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Abstract: Viral polymerases are important targets in drug discovery and development 

efforts. Most antiviral compounds that are currently approved for treatment of infection 

with members of the herpesviridae family were shown to inhibit the viral DNA 

polymerase. However, biochemical studies that shed light on mechanisms of drug action 

and resistance are hampered primarily due to technical problems associated with enzyme 

expression and purification. In contrast, the orthologous bacteriophage RB69 polymerase 

gp43 has been crystallized in various forms and therefore serves as a model system that 

provides a better understanding of structure–function relationships of polymerases that 

belong the type B family. This review aims to discuss strengths, limitations, and 

opportunities of the phage surrogate with emphasis placed on its utility in the discovery 

and development of anti-herpetic drugs. 

Keywords: DNA polymerase; T4 DNA polymerase; gp43; herpesviridae; UL30; UL54; 
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Nomenclature 

HSV1 Herpes Simplex Virus 1 

HSV2 Herpes Simplex Virus 2 

VZV Varicella Zoster Virus 

EBV Epstein–Barr Virus 

HCMV Human cytomegalovirus 

HHV6 Human Herpesvirus 6 

HHV7 Human Herpesvirus 7 

KSHV Kaposi’s sarcoma-associated herpesvirus 

PFA Phosphonoformic acid  

PAA Phosphonoacetic acid  

ACV Acyclovir 

GCV Ganciclovir 

CDV Cidofovir 

1. Introduction 

The eukaryotic viruses of the herpesviridae family are important human pathogens. In all, there are 

eight different human herpesviruses; Herpes simplex virus 1 and 2 (HSV1: HHV1 and HSV2: HHV2), 

varicella zoster virus (VZV: HHV3), Epstein-Barr virus (EBV: HHV4), Human cytomegalovirus 

(HCMV: HHV5), Human Herpes virus 6 and 7 (HHV6 and HHV7) and Kaposi’s sarcoma-associated 

herpesvirus (KSHV, HHV8). Human herpesviruses cause a spectrum of diseases ranging from 

relatively benign cutaneous lesions to serious conditions like encephalitis and cancer. Viruses that 

belong to the herpesviridae family are characterized by their ability to establish lifelong, latent 

infections. Thus, a substantial proportion of the global population is seropositive for one or more 

herpesviridae viruses. Although individuals with a functioning immune system can generally keep the 

virus suppressed, the ability to form latent infections, and the fact that the virus is widespread in the 

human population means that herpesvirus reactivation is a major source of disease and morbidity in 

immunocompromised individuals.  

The majority of approved antiviral drugs have been shown to inhibit the herpesvirus-specific DNA 

polymerase, reducing viral DNA replication, and, in turn, viral load [1]. However, although 

herpesvirus polymerases are all structurally related, they are not highly homologues. As a 

consequence, most drugs do not show broad antiviral activities against the various members of the 

herpesviridae. The nucleoside analog acyclovir (ACV) and its pro-drug valacyclovir are utilized to 

treat infection with HSV1, HSV2 or VZV, while the nucleotide analog ganciclovir (GCV) (or 

valganciclovir) and cidofovir (CDV) are approved to manage HCMV infection. The pyrophosphate 

analog phosphonoformic acid (PFA, foscarnet) provides an option to treat HSV1, HSV2, VZV and 

HCMV, if first-line drugs have failed to lower the viral burden. Like all current antiviral treatments, 

long-term treatment can lead to the development of drug resistance. Severe side effects and 

complicated treatment schedules represent other problems in the management of herpesvirus infection. 
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Unfortunately, the development of assays to screen for novel anti-herpetic DNA polymerase 

inhibitors has been limited by technical problems. For the purpose of biochemical screens, 

herpesviridae DNA polymerases are difficult to overexpress in heterologous expression systems and 

have limited solubility. Hence, it has been difficult to characterize structural and functional details of 

these polymerases [2–8]. Of the eight human herpesvirus DNA polymerases, the best-studied is 

perhaps UL30 from HSV1. This enzyme has been characterized extensively biochemically and has 

been successfully crystallized [9]. Progress has also been made in characterizing HCMV UL54 [10,11] 

In contrast to herpesviridae DNA polymerases, the orthologues enzymes of bacteriophage T4 

(T4gp43) and “T4 like” bacteriophage RB69 (RB69gp43) are well studied. T4gp43 has been studied 

extensively using genetic, molecular biology, and biochemistry. Research into T4gp43 has been key to 

our current understanding of the dynamics of DNA replication [12]. RB69gp43 has been crystallized in 

various forms and therefore provides an important structural model for polymerases that belong to the 

same family [13–16]. It is here attempted to discuss the general aspects of structure and function of 

these related enzymes and the utility of RB69gp43 as a surrogate system for herpesviridae DNA 

polymerases in efforts to provide a better understanding of mechanisms of drug action and resistance.  

2. Structure and Function of B Family Polymerases 

DNA dependant DNA polymerases can be subdivided into five different families based on sequence 

and structural homology [17]. The DNA polymerases of bacteriophage RB69 and the herpesviridae are 

classified as B family polymerases (Figure 1a,b) [18]. B family polymerases have been identified in all 

domains of life and are primary involved in genome replication [19]. Unlike other polymerase 

families, the B family polymerases form part of a multi-subunit complexes, sometime referred to as the 

DNA replisome, which can co-ordinate both leading and lagging strand replication [17]. However, the 

polymerase catalytic activity of B family DNA polymerases is encoded by a single gene, which is 

sometimes referred to as the DNA polymerase catalytic subunit [20]. The catalytic subunit also often 

encodes an intrinsic 3'–5' exonuclease activity which provides proofreading. This substantially 

increases the accuracy of DNA synthesis [21,22]. The B family catalytic subunit, in the presence of the 

polymerase accessory proteins, is both high faithful in replicating DNA and are highly processive [12].  

RB69 and each of the members of the herpesviridae family encode a B family polymerase 

(Figures 1 and 2). The virally encoded polymerase serves to replicate the viral genome. Both 

RB69gp43 [13] and HSV1 UL30 [9] have been studied using X-ray crystallography. Both polymerases 

are composed of five conserved structural domains, referred to as N-terminal, 3'–5' exonuclease, palm, 

fingers and thumb subdomains. In addition to these five conserved domains, the x-ray crystal structure 

of HSV1 UL30 showed an extra domain at the N-terminal end of the protein, which is called the pre 

N-terminal domain (Figure 1b). 

