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Abstract: Regulatory T cells (Tregs) are a subset of T cells that are responsible for 

maintaining peripheral immune tolerance and homeostasis. The hallmark of Tregs is the 

expression of the forkhead box P3 (FoxP3) transcription factor. Natural regulatory T cells 

(nTregs) are a distinct population of T cells that express CD4 and FoxP3. nTregs develop in 

the thymus and function in maintaining peripheral immune tolerance. Other CD4+,  

CD4-CD8-, and CD8+CD28- T cells can be induced to acquire regulatory function by 

antigenic stimulation, depending on the cytokine milieu. Inducible (or adaptive) Tregs 

frequently express high levels of the interleukin 2 receptor (CD25). Atypical Tregs express 

FoxP3 and CD4 but have no surface expression of CD25. Type 1 regulatory T cells (Tr1 

cells) produce IL-10, while T helper 3 cells (Th3) produce TGF-β. The function of 

inducible Tregs is presumably to maintain immune homeostasis, especially in the context of 

chronic inflammation or infection. Induction of Tregs in coronaviral infections protects 

against the more severe forms of the disease attributable to the host response. However, 

arteriviruses have exploited these T cell subsets as a means to dampen the immune 

response allowing for viral persistence. Treg induction or activation in the pathogenesis of 

disease has been described in both porcine reproductive and respiratory syndrome virus, 

lactate dehydrogenase elevating virus, and mouse hepatitis virus. This review discusses the 

development and biology of regulatory T cells in the context of arteriviral and coronaviral 

infection. 
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1. Introduction 

Regulatory T cells (Tregs) provide a balance between combating pathogens and the risk of 

developing autoimmunity or overwhelming inflammation. Regulatory T cells can be divided into two 

groups—natural Tregs develop in the thymus, while inducible Tregs are generated in the periphery from 

conventional T cells in response to different stimuli. The natural Tregs are the best characterized of the 

two groups and make up approximately 5–10% of circulating T lymphocytes in mice and humans [1]. 

Regulatory T cells are primarily characterized by the expression of the transcription factor FoxP3, 

although conventional T cells can transiently express FoxP3 under some circumstances [2]. FoxP3 

maintains Treg gene expression induced by other transcription factors rather than actually driving Treg 

development. However, FoxP3 is essential for Treg function since loss of FoxP3 function results in 

severe lymphoproliferative disease and autoimmunity in humans and mice [3]. The role of FoxP3 in 

maintaining self-tolerance was first identified in scurfy mice, and then in humans with 

immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, both of which 

have a FoxP3 mutation as the underlying genetic defect. Both natural and induced Treg cells (iTregs) 

have unique surface markers that differentiate them from conventional T cells; however differentiating 

nTregs from iTregs has been challenging. Additional subsets of iTregs that have been described in humans 

and mice include Tr1 cells, T helper 3 cells (Th3), and CD8+ Tregs [4]. Tr1 and Th3 cells do not express 

FoxP3 but were considered “original” Tregs because of their suppressive function [2]. A number of 

studies have shown that Tregs affect the magnitude of immunity and outcome of viral infections, 

especially with persistent viruses that give rise to chronic lesions [5]. The ability of viruses to induce 

proliferation and activation of regulatory T cells likely contributes to delayed clearance and persistence 

in the host.  

Investigators have shown that both coronavirus and arterivirus infection results in an increase in 

CD4+CD25+FoxP3+ lymphocytes. However, the outcomes of Treg activation for each virus are 

different. Treg induction by porcine arterivirus suppresses the immune response [6] which may allow 

for viral persistence, while Treg induction by neurotropic mouse hepatitis virus limits demyelination [7]. 

In this review we discuss the development of Tregs in the context of coronaviral and arteriviral infection 

with special emphasis on porcine arterivirus and mouse hepatitis virus. 

