoated RNPs are ejected into the
cytoplasm of a newhnfected cell.

5.2. Nuclear Import

To complete the viral replication cycl e, t h
Transport of RNPs from the endosome to the nuclear membrane appears to rely on diffusion, with
neither microtubules, intermediate filaments, nor actin filaments reqi@eti56] The trafficking &
rapid and RNPs can be detected within the nucleus withm first ten to twenty minutes of
infection[96,156] The complex of RNPs maintains its association in the cytoplasm, only dissociating
in the nucleu$96,158]

An RNP synthesised in a cell and exported from the nucleus is not imported back agaMl 8s its
are masked by itzoat of M1 [154,159,160]and possibly also by additional, Midependent
mechanismg161]. By contrast, RNPsenteringa cellfrom a virionare not coated with Mand are
competent for nuclear impomuclear importof uncoated RNP& mediated by the classical nuclear
import pathway, withthe NP components &®&NPs binding taalphaimporting which in turn bind to
importin 3 to allow nuclear impor{156,162] NP contains at least two NLSs that are involved in
importing newlysynthesied NP [33]. The same two NLSs recruit importins to the RNP, with the
nonclassical NLS1 at the frminus being more accessible within the structural context of the
RNP[161,163-166]. Prior to entering the nucleus RNPs interact with NPCs, and may unskergral
rounds of binding and release prior to nuclear imf#}.

As discusseabove(Section 4.1)the interaction oNP and the polymerase subunitsh importins
is a point of hosadaptationThe interaction of RNPs with importins also varies betwsests, though
in a more complex fashior- for example, a mutation in PB2 associated with host adaptation affects
the ability of the RNP to interact, [16A.r ough NF

5.3. A New Cycle of Infection

In the nucleus, RaG TP binding to the importins displaces them from the RNP. It appears that this
is the point at which the complex of RNPs dissocjdtesugh what triggers this is uncle@6]. Now
independent of each other again, the RN®ad ouinto the nucleoplasrthrough diffusion94] and
begin to transcribe and then to replicate their genes. Another cycle of infection has begun.
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