Structures of RB69gp43 in various forms in the absence and presence of substrates provided a 

detailed insight into distinct events involved in nucleotide incorporation, as well as the dynamics of 

exonuclease function. The structure of the HSV1 UL30 apo enzyme shows a similar domain structure 

as seen with RB69gp43; however, the exact structural requirements for DNA and nucleotide binding 

have yet to be established in this case. HSV1 UL30 contains the particular conserved motifs shared by 

all B family polymerases (Appendix Figure A1).  
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Figure 1. (a) Domain structure of HSV1 UL30 (pdb 2GV9) [9]. The pre N-terminal 

domain is shown in white, the N-terminal domain is yellow, the exonuclease domain is red, 

the palm domain is magenta, the fingers domain is blue and the thumb domain is green. (b) 

The structure of the RB69gp43 apo form (pdb file 1IH7) [15]. Both structures show the 

fingers subdomain the open conformation. Images were generated using Pymol [23].  
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Figure 2. Protein sequence alignment of herpesvirus and bacteriophage polymerase finger 

domains. Herpesvirus and bacteriophage polymerase were aligned individually using the 

Muscle algorithm within Geneious [24,25]. The bacteriophage and herpesvirus sequences 

were then structurally aligned by RAPIDO [26]. Blocks above sequence highlight 

structural domains of polymerase. The palm domain is in pink. The fingers domain is in 

blue. The known conserved regions are shown in magenta blocks above sequence [27–31]. 

Secondary structural elements of HSV1 UL30 are indicated and are number according to 

Liu et al. (2006). Secondary structural elements of RB69 gp43 are indicated and are 

numbered according to Wang et al. (1997). Structural motifs are highlighted in sequence. 

N helix residues are in yellow. Motif B is in green. Mutations that have been associated 

with resistance to current anti-herpetic drugs are shown below the corresponding 

residue [32,33]. Resistance mutations are colored using the following scheme: Red: 

Pyrophosphate
R
 (Resistant), Blue: Nucleotide

R
, Green: Pyrophosphate

R
 and Nucleotide

R
. 

Purple: Pyrophosphate
HS 

(Hypersensitive), Brown: Nucleotide
R
 but Pyrophosphate

HS
. 
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3. Subdomains of B Family Polymerase 

Protein sequence alignments of HSV1 UL30 to other herpesviridae DNA polymerase show that it is 

likely that all Human herpesviridae DNA polymerases contain a pre-N terminal domain [9]. The exact 

function of the pre-N terminal this domain remains elusive. The pre-N terminal domain also contains 

the FYNPYL motif specific to herpesviridae family polymerases (Appendix Figure A1) [9]. It has 

recently been shown that this motif is required for efficient replication of viral DNA synthesis in vivo; 

a mutant polymerase lacking the FYNPYL motif showed a substantial reduction in viral DNA 

synthesis [34]. However, the purified FYNPYL deletion mutant showed no reduction in polymerase 

activity, suggesting that this motif may have a function in the formation of the viral DNA replisome. 

The N-terminal domain shows a βαββαβ fold, which has been found in some RNA binding 

proteins [9,35]. In addition, the crystal structure of the RB69 gp43 contains a rGMP bound to the 

N-terminal domain [15], and some mutations in the N-terminal domain of T4gp43 decrease the 

expression of the polymerase leading to the suggestion that the N-terminal domain may be involved in 

expression regulation [36]. However, in spite of these observations, the functional role of this domain 

remains to be defined.  

The sequence of the 3'–5' exonuclease domain of B family polymerases is not highly conserved. 

However, all 3'–5' exonuclease domains currently characterized adopt a ribonuclease H-like (RNase 

H-like) fold. The RNase H fold brings four highly conserved negatively charged residues together to 

form the active site. In both RB69gp43 and HSV1 UL30 these residues have been identified as three 

aspartic acids and a glutamic acid. These residues are essential for the binding of two divalent, 

catalytic metal ions. Structural elements, that harbor active site residues in RB69gp43, are referred to 

as exoI (D114, E116), exoII (D222), and exoIII (D327) (Table 1, Appendix Figure A1). In 

herpesviridae polymerases the equivalent regions are referred to as ExoI, region IV and Delta (δ) C, 

respectively. In HSV1 UL30 these residues are; ExoI, D368 and E370, region IV or ExoII, D471 and 

delta C or ExoIII, D581 (Table 1, Appendix Figure A1).  

The polymerase active site of B family polymerases is made up of the three domains; the palm, 

fingers and thumb domains. Together they adopt the classic right hand conformation seen in all 

available structures of viral polymerases (Figure 1). Two highly conserved motifs in the palm domain, 

one in the fragment of the palm domain prior to the fingers domain called motif A and one in the 

fragment post fingers domain called motif C (Table 1, Appendix Figure A1) are likewise seen as 

signature motifs. In herpesviridae polymerases these domains are referred to as region II and region I, 

respectively. These motifs are; motif A; DXXLYPS and motif C; DTDS (Table 1, Appendix 

Figure A1). Structurally, these motifs fold together to form a three-strand anti-parallel β sheet 

(Figure 3c) [13]. Two conserved aspartic acid residues, D411 from motif A and the D625 from motif 

C, are required to form critical interactions which help co-ordinate the two divalent metal cation that 

are critical for DNA polymerization (Figure 3b) [15]. In addition, to motif A and C there are two other 

conserved motifs which also form parts the active site, motif B (KXXXNSXYG), which is known as 

Region III in herpesviridae, which is located on the helix P of the fingers domain, and the KKRY 

motif which is in the palm domain sequentially after motif C (Appendix Figure A1).  
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Table 1. Comparison of size, weight and position of conserved motifs or active site residues of RB69 and herpesviridae DNA polymerases. 

The position conserved motifs where assigned based on alignments generated using geneious [24]. 

Virus (Gene) 
Amino Acids 

(aa) 

Weight 

(kDa) 

FYNPYL 

motif 
Exo 1 

Exo2/region 

IV 

Exo3/delta 

(ä) C 

Motif 

A/region II 

Motif 

B/region III 

Motif 

C/region I 
KKRY motif 

RB69 (gp43) 903 104.47 N/A 113–117 222 327 411–420 560–571 621–624 804–807 

HSV1 (UL30) 1236 136.42 167–173 367–371 471 581 717–726 811–822 886–889 938–941 

HSV2 (UL30) 1241 137.32 166–172 368–372 472 582 722–731 816–827 891–894 943–946 

VZV (Orf28) 1195 134.05 7–13 348–352 452 562 682–691 775–786 851–854 903–906 

EBV (BALF5) 1016 113.43 6–12 295–299 384 497 584–593 681–692 755–758 807–810 

HCMV (UL54) 1242 137.21 2–8 300–304 413 542 717–726 811–822 910–913 962–965 

HHV6 (UL38) 1013 115.67 6–12 281–285 369 482 572–581 666–677 740–743 792–795 

HHV7 (UL38) 1014 115.91 6–12 280–284 368 480 572–581 666–677 740–743 792–795 

KSHV (Orf9) 1013 113.33 3–9 295–299 383 498 585–594 681–692 752–755 804–807 
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Figure 3. (a) Superpositioning of open and closed structures of RB69 gp43 showing finger 

domain movement. This diagram is composed of RB69 gp43 in the fingers closed position 