2. Regulatory T Cell Development 

2.1. Natural Tregs 

Natural regulatory T cells (nTregs) develop in the thymus through interactions between the  

high-affinity T cell receptor and cognate antigens on thymic epithelial cells. Co-stimulation through 

CD28 and common gamma (cγ) chain cytokines, especially IL-2 and IL-7 are necessary for nTreg 

development. Signal transducer and activation of transcription 5 (STAT5) signaling through the cγ 



Viruses 2012, 4 835 

 

 

chain is also required. Thymic development of nTreg cells follows a two-step process. First, thymocytes 

upregulate CD25 and other IL-2 signaling molecules in response to TCR/CD28 co-stimulation and 

second, CD4+CD25highFoxP3- Tregs respond to IL-2 independent of the TCR, and induce FoxP3 

expression in response to STAT5 activation [1]. Treg cell-intrinsic NF-κB activation is essential for 

thymic Treg development [1]. Naturally occurring Tregs cannot produce IL-2 and therefore rely on 

paracrine IL-2 production from conventional T cells. Mice deficient in IL-2 or CD25 have reduced 

numbers of FoxP3+ T cells and a dramatic reduction in peripheral and thymic Tregs. In humans, 

Hassall’s corpuscles in the thymic medulla secrete thymic stroma lymphopoietin (TSLP) which 

activates immature dendritic cells and upregulates the expression of co-stimulatory molecules. The 

activated DCs induce FoxP3 expression in CD4+CD8-CD25- thymocytes [8]. 

2.2. Inducible Tregs 

Less well-characterized are the inducible Tregs (iTregs) that develop from conventional T cells under 

certain conditions. iTregs are induced by prolonged exposure to circulating antigen, chronic inflammation, 

or weak co-stimulation in the periphery [2]. Soluble factors such as the cytokines IL-4, IL-10 and 

TGF-β, retinoic acid or neuropeptides can upregulate FoxP3 expression and generate iTregs in the 

periphery. Increased expression of FoxP3 results in upregulation of other Treg molecules, including 

CTLA-4, GITR, and CD127. CD4+ T cells that express high levels of the IL-2 receptor (CD25high) do 

not respond to T cell receptor (TCR) activation or mitogen stimulation, and inhibit IL-2 transcription 

in CD25- cells. Suppression of CD25- cells is contact dependent, and requires activation of the Tregs 

through the TCR; however, once activated, the suppressor effector function is nonspecific [9]. 

CD4+CD25+ T cells suppress the immune response to some viruses, protozoa, and bacteria, and aid the 

survival of intracellular pathogens [10] most likely by potent suppression of proliferation and IFN- 
production of both CD4+ and CD8+ T lymphocytes [11]. Tr1 cells secrete high amounts of IL-10 and 

moderate amounts of TGF-β. Inhibiting IL-10 with neutralizing antibody blocks the suppressor effects 

of Tr1 cells [4]. Th3 cells produce high concentrations of TGF-β and moderate amounts of IL-10, and 

the suppressor effects are not antigen specific [4]. Interestingly, Th3 cells suppress the activation of 

both Th1 and Th2 cell clones while other subsets primarily inhibit Th1 cells and have no effect on Th2 

cells [4]. Other cells with adaptive regulatory function include some CD4-CD8- and CD8+CD28- T 

cells [8]. Early after iTregs are stimulated, they express high levels of cell-cycle progression and T cell 

activation-associated genes [12], mimicking genes that are upregulated in activated effector T cells.  

As iTregs mature, expression of these genes diminishes while they remain high in mature effector T 

cells. By 10 days after differentiation into iTregs, most cell cycle progression and T cell activation genes 

are expressed at levels approximately 3 times lower than in effector T cells. In addition, genes in the 

FoxO family of transcription factors are over-expressed in iTregs compared to overexpression of the 

FoxM1 family in effector cells [12]. 

2.3. Viral Mediated-Treg Activation 

Regulatory T cells typically increase late in chronic viral disease to prevent a persistent 

inflammatory response and viral-mediated immunopathology. In fact, tissue-protective effects of Treg 

were shown in models of respiratory syncytial virus, Friend virus, and West Nile  
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Virus infection [13,14]. Additionally, Treg responses to viruses (and bacteria) form the basis of the 

“hygiene hypothesis”. Infection with influenza A in suckling mice protected these mice as adults 

against allergy induced airway hyperactivity due to the expansion of allergen-specific regulatory T 

cells [15]. Conversely, Tregs are widely accepted as a key contributor in modulating the host immune 

response to viral infection. Tregs are an important component in regulating the magnitude of the 

immune response to infection, thus preventing excessive inflammation and tissue damage. But, they 

can also be inappropriately induced by viruses in order to swing the balance of the immune response in 

favor of maintaining viral infection [16]. In this way Tregs contribute to persistent infection of many 

viruses including Friend virus, herpes simplex virus, hepatitis C virus, hepatitis B virus, human 

immunodeficiency virus, feline immunodeficiency virus, simian immunodeficiency virus, 

cytomegalovirus and Epstein-Barr virus [13,14,17-26]. 