(pdb 3LDS) [37] and in the fingers opened position (pdb 1IH7) [15]. (b) Polymerase active 

site of RB69 gp43 showing interactions between conserved residues of motif A and C, 

metal ions A and B and dNTP and interactions between K560 and dNTP. This image is an 

aligned composite image of pdb 3LDS [37] and 3SCX [38]. (c) Structural alignment of the 

polymerase active site of RB69gp43 (pdb 3LDS) and HSV1 UL30 (pdb 2GV9). RB69 

gp43 backbone is in light blue while the HSV1 UL30 backbone is in light orange. Active 

site residues of RB69 gp43 are indicated. RB69 gp43 motif A is in magenta, motif C is in 

orange and KKRY is in purple. HSV1 UL30 motif A is in pink, motif C is in light orange 

and KKRY is in light purple. Images were generated using Pymol [23]. (d) Generalized 

diagram of the polymerase catalytic cycle showing steps at which inhibitors can act. 

Nucleotide inhibitors, once incorporated, prevent further extension of the DNA primer, by 

inhibiting nucleotidyl transfer. Whereas, pyrophosphate inhibitors mimicking the 

pyrophosphate leaving group, stabilizing the pre-translocation complex and prevent 

translocation. 
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Residues K560 and N564 of motif B are important in coordinating the tri-phosphate tail of the 

incoming dNTP during catalysis [15]. Lysine 560 also serves as a proton donor during catalysis 

(Figure 3b) [39]. Residue Y567 of motif B has been shown to be involved in forming an important 

interaction with the minor groove of the DNA [40]. This interaction has been shown to be highly 

important in maintaining polymerase fidelity [40]. In addition to motif B of helix P, there are also 

conserved positively charged residues within helix N (R482 and K486) that form important 

interactions with the tri-phosphate tail of the incoming dNTP during catalysis.  

The KKRY motif is primarily involved in stabilizing the B form of DNA. Residue Y708 forms a 

hydrogen bond with the 3' terminus of the primer while the K705 and R707 form interactions with the 

phosphate backbone. Together, these interactions help stabilize the interactions between base pairs of 

the primer and template strands [15].  

4. Catalytic Cycle of B Type Polymerase RB69gp43 

Both RB69gp43 and HSV1 UL30 have been crystallized in the so-called open conformation [9,13], 

but only RB69 has been crystallized in the closed conformation [15]. The closed conformation of a 

ternary complex contains a DNA primer-template pair and a trapped nucleotide. The most striking 

difference between the open and closed formation of RB69gp43 is the movement of the fingers 

domain. Structural alignment of the open and close conformation of RB69gp43 shows that, upon 

dNTP binding, the fingers domain rotates 60° inwards relative to the palm domain, with the tip of the 

fingers moving approximately 30 Å (Figure 3a) [15]. Closure of the fingers domain moves the residues 

on helix N and P that are involved in binding the tri-phosphate tail of the incoming dNTP, 4–8 Å 

closer to the polymerase active site. This action traps the dNTP in the active site and allows the 

nucleotidyl transfer to take place. By contrast, the overall structure of the thumb and palm domain 

between the open and closed conformation remains relatively unchanged. The thumb domain moves 

approximately 8° toward the palm domain. This action wraps the minor groove of primer-template 

duplex [15]. 

B family polymerases employ a two divalent metal ion mechanism for the nucleotidyl transfer [41], 

in conjunction with a concurrent two proton transfer reaction [39,42]. The catalytic ions are bound by 

D411 of motif A and D623 of motif C, and form an extensive network of interactions with the dNTP 

aligning it in the correct orientation for polymerization (Figure 3b). Metal ion A is required to activate 

the 3'-OH of the primer terminus. Interaction between metal ion A and the primer terminus attract the 

primer terminus closer to the α-phosphorus atom of the incoming dNTP. This lowers the pKa of the 

3'-OH group allowing it to be deprotonated, which facilitates the nucleophilic attack on the 

α-phosphorous atom of the nucleotide substrate [43]. Metal ion B orientates the dNTP triphosphate tail 

and helps stabilizes the transition states; it has also been suggested that it assists in pyrophosphate 

release [38]. In RB69gp43, lysine 560 acts as a proton donor [42] and is required to protonates the 

pyrophosphate leaving group, which may facilitate its release from the complex. This step formally 

ends the catalysis, leaving the complex now in the pre-translocational state. The fingers of the 

polymerase rotate away from the active site allowing the release of the pyrophosphate, which allows 

the DNA substrate to translocate relative to the enzyme. This movement shifts the new 3'-OH terminus 



Viruses 2013, 5 63 

 

 

into the 1+ position forming a post-tranlocated complex with the polymerase reset for a new catalytic 

cycle. Polymerases are in general able to discriminate between correct and incorrect nucleotides [44]. 

Incorrect binding of a nucleotide destabilizes the closed ternary complex, which enables the fingers 

domain to return to the open form releasing the incorrect nucleotide. Effective discrimination against 

the incorrect nucleotide at the level of substrate binding raises the fidelity of DNA synthesis 

significantly[45]. However, in B family polymerases, if an incorrect nucleotide is indeed incorporated, 

these enzymes can switch into the 3'–5' exonuclease mode and remove the misincorporated base. The 

3'–5' exonuclease activity has been shown to increases the fidelity of the RB69 polymerase from the 

Exo
−
 rate of 2.8 errors per genome (µg) to the Exo

+
 error rate of 4 × 10

−3
 µg [40,46]. The excision of an 

incorrectly incorporated terminal nucleotide is also dependant on two divalent metal ions. Structures of 

RB69gp43 have shown that the exonuclease active site is located approximately 40 Å from the 

polymerase active site [47]. Thus, for 3'–5' exonuclease activity to occur the DNA primer-template 

terminus must be translocated from the polymerase active site to the exonuclease site. The details of 

this process remain to be defined. It has been suggested that DNA replication accessory proteins, 

particularly the sliding clamp gp45, may be involved in the process of translocating DNA from 

polymerase to exonuclease active site [15]. It has also been shown that a β hairpin loop between 

residues 251–262 is important for exonuclease function [48,49]. This loop is involved in stabilizing the 

frayed base pair at the exonuclease active site allowing the removal of the incorrect nucleotide. During 

translocation from the polymerisation active site to the exonuclease active site the primer-template pair 

is partially melted, producing three unpaired bases. The three unpaired bases of the primer strand are 

then sequestered into the exonuclease active site, which facilitates the excision. Structures of 

RB69gp43 poised with its primer-template in the exonuclease mode are available [47,48].  

5. Base Selectivity in RB69 DNA Polymerase 

A large number of mutant RB69 and T4 DNA polymerases that affect both efficiency and fidelity 

of DNA replication have been isolated and characterized. In the case of RB69, X-ray crystallography 

has firmly established the nucleotide binding site at the atomic level. Crucial residues include K560 

(Motif B), L415 and Y416 (Motif A) and L561 (Not conserved), Y567 and G568 (Motif B) [50].  

Conserved residue Motif A has been shown to be important for sugar selectivity. Y416 forms a 

stacking interaction with deoxyribosyl moiety of the incoming dNTP [15]. It has been proposed that 

the 2'-OH group of a mismatched rNTP would cause a steric conflict with Y416 preventing formation 

of a stable complex [51]. Biochemical experiments with the Y416A mutant enzyme corroborated this 

notion. Unlike the wild type, the mutant was able to incorporate rCTP, ddCTP, and dCTP at similar 

rates [51]. 

Residue Y567 of motif B has been shown to be important in maintaining the fidelity of base 

selection [40,52]. This residue forms an interaction—via a water molecule—with the minor groove of 

the terminal primer-template pair. This interaction is important for sensing the geometry of the newly 

form base pair and thus detecting distortions caused by incorrect base pairing [15]. Mutations to 

residue 567 increase the size of the nascent base-pair-binding pocket allowing the misincorporation 

of nucleotides.  
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Residue L561 protrudes into the major groove of the templating base. It has been proposed that this 

residue is involved in detecting mismatches that lead to distortion of the major groove. L561A mutant 

confers a mutator phenotype [53]. Interestingly, the equivalent residue in herpesvirus-associated 

polymerases are not conserved (Figure 4b). 

Figure 4. (a) Diagram of RB69 Fingers domain showing location of ABC block mutation 

relative to dNTP binding residues. Motif B residues are in orange, Tri-phosphate 

interacting residues on Helix N are in yellow, Block A is in red, Block B is in dark blue 

and Block C is in yellow. Aligned image of pdb 3LDS (dNTP) and pdb 3KD5 (N and P 

helix). (b) Sequence alignment of RB69 and herpesviridae sequences showing location of 

block mutations. (c) Diagram showing clash between W478 of Block A and W365. RB69 

ABC5 is in white (3KD5), RB69 WT is in blue (pdb 1IH7) and HSV1 UL30 is in orange 

(pdb 2GV9). (d) Diagram of RB69 ABC5 block mutations active site showing 

phosphonoformic acid binding in β and γ phosphate position and with acyclovir in the pre-

translocation position (pdb 3KD5). Images were generated using Pymol [23]. Alignment 

was generated using Geneious [24]. 
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6. The Active Site of HSV1 UL30 and RB69gp43 

At both the nucleotide and amino acid level, herpesviridae polymerases are not highly conserved 

(Appendix Figure A1). They range in length from 1013–1236 aa, and range in molecular weight from 

113 to 137 kDa (Table 1). RB69gp43 is relatively small with 903 aa in length and a molecular weight 

of 104 kDa (Table 1). In terms of homology, there is very low homology between RB69gp43 and 

herpesviridae DNA polymerases sequences. However, both RB69gp43 and herpesviridae contain all 

the conserved motifs associated with B family polymerases (Appendix Figure A1).  

Unlike herpesvirus DNA polymerases, there is a wealth of information on the structure and function 

of RB69gp43. Thus, this enzyme is often used as a model for herpesviridae DNA polymerase. Because 

of the shared conserved motifs between B family polymerase it is reasonable to assume that both 

herpesviridae and RB69gp43 have a similar, if not an identical catalytic mechanisms. The residues of 

motif A and C in the HSV1 UL30 and RB69gp43 structure are superimposable, supporting the notion 

that the function of these residues is similar (Figure 3c). In contrast to the metal cation-binding portion 

of the active site, the residues of helix N and P of the fingers domain vary greatly between HSV1 

UL30 and RB69 gp43. On helix N, the only conserved residues are two basic amino acids R482 and 

K486 in RB69 gp43, and R785 and R789 in HSV1 UL30. Likewise, on the helix P, the only conserved 

residues are those of motif B: K560 to N565 in RB69gp43 and K811 to N815 in HSV1 UL30. Thus, 

the non-conserved residues of helix N and P account for the major differences in the nucleotide 

binding site, which could in turn account for the difference in sensitivity to antiviral drugs when 

herpesviridae polymerases are compared with RB69gp43. This notion is supported by biochemical 

studies with mutant enzymes derived from HCMV UL54 (see below) [11].  

7. Mutations of Bacteriophage T4 that Induce PAA Sensitivity 

There are several known natural mutations of bacteriophage T4 DNA polymerase (T4gp43) that 

affect sensitivity to the pyrophosphate analog phosophonoacetic acid (PAA). T4gp43 is highly 

homologues to RB69gp43, and, like RB69gp43, is naturally resistant to PAA. However, mutants of 

bacteriophage T4 with reduced plaque formation in the presence of PAA have been identified [54,55]. 

One of these mutations, L412M, is located in the conserved motif A. L412M confers increased 

sensitivity to PAA and interestingly also confers mutator properties to the polymerase [54]. Another 

interesting feature of the L412M mutant phage is that it can replicate in E. coli strains with restricted 

dGTP pools (optA1). The ability to grow under these conditions suggests that the mutant polymerase 

can make more efficient use of the nucleotide substrates. Because fidelity of DNA synthesis is in part 

controlled by the rate with which a frayed primer switches from polymerase to exonuclease activity, a 

bias toward stabilizing the frayed primer in the polymerase active site would cause an overall reduction 

in enzyme fidelity. When this hypothesis was tested with purified T4gp43 L412M enzyme, it was 

found that T4gp43 L412M exhibited less exonulease activity in relation to the wild type supporting the 

notion that the L412M mutation was in fact changing the partitioning between exonuclease and 

polymerase activity away from exonuclease activity. The equivalent residue to L412 in RB69gp43 is 

L415. Mutations at this residue show increased rates of mis-incorporation [56]. Interestingly, several 

suppressor mutants of L412M were also isolated. When subjected to a similar analysis, they were 
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found to be antimutator mutations and unable to grow on E. coli optA1 [55]. Mutations R335C and 

S345F are both located within the delta C region of the exonuclease domain (Appendix Figure A1). It 

has been proposed, that these mutation may affect pyrophosphate sensitivity by increasing the 

opportunity for exonuclease activity [54]. Since the primer terminus needs to be physically transferred 

to the exonuclease site, any increase in stability of the primer-terminus in the exonuclease active site or 

decrease of stability of the primer-terminus in the polymerase active site would increase the disruption 

of the pyrophosphate analog inhibited complex and henceforth increase the polymerase resistance to 

inhibition by pyrophosphate analogs. Interestingly in the RB69gp43 crystal structure the equivalent 

residue to R335 is R338, which is positioned at the very C terminus of the exonuclease domain and 

points into the cleft in which the finger domain rotates into during catalysis. Thus, the R335 mutation 

may not directly affect exonuclease function, but may instead inhibit finger domain movement [57].  