3. Arteriviruses 

3.1. Porcine Reproductive and Respiratory Syndrome Virus 

Within a susceptible herd, reproductive failure due to PRRSV infection can range from sporadic 

abortions to abortion storms that may persist within the herd for up to 6 months [27]. Exposure late in 

gestation may manifest as late-term abortion, or stillborn, partially autolyzed, or mummified fetuses [27]. 

Neonatal infection results in severe dyspnea and tachypnea, and mortality of up to 100%, while disease 

in weaned pigs is primarily due to pneumonia and secondary bacterial or viral infections [27]. PRRSV 

infection is also associated with decreased local cellular immunity, resulting in increased susceptibility 

to secondary bacterial and viral infections [28-30]. Piglets infected with PRRSV in utero have a 

decreased innate immune response to bacterial pathogens [28]. In utero infection with PRRSV inhibits 

macrophage phagocytosis of Salmonella spp., and inhibits alveolar macrophage oxidative burst [28]. 

Additionally, both PRRSV infection and vaccination decreases the efficiency of vaccines against 

Mycoplasma hyopneumoniae [31] and porcine pestivirus [32]. Infection and vaccination with PRRSV 

induces a rapid, non-neutralizing antibody response, and an early, weak, non-specific gamma 

interferon (IFN-) response [33,34]. A PRRSV-specific T lymphocyte IFN- response does not appear 

until at least 2 weeks after infection, [35] gradually increases, and plateaus at 6 months postinfection. 

This IFN- is associated with a slow increase in neutralizing antibody [33,36]. Peak viremia and 

shedding occur before development of a protective neutralizing antibody and IFN- [36]. Acute 

infection is followed by persistence of lower levels of virus in lymphoid tissue and then clearance after 

several months [36]. The cause of the delayed IFN- and neutralizing antibody response resulting in 

persistent infection is unknown. The ability to induce a rapid IFN-γ response is important both for viral 

clearance and heterologous protection by vaccination [37,38]. Vaccine strains currently in use in the 

United States do not provide adequate heterologous protection, perhaps because of their inability to 

stimulate an adequate IFN-γ response. We hypothesized that one reason for the inadequate IFN-γ may 

be due to the ability of PRRSV to stimulate regulatory T cells in vitro [39].  

PRRSV infection results in a significant upregulation of IL-10 expression in peripheral blood 

mononuclear cells and pulmonary alveolar macrophages in vivo and in vitro [40-43]. However, the 

ability of PRRSV to induce IL-10 appears to vary depending on strain and it was recently 
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demonstrated that a highly virulent PRRSV strain did not induce IL-10 in vitro or in vivo [44-46]. The 

primary action of IL-10 is to inhibit inflammatory cytokines including IL-1β, IL-6, TNF, and IL-12, 

and antagonize the function of antigen presenting cells by decreased surface expression of MHC class I 

and II molecules and reduction of costimulatory molecules [47]. Additionally, IL-10 inhibits the 

production of nitric oxide by macrophages [48,49]. Since IL-12-mediated production of IFN- by 

pulmonary alveolar macrophages reduces PRRS viral titers in the lungs and serum [50], inhibition of 

IL-12 synthesis by IL-10 likely enhances the occurrence of natural disease. IL-10 also affects innate 

immunity by inhibiting the response to Toll-like receptors (TLR), including TLR7 and TLR8 that 

recognize single-stranded viral RNA [51]. IL-10 treated DCs induce the proliferation of regulatory T 

cells (Tregs) as well as antigen-specific anergy in CD4+ and CD8+ T lymphocytes [47]. IL-10 not only 

plays a role in the development of type 1 Tregs (Tr1), but is also one of the primary mechanisms by 

which Tregs inhibit effector T lymphocyte function [51].  

In previous experiments, we have shown that PRRSV infection increases the number of 

CD4+CD25+FoxP3+ regulatory T cells in the lungs and PBMCs of pigs (LeRoith, unpublished).  