8. Chimeric Enzymes 

Tchesnokov et al. (2009) engineered an RB69gp43-UL54 chimeric enzyme, by mutating the active 

site of RB69gp43 to include the non-conserved elements from helix N and P of the HCMV enzyme. 

Swapping the polymerase active sites produced an enzyme that can be expressed in E. coli, and is 

soluble and easily purified. Biochemical assays have shown that the chimeric enzyme is sensitive to 

the nucleotide inhibitor acyclovir and the pyrophosphate analog PFA [58].  

Three blocks of non-conserved amino acid residues were considered to engineer the chimera. Block 

A is located on helix N, and consists of residues 478–480 from RB69gp43 (VFN), these residue were 

replaced with equivalent residues of HCMV UL54: residues 779 to 781 (WVS). Block B and Block C 

are both located on Helix P. Block B consist of residues 557–559 of RB69gp43 (INR) and Block C 

561–563 (LLI) of RB69gp43 where replaced with residues 808–810 (MAL) and 812–814 (VTC) from 

HCMV UL54, respectively. Block B and C flank residue K560, which is the conserved basic amino 

acid that likely donates a proton to the pyrophosphate leaving group [39,42]. Previous studies had 

already shown that several amino acids within this region can affect sensitivity to PFA (Figure 2) [11]. 

The chimeric polymerase reproduces drug sensitive and drug resistant phenotypes in cell-free 

biochemical assays, which validates this enzyme as a model system for polymerase active site inhibitors.  

The structure of the chimera provides a detailed understanding of the mechanism of action of 

PFA [59]. The enzyme was co-crystallized in complex with a primer-template terminated with 

acyclovir in the presence and absence of PFA. PFA is bound at the polymerase active site and traps the 

enzyme in the pre-translocational state. The compound interacts with metal ion B and residue R482 of 

helix N, similar to the interactions formed by the - and γ-phosphate of a bound dNTP in the 

post-translocational conformation. It appears that W478 of block A is critical in mediating sensitivity 

to PFA. Although no additional contacts are formed, this residue likely reduces the population of 

complexes that exist in the open conformation due to steric interference with W365 on helix J. 

Generally binary complex structures of B family polymerase are found to be in the open conformation; 

however, in the case of the chimeric enzyme the fingers are in the closed conformation even in the 

absence of PFA [59]. The predicted steric clash was confirmed with enzymes containing amino acid 

substitutions at residues 478 and 365 [59].  
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9. Resistance to Antiviral Drugs 

Resistance-conferring mutations in the polymerase of HSV1, HSV2, VZV and HCMV UL54 have 

been identified in vivo and in vitro [10,32,33,60]. Drug resistance is measured as an increase in the 

inhibitory concentrations of a given drug required to block 50% viral replication (IC50). In HSV1, 

HSV2 and VZV an IC50 ≥ 4.4 µM confers significant levels of resistance to acyclovir [32], and in 

HCMV an IC50 ≥ 12µM confers significant levels of resistance to ganciclovir, and IC50 ≥ 400 µM to 

PFA [60]. Because of the difficulties of purifying Herpesvirus DNA polymerase the many resistance 

mutation have only been assessed in cell-based phenotypic assays [60].  

All known resistance mutations can be roughly divided into two groups: 1. mutations within the 

exonuclease domain, which may affect 3'–5' exonuclease function, and 2. mutations within the 

domains that make up the polymerase active site, which may therefore affect polymerase function 

directly (Appendix Figure A1). Within the 3'–5' exonuclease domain there are several resistance 

mutations around the active site residues exo 1, exo2 and exo 3 respectively (Appendix Figure A1). 

Many of these mutations have been characterized to impair 3'–5' exonuclease activity [61,62]. 

Interestingly some of these resistance mutations have been characterized to confer resistance to 

pyrophosphate inhibitors but hypersensitivity to nucleotide inhibitors. An example of this phenotype is 

the HSV1 mutations Y577H and D581A [62] (Appendix Figure A1). Both mutations are located 

within the delta C region close to the exo 3 residue. Both mutations have been shown to impair 

exonuclease activity [62]. Logically a polymerase impaired in 3'–5' exonuclease activity would be 

unable to remove an incorporated nucleotide inhibitor from viral DNA, which would increase the 

viruses sensitivity to nucleotide inhibitor, thus explaining the hypersensitivity phenotype. However, 

the mutations also affect pyrophosphate inhibitors potency and this effect is harder to reconcile. Since 

pyrophosphate inhibitors mimic the pyrophosphate leaving group, and thus are not incorporated into 

DNA, the presence or absence of exonuclease activity should not directly affect pyrophosphate analog 

inhibitors susceptibility. The analysis of T4gp43 PAA sensitive mutants provides some possible 

insight into a mechanism [54,55]. While working with the T4gp43 L412M mutant they identified 

several suppressors of PAA sensitivity [54]. These suppressor mutants were shown to be antimutator 

polymerases, implying that L412M suppressor mutant polymerase were likely to have an altered rate 

of exonuclease activity compared to the L412M mutants. The authors suggested that because 

pyrophosphate analogs competitively inhibit polymerase activity by mimicking the pyrophosphate 

leaving group, that the transition to exonuclease activity could potentially bypass inhibition. Thus, 

altering the rate of exonuclease activity could potentially affect pyrophosphate inhibitor potency. 

Unfortunately this hypothesis has not fully been tested in either T4gp43 or herpesviridae 

DNA polymerases.  

Resistance mutations within the polymerase active site can be arbitrarily split into two groups: 

1. Fingers domain mutations and palm domain mutations. In HSV1, HSV2, VZV and HCMV several 

resistance mutations within the finger domain associated with region VI within helix PA and region III 

within helix PB. Helix PA and PB are equivalent to helix N and P of RB69gp43 (Figure 2) [32,33]. 

These two regions make up the finger domain contribution to the polymerase active site. Helix N 

contains several conserved residues important for nucleotide binding, while Helix P contains 

conserved residue K560 that is required for proton transfer during catalysis and N564, which is 
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required for nucleotide binding. Crystal structures of RB69gp43 have shown that residue N564 

interacts with the β phosphate of the nucleotide via a water molecule [52,63]. There are also several 

resistance mutations associated with the motif A, C and KKRY within the palm domain (Appendix 

Figure A1). In Motif A or region II there are several mutations prior to Motif A, which cause a 

pyrophosphate inhibitor hypersensitive, nucleotide inhibitor resistance phenotype. Mutations in motif 

C or region I and the KKRY motif or region VII (Appendix Figure A1) have all been characterized as 

inducing both pyrophosphate and nucleotide inhibitor resistance. Being that motif C and the KKRY 

motif is involved in aligning the 3'-OH nucleophile during catalysis any subtle change to the 

positioning of these motifs could change the binding and catalytic constants of the polymerase.  

Several mutations remain to be confirmed as resistance-conferring amino acid substitutions [33]. 

Because of the difficulties in working with herpesviridae these mutations have not been tested in a 

defined genetic background to determine the phenotypic effect on resistance or susceptibility.  

10. Conclusions  

RB69gp43 provides an excellent model for the study of structure–function relationships of B family 

polymerases. However, there are limitations for the study of orthologous herpesviridae polymerases. 

Most importantly, the phage enzyme is not inhibited by approved drugs that bind to the polymerase 

active site in either post- or pre-translocational states. Chimeric enzymes composed of a RB69gp43 

backbone and important elements of the active site of herpesviridae DNA polymerases can potentially 

address this problem. These findings warrant further investigation in such enzymes as novel tools in 

future drug discovery and development efforts.  

Acknowledgments 

M.G. is the recipient of a career award from the Fonds de la recherche en santé du Québec (FRSQ). 

This work was supported by funds from the Québec Consortium for Drug Discovery (CQDM). 

Conflict of Interest 

The authors declare no conflict of interest.  

References and Notes 

1. Elion, G.B.; Furman, P.A.; Fyfe, J.A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H.J. Selectivity 

of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci.  

U. S. A. 1977, 74, 5716–5720. 

2. Ertl, P.F.; Thomas, M.S.; Powell, K.L. High level expression of DNA polymerases from 

herpesviruses. J. Gen. Virol. 1991, 72, 1729–1734. 

3. Tsurumi, T.; Kobayashi, A.; Tamai, K.; Daikoku, T.; Kurachi, R.; Nishiyama, Y. Functional 

expression and characterization of the epstein-barr virus DNA polymerase catalytic subunit.  

J. Virol. 1993, 67, 4651–4658. 

4. Lin, J.C.; De, B.K.; Mar, E.C. Functional characterization of partially purified epstein-barr virus 

DNA polymerase expressed in the baculovirus system. Virus Genes 1994, 8, 231–241. 



Viruses 2013, 5 69 

 

 

5. Tsurumi, T.; Daikoku, T.; Nishiyama, Y. Further characterization of the interaction between the 

epstein-barr virus DNA polymerase catalytic subunit and its accessory subunit with regard to the 

3'-to-5' exonucleolytic activity and stability of initiation complex at primer terminus. J. Virol. 

1994, 68, 3354–3363. 

6. De Bolle, L.; Manichanh, C.; Agut, H.; De Clercq, E.; Naesens, L. Human herpesvirus 6 DNA 

polymerase: Enzymatic parameters, sensitivity to ganciclovir and determination of the role of the 

a961v mutation in hhv-6 ganciclovir resistance. Antivir. Res. 2004, 64, 17–25. 

7. Picard-Jean, F.; Bougie, I.; Bisaillon, M. Characterization of the DNA- and dntp-binding activities 

of the human cytomegalovirus DNA polymerase catalytic subunit ul54. Biochem. J. 2007, 407, 

331–341. 

8. Dorjsuren, D.; Badralmaa, Y.; Mikovits, J.; Li, A.Q.; Fisher, R.; Ricciardi, R.; Shoemaker, R.; 

Sei, S. Expression and purification of recombinant kaposi's sarcoma-associated herpesvirus DNA 

polymerase using a baculovirus vector system. Protein Expr. Purif. 2003, 29, 42–50. 

9. Liu, S.; Knafels, J.D.; Chang, J.S.; Waszak, G.A.; Baldwin, E.T.; Deibel, M.R., Jr.; Thomsen, 

D.R.; Homa, F.L.; Wells, P.A.; Tory, M.C.; et al. Crystal structure of the herpes simplex virus 1 

DNA polymerase. J. Biol. Chem. 2006, 281, 18193–18200. 

10. Ducancelle, A.; Gravisse, J.; Alain, S.; Fillet, A.M.; Petit, F.; Pors, M.J.; Mazeron, M.C. 

Phenotypic characterisation of cytomegalovirus DNA polymerase: A method to study 

cytomegalovirus isolates resistant to foscarnet. J. Virol. Meth. 2005, 125, 145–151. 

11. Tchesnokov, E.P.; Gilbert, C.; Boivin, G.; Gotte, M. Role of helix p of the human 

cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug 

foscarnet. J. Virol. 2006, 80, 1440–1450. 

12. Mueser, T.C.; Hinerman, J.M.; Devos, J.M.; Boyer, R.A.; Williams, K.J. Structural analysis of 

bacteriophage t4 DNA replication: A review in the virology journal series on bacteriophage t4 and 

its relatives. Virol. J. 2010, 7, 359. 

13. Wang, J.; Sattar, A.K.; Wang, C.C.; Karam, J.D.; Konigsberg, W.H.; Steitz, T.A. Crystal structure 

of a pol alpha family replication DNA polymerase from bacteriophage rb69. Cell 1997, 89,  

1087–1099. 

14. Yang, G.; Lin, T.; Karam, J.; Konigsberg, W.H. Steady-state kinetic characterization of rb69 

DNA polymerase mutants that affect dntp incorporation. Biochemistry 1999, 38, 8094–8101. 

15. Franklin, M.C.; Wang, J.; Steitz, T.A. Structure of the replicating complex of a pol alpha family 

DNA polymerase. Cell 2001, 105, 657–667. 

16. Hogg, M.; Wallace, S.S.; Doublie, S. Crystallographic snapshots of a replicative DNA polymerase 

encountering an abasic site. EMBO J. 2004, 23, 1483–1493. 

17. Garcia-Diaz, M.; Bebenek, K. Multiple functions of DNA polymerases. Crit. Rev. Plant Sci. 

2007, 26, 105–122. 