Silva-Campa demonstrated that the CD25+FoxP3+ cells induced by PRRSV produce TGF-β, 

suggesting that the cells are not only increased, but are also functional [39]. These CD25+FoxP3+ Tregs 

exhibited suppressor activity in vitro. This same group reported that while American genotype PRRSV 

strains were capable of inducing Treg and upregulating TGF-β production, DCs infected with European 

genotype PRRSV induced neither TGF-β nor Tregs [52]. Wongyanin and colleagues demonstrated that 

peripheral blood mononuclear cells (PBMCs) cultured with American genotype PRRSV in vitro 

induced virus-specific CD4+CD25+FoxP3+ Tregs and the addition of monocyte-derived dendritic cells 

(MoDC) to the cell culture enhanced Treg induction [53]. Not only was there a significant increase in 

the numbers of CD4+CD25+FoxP3+ cells, but these PRRSV-specific Tregs exhibited suppressive 

activity when co-cultured with PHA-stimulated autologous peripheral leukocytes. The authors reported 

in this study that PBMCs collected from PRRSV-infected pigs 10 days post-inoculation exhibited 

significantly higher numbers of CD4+CD25+FoxP3+ lymphocytes when cultured in the presence of 

PRRSV compared to mock-infected cell lysate or PBMCs alone. The role of PRRSV nucleocapsid 

protein (N) in Treg induction was recently described, and it was found that N-protein induced IL-10 

producing cells and CD4+CD25+FoxP3+ Tregs in a DC in vitro system [54]. In this study, Treg induction 

was found to be dependent, at least in part, on IL-10, as neutralization of IL-10 by anti-IL-10 antibody 

drastically reduced the PRRSV-induced Tregs. 

In order to assess the potential benefit of using a mucosal rather than parenteral immunization 

approach, Dwivedi et al. investigated the ability of an intranasally delivered PRRS-modified live 

vaccine (MLV) augmented with a potent Mycobacterium tuberculosis whole cell lysate adjuvant to 

induce cross protective immunity against a heterologous PRRSV strain. Vaccinated pigs had a reduced 

frequency of Tregs in respiratory mucosal and systemic sites compared to unvaccinated pigs, and this 

correlated with decreased secretion of immunosuppressive cytokines IL-10 and TGF-β, diminished 

lung pathology, and increased PRRSV neutralizing antibody titers and IFN-γ secretion [55,56]. These 

findings suggest that the route of immunization and adjuvant-mediated immunomodulation may 

influence Treg dynamics, thereby facilitating or negating efficient viral clearance. This same group 

recently reported on pigs that that were maintained on a commercial farm and experimentally infected 

with PRRSV.  
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At two days post-inoculation, infected pigs had an increased frequency of circulating 

CD4+CD25+Foxp3+ Tregs, reduced frequency of CD4-CD8+ and CD4+CD8+ T cells, and enhanced IL-

10, IL-4 and IL-12 secretion [57]. 

It is unknown which components of the virus are responsible for Treg proliferation, but this is 

currently under investigation by our group. We demonstrated that Treg induction by PRRSV results in 

increased susceptibility to natural Mycoplasma hyopneumoniae infection [6]. In this study, pigs were 

inoculated with a virulent strain of PRRSV and a modified live vaccine derived from the same strain.  

The attenuated strain contains silent mutations in the replicase region (ORF 1) [58] and conservative  

or non-conservative amino acid changes in the structural proteins [58]. We hypothesized that even  

with changes that decrease pathogenicity, the mutations would not alter the virus’s ability to stimulate 

Tregs. Consistent with our hypothesis, we found that, although attenuated, the vaccine strain did not 

differ from the parent strain in its ability to activate Tregs. The animals inoculated with the attenuated 

vaccine did not differ from animals inoculated with the parent strain in the severity of  

M. hyopneumonia-mediated disease [6]. Similar to previous findings that infection with wild type 

PRRSV or vaccination with PRRS MLV vaccines has been shown to decrease the efficacy of  

M. hyopneumoniae vaccines [31], inoculation with each of the three PRRS viruses in this study 

resulted in activation of regulatory T cells and likely decreased the ability of the pigs to mount an 

effective anti-bacterial immune response.  

Vaccine efficacy appears to be related to the ability to stimulate IFN-γ production and efficacy 

against heterologous virus challenge seems to correlate more with the ability to stimulate IFN-γ than 

homology of the vaccine strain to the infective strain. Current vaccines fail to protect against other 

strains [59], which may be due to their inability to stimulate IFN-γ production. Our study was the first 

to show the correlation between vaccine induction of Tregs and increased susceptibility to bacterial 

infection. Although Tregs that are induced by PRRS in vitro produce TGF-β [39], the induction of Tregs 

may indirectly result in IL-10 production, a phenomenon that is well established in the PRRS 

literature [41,42]. Production of IL-10 instead of IFN-γ by the MLV vaccine strain would lead to a lack 

of heterologous protection, and decreased efficacy of other vaccines, as seen by other authors [31].  

Our results suggest that mutations in the vaccine strain that result in attenuation of the virus do not 

alter the virus’s ability to stimulate Tregs [6]. This information can help us design vaccines in which the 

Treg-stimulating epitopes are mutated or deleted in order to stimulate a robust virus-specific IFN- 
response, and provide protection against heterologous strains [6]. 

3.2. Lactate Dehydrogenase Elevating Virus 

Lactate dehydrogenase-elevating virus (LDV) has been described as an “ideal” persistent virus 

since it is associated with life-long viral infection in mice in the absence of clinical disease while 

escaping the host immune response [60,61]. Cytotoxicity is limited to resident tissue macrophages, in 

which viral replication is maintained. Lifelong immunotolerance is maintained and has been shown to 

be due in part to continuous generation of LDV antigens in the thymus [62]. In addition, LDV infection 

and replication within macrophages appears to be robustly resistant to typical antiviral immune 

responses including interferon-α/β, antiviral antibodies and virus-specific cytotoxic T lymphocytes [60]. 

Collectively, these features suggest a role for Tregs in the pathogenesis of LDV infection. 
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Inada and colleagues demonstrated that mice challenged with heat-inactivated or killed LDV 

induced a strong virus-specific delayed-type hypersensitivity (DTH) reaction, whereas a delayed 

hypersensitivity reaction was undetectable in young (1–3 month-old) mice challenged with live 

virus [63]. In these experiments pretreatment with cyclophosphamide partially restored the DTH 

response, which was attributed to cyclophosphamide mediated elimination of suppressor T cells [64,65]. 

Live virus also elicited a DTH response in old mice (> 8 months) without cyclophosphamide 

treatment, which is not surprising in light of the fact that older mice have reduced suppressor T cell 

activity. The cumulative findings from this study suggest that inoculation with live LDV induces 

suppressor T cells, and that this dampens the virus-specific delayed hypersensitivity response [63]. 

Further demonstrating the immunosuppressive ability of LDV, Robertson, et al. reported that  

co-infection with LDV and Friend virus (FV) delayed the FV specific CD8+ T cell response and that 

this resulted in an increase in duration and severity of the acute phase of FV infection [66]. The 

suppressed FV-specific CD8+ T cell response occurred in mice acutely co-infected with LDV and FV 

as well as in mice inoculated with LDV 8 weeks prior to FV infection. In addition, mice infected with 

LDV exhibited significant regulatory T cell-mediated suppression of IFN-γ production by FV-specific 

CD8+ T cells that peaked at day 3 post-infection and was diminished by day 7 post-infection. However, 

failure of FV/LDV co-infected mice to mount a strong CD8+ T cell response was not attributed solely 

to Treg-mediated suppression, because neither depletion of CD4+ cells nor pre-treatment with anti-CD25 

antibody restored the normal CD8+ response [66]. 

The antigen presenting ability of spleen, lymph node and peritoneal macrophages from LDV 

infected mice was shown to be diminished as measured in vitro by reactivation of memory T cells.  

The experiments showed that LDV-mediated impairment of antigen presentation was not due to 

diminished uptake of antigen by macrophages and LDV-infected peritoneal macrophages were not 

immunosuppressive in cell culture. Rather, the authors concluded that the decrease in antigen 

presenting ability of LDV-infected macrophages was related to reduced expression of Ia antigen or 

virus-mediated elimination of Ia positive macrophages from the peritoneum [67]. 

3.3. Coronavirus 

Much attention on the interaction of Tregs and viral pathogens has focused on chronic disease, 

demonstrating the ability of Tregs to delay or prevent viral clearance leading to persistent  

infection [16,68]. From the host point-of-view, virus-induced Tregs represent a detrimental factor in the 

context of chronic or persistent infection. However, coronavirus infection in the central nervous system 

of mice highlights a beneficial role of Tregs in reducing bystander damage as a consequence of acute 

infection. Coronavirus infection of the central nervous system exemplifies the necessity of a delicately 

balanced and finely orchestrated immune response. While a rapid and strong pro-inflammatory 

response aids in viral clearance, host tissue destruction secondary to immunopathology can be a 

deleterious side effect. An appropriate anti-inflammatory response is necessary for minimizing 

collateral damage while still allowing clearance of the invading pathogen. 

Mice infected with the neurovirulent strain of mouse hepatitis virus JHM (JHMV) develop a rapidly 

progressive, fatal disease that has been shown to be mediated, in part, by CD4+ T cells. This was 

evidenced by the fact that infection with a recombinant JHMV strain containing a single mutation in an 
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immunodominant CD4+ T cell epitope (rJ.MY135Q) resulted in nonlethal mild encephalitis, and the 

decrease in mortality correlated with decreased numbers of virus-specific CD4+ T cells in the 

brain [69]. Further investigations found that significantly higher levels of the pro-inflammatory 

cytokines/chemokines IL-6, CCL2, CCL5 and IFN-γ were detected in the brains of mice infected with 

the non-mutated recombinant JHMV strain (rJ) compared to rJ.MY135Q-infected mice [70]. CD4+ Tregs 

were shown to be critical in ameliorating disease because (1) greater numbers of Tregs were detected  

in the brains of rJ.MY135Q-infected mice compared to rJ-infected mice, (2) their depletion in  

rJ.MY135Q-infected mice increased morbidity and mortality, and (3) adoptive transfer of Tregs into  

rJ-infected mice increased survival from 0% to 50% [70]. The authors concluded that in the setting of 

acute encephalitis, Tregs may aid in limiting immunopathology, thus decreasing clinical disease without 

delaying viral clearance. 

In contrast to the neurovirulent JHMV strain, mice infected with an attenuated JHMV variant  

(J2.2-V-1) develop chronic demyelinating encephalomyelitis and the demyelination is largely due to 

immunopathology associated with viral clearance [71-73]. Trandem et al. demonstrated that adoptive 

transfer of Tregs ameliorated clinical disease and demyelination in J2.2-V-1-infected mice and did not 

delay viral clearance in immunocompetent C57BL/6 mice [74]. The authors provided evidence that this 

improved clinical outcome was due in part to Tregs functioning in the draining cervical lymph nodes to 

suppress T cell proliferation, dendritic cell activation and expression of pro-inflammatory mediators. 

These findings further support the notion that Tregs play an important role in limiting neuropathology 

associated with mouse hepatitis virus (MHV) infection while still allowing for viral clearance. 

Identification and characterization of pathogen-specific epitopes targeted by Tregs has received 

considerable interest due to possible therapeutic interventions aimed at diminishing  

inflammation-induced tissue damage in a pathogen-specific fashion. Zhao and colleagues identified 

Tregs that specifically recognize two mouse hepatitis virus-specific epitopes using the neurotropic rJ2.2 

strain of mouse hepatitis virus, which is known to cause mild acute encephalitis and chronic 

demyelination [7,75]. These virus-specific Tregs were present in the virus-infected central nervous 

system and, based on concurrent detection with virus-specific effector CD4+ T cells and identification 

within the naïve T cell precursor pools in the spleen and lymph nodes, are presumed to arise from the 

natural Treg pool. In addition, the virus-specific Tregs expressed IL-10 and IFN-γ upon stimulation with 

viral peptide and suppressed proliferation of cognate-epitope specific effector CD4+ T cells. While 

Tregs are known to play a critical role in reducing immunopathology and clinical disease in rJ2.2-

infected mice, the results from this study suggest that virus-specific Tregs may be significantly more 

potent in diminishing immunopathology associated with encephalomyelitis compared to adoptive 

transfer of natural Tregs, particularly during acute infection when maximum viral antigen is  

present [7,74,76]. 

In contrast to the protective effect of Tregs in the pathogenesis of neurotropic mouse hepatitis virus 

infection, Shalev and colleagues demonstrated that Tregs contributed to more severe fulminant viral 

hepatitis in susceptible mice infected with murine hepatitis virus strain 3. This phenomenon was 

mediated in part by increased Treg expression of the immunosuppressive cytokine fibrinogen-like 

protein 2 [77]. These findings suggest that Treg activation following infection with mouse hepatitis 

virus may culminate in different outcomes depending on the anatomic location of disease, such that 
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they are paradoxically beneficial to the host in limiting CNS disease but harmful in potentiating 

fulminant hepatitis.  

4. Conclusions  

Regulatory T cells are critical for maintaining immune tolerance and immune homeostasis by 

protecting against devastating autoimmune disease and overwhelming inflammation. Without these 

subsets of T cells, animals quickly succumb to inflammatory or autoimmune diseases. Activation of 

Tregs is critical in some viral infections, especially neurotropic coronaviral infection, to limit 

immunopathology. However, some viruses, including arteriviruses, have exploited