18. Braithwaite, D.K.; Ito, J. Compilation, alignment, and phylogenetic relationships of DNA 

polymerases. Nucleic Acids Res. 1993, 21, 787–802. 

19. Garg, P.; Burgers, P.M. DNA polymerases that propagate the eukaryotic DNA replication fork. 

Crit. Rev. Biochem. Mol. Biol. 2005, 40, 115–128. 

20. De Waard, A.; Paul, A.V.; Lehman, I.R. The structural gene for deoxyribonucleic acid 

polymerase in bacteriophages t4 and t5. Proc. Natl. Acad. Sci. U. S. A. 1965, 54, 1241–1248. 



Viruses 2013, 5 70 

 

 

21. Goulian, M.; Lucas, Z.J.; Kornberg, A. Enzymatic synthesis of deoxyribonucleic acid. Xxv. 

Purification and properties of deoxyribonucleic acid polymerase induced by infection with phage 

t4. J. Biol. Chem. 1968, 243, 627–638. 

22. Kornberg, A. Active center of DNA polymerase. Science 1969, 163, 1410–1418. 

23. Schrodinger, L.L.C. The Pymol Molecular Graphics System, version 1.3r1; Schrödinger K.K.; 

http://www.pymol.org/, 2010. 

24. Drummond, A.; Ashton, B.; Buxton, S.; Cheung, M.; Cooper, A.; Duran, C.; Field, M.; Heled, J.; 

Kearse, M.; Markowitz, S.; et al. Geneious v5.4; Biomatters Ltd; http://www.geneious.com/, 2010 

25. Edgar, R.C. Muscle: Multiple sequence alignment with high accuracy and high throughput./Zh 

Nucleic Acids Res. 2004, 32, 1792–1797. 

26. Mosca, R.; Brannetti, B.; Schneider, T.R. Alignment of protein structures in the presence of 

domain motions. BMC Bioinformatics 2008, 9, 352. 

27. Hwang, C.B.; Ruffner, K.L.; Coen, D.M. A point mutation within a distinct conserved region of 

the herpes simplex virus DNA polymerase gene confers drug resistance. J. Virol. 1992, 66,  

1774–1776. 

28. Wong, S.W.; Wahl, A.F.; Yuan, P.M.; Arai, N.; Pearson, B.E.; Arai, K.; Korn, D.; Hunkapiller, 

M.W.; Wang, T.S. Human DNA polymerase alpha gene expression is cell proliferation dependent 

and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA 

polymerases. EMBO J. 1988, 7, 37–47. 

29. Zhang, J.; Chung, D.W.; Tan, C.K.; Downey, K.M.; Davie, E.W.; So, A.G. Primary structure of 

the catalytic subunit of calf thymus DNA polymerase delta: Sequence similarities with other DNA 

polymerases. Biochemistry 1991, 30, 11742–11750. 

30. Simon, M.; Giot, L.; Faye, G. The 3' to 5' exonuclease activity located in the DNA polymerase 

delta subunit of saccharomyces cerevisiae is required for accurate replication. EMBO J. 1991, 10, 

2165–2170. 

31. Blanco, L.; Bernad, A.; Blasco, M.A.; Salas, M. A general structure for DNA-dependent DNA 

polymerases. Gene 1991, 100, 27–38. 

32. Gilbert, C.; Bestman-Smith, J.; Boivin, G. Resistance of herpesviruses to antiviral drugs: Clinical 

impacts and molecular mechanisms. Drug Resist. Updates 2002, 5, 88–114. 

33. Lurain, N.S.; Chou, S. Antiviral drug resistance of human cytomegalovirus. Clin. Microbiol. Rev. 

2010, 23, 689–712. 

34. Terrell, S.L.; Coen, D.M. The pre-nh2-terminal domain of the herpes simplex virus 1 DNA 

polymerase catalytic subunit is required for efficient viral replication. J. Virol. 2012, 86,  

11057–11065. 

35. Burd, C.G.; Dreyfuss, G. Conserved structures and diversity of functions of rna-binding proteins. 

Science 1994, 265, 615–621. 

36. Hughes, M.B.; Yee, A.M.; Dawson, M.; Karam, J. Genetic mapping of the amino-terminal 

domain of bacteriophage t4 DNA polymerase. Genetics 1987, 115, 393–403. 

37. Hogg, M.; Rudnicki, J.; Midkiff, J.; Reha-Krantz, L.; Doublie, S.; Wallace, S.S. Kinetics of 

mismatch formation opposite lesions by the replicative DNA polymerase from bacteriophage 

rb69. Biochemistry 2010, 49, 2317–2325. 



Viruses 2013, 5 71 

 

 

38. Xia, S.; Wang, M.; Blaha, G.; Konigsberg, W.H.; Wang, J. Structural insights into complete metal 

ion coordination from ternary complexes of b family rb69 DNA polymerase. Biochemistry 2011, 

50, 9114–9124. 

39. Castro, C.; Smidansky, E.D.; Arnold, J.J.; Maksimchuk, K.R.; Moustafa, I.; Uchida, A.; Gotte, 

M.; Konigsberg, W.; Cameron, C.E. Nucleic acid polymerases use a general acid for nucleotidyl 

transfer. Nat. Struct. Mol. Biol. 2009, 16, 212–218. 

40. Bebenek, A.; Dressman, H.; Carver, G.; Ng, S.; Petrov, V.; Yang, G.; Konigsberg, W.; Karam, J.; 

Drake, J. Interacting fidelity defects in the replicative DNA polymerase of bacteriophage rb69. 

J. Biol. Chem. 2001, 276, 10387–10397. 

41. Steitz, T.A. A mechanism for all polymerases. Nature 1998, 391, 231–232. 

42. Castro, C.; Smidansky, E.; Maksimchuk, K.R.; Arnold, J.J.; Korneeva, V.S.; Gotte, M.; 

Konigsberg, W.; Cameron, C.E. Two proton transfers in the transition state for nucleotidyl 

transfer catalyzed by rna- and DNA-dependent rna and DNA polymerases. Proc. Natl. Acad. Sci. 

U. S. A. 2007, 104, 4267–4272. 

43. Fothergill, M.; Goodman, M.F.; Petruska, J.; Warshel, A. Structure-energy analysis of the role of 

metal-ions in phosphodiester bond hydrolysis by DNA-polymerase-i. J. Am. Chem. Soc. 1995, 

117, 11619–11627. 

44. Patel, S.S.; Wong, I.; Johnson, K.A. Pre-steady-state kinetic analysis of processive DNA 

replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 

1991, 30, 511–525. 

45. Wong, I.; Patel, S.S.; Johnson, K.A. An induced-fit kinetic mechanism for DNA replication 

fidelity: Direct measurement by single-turnover kinetics. Biochemistry 1991, 30, 526–537. 

46. Drake, J.W. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. 

Sci. U. S. A. 1991, 88, 7160–7164. 

47. Shamoo, Y.; Steitz, T.A. Building a replisome from interacting pieces: Sliding clamp complexed 

to a peptide from DNA polymerase and a polymerase editing complex. Cell 1999, 99, 155–166. 

48. Aller, P.; Duclos, S.; Wallace, S.S.; Doublie, S. A crystallographic study of the role of sequence 

context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on 

the exonuclease complex. J. Mol. Biol. 2011, 412, 22–34. 

49. Hogg, M.; Aller, P.; Konigsberg, W.; Wallace, S.S.; Doublie, S. Structural and biochemical 

investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of 

a replicative DNA polymerase of the b family. J. Biol. Chem. 2007, 282, 1432–1444. 

50. Zhang, H.; Beckman, J.; Wang, J.; Konigsberg, W. Rb69 DNA polymerase mutants with 

expanded nascent base-pair-binding pockets are highly efficient but have reduced base selectivity. 

Biochemistry 2009, 48, 6940–6950. 

51. Yang, G.; Franklin, M.; Li, J.; Lin, T.C.; Konigsberg, W. A conserved tyr residue is required for 

sugar selectivity in a pol alpha DNA polymerase. Biochemistry 2002, 41, 10256–10261. 

52. Yang, G.; Franklin, M.; Li, J.; Lin, T.C.; Konigsberg, W. Correlation of the kinetics of finger 

domain mutants in rb69 DNA polymerase with its structure. Biochemistry 2002, 41, 2526–2534. 

53. Zhang, H.; Rhee, C.; Bebenek, A.; Drake, J.W.; Wang, J.; Konigsberg, W. The l561a substitution 

in the nascent base-pair binding pocket of rb69 DNA polymerase reduces base discrimination. 

Biochemistry 2006, 45, 2211–2220. 



Viruses 2013, 5 72 

 

 

54. Reha-Krantz, L.J.; Wong, C. Selection of bacteriophage t4 antimutator DNA polymerases: A link 

between proofreading and sensitivity to phosphonoacetic acid. Mutat. Res. 1996, 350, 9–16. 

55. Reha-Krantz, L.J.; Nonay, R.L.; Stocki, S. Bacteriophage t4 DNA polymerase mutations that 

confer sensitivity to the ppi analog phosphonoacetic acid. J. Virol. 1993, 67, 60–66. 

56. Zhong, X.; Pedersen, L.C.; Kunkel, T.A. Characterization of a replicative DNA polymerase 

mutant with reduced fidelity and increased translesion synthesis capacity. Nucleic Acids Res. 

2008, 36, 3892–3904. 

57. Li, V.; Hogg, M.; Reha-Krantz, L.J. Identification of a new motif in family b DNA polymerases 

by mutational analyses of the bacteriophage t4 DNA polymerase. J. Mol. Biol. 2010, 400,  

295–308. 

58. Tchesnokov, E.P.; Obikhod, A.; Schinazi, R.F.; Gotte, M. Engineering of a chimeric rb69 DNA 

polymerase sensitive to drugs targeting the cytomegalovirus enzyme. J. Biol. Chem. 2009, 284, 

26439–26446. 

59. Zahn, K.E.; Tchesnokov, E.P.; Götte, M.; Doublié, S. Phosphonoformic acid inhibits viral 

replication by trapping the closed form of the DNA polymerase. J. Biol. Chem. 2011, 286,  

25246–25255. 

60. Landry, M.L.; Stanat, S.; Biron, K.; Brambilla, D.; Britt, W.; Jokela, J.; Chou, S.; Drew, W.L.; 

Erice, A.; Gilliam, B.; et al. A standardized plaque reduction assay for determination of drug 

susceptibilities of cytomegalovirus clinical isolates. Antimicrob. Agents Chemother. 2000, 44, 

688–692. 

61. Kuhn, F.J.; Knopf, C.W. Herpes simplex virus type 1 DNA polymerase. Mutational analysis of 

the 3'-5'-exonuclease domain. J. Biol. Chem. 1996, 271, 29245–29254. 

62. Hwang, Y.T.; Smith, J.F.; Gao, L.; Hwang, C.B. Mutations in the exo iii motif of the herpes 

simplex virus DNA polymerase gene can confer altered drug sensitivities. Virology 1998, 246, 

298–305. 

63. Wang, M.; Xia, S.; Blaha, G.; Steitz, T.A.; Konigsberg, W.H.; Wang, J. Insights into base 

selectivity from the 1.8 a resolution structure of an rb69 DNA polymerase ternary complex. 

Biochemistry 2011, 50, 581–590. 

 



Viruses 2013, 5 73 

 

 

Appendix Figure A1. Protein sequence alignment of herpesvirus and bacteriophage polymerases based on structural data. Herpesvirus and 

bacteriophage polymerase were aligned individually using the muscle algorithm within Geneious [24,25]. Then the bacteriophage and 

herpesvirus sequences were aligned using an alignment based on a structural alignment of HSV1 UL30 (2GV9) and RB69 gp43 (1IH7) 

produced by RAPIDO [26]. Blocks above sequence highlight structural domains of polymerase. Regions unresolved in the HSV1 structural 

model are shown in green. The pre N terminal domain is in white. The N terminal domain is in yellow. The 3'–5' exonuclease domain is in 

red. The palm domain is in pink. The fingers domain is in blue and thumb domain is in green. The known conserved regions are shown in 

magenta blocks above sequence [27–31]. Secondary structural elements of HSV1 UL30 are indicated. Elements are number according scheme 

provided in Liu et al. (2006). Secondary Structural elements of RB69 gp43 are indicated. Elements are numbered according scheme provided 

in Wang et al. (1997). Structural motifs involved in polymerase and exonuclease activity are highlighted in sequence. Herpes virus specific 

motif is in blue. Exonuclease conserved residues are in red. Motif A is in magenta. N helix residues are in yellow. Motif B is in green. Motif C 

is in brown. KKRY motif is in purple. Mutations that have been associated with resistance to anti-herpetic drugs are shown below the 

corresponding residue [32,33]. Resistance conferring mutations are colored using the following scheme: Red: Pyrophosphate
R
 (Resistant), 

Blue: Nucleotide
R
, Green: Pyrophosphate

R
 and Nucleotide

R
. Purple: Pyrophosphate

HS 
(Hypersensitive). Pink: Pyrophosphate

R
 but 

Nucleotide
HS

, Brown: Nucleotide
R
 but Pyrophosphate

HS
. 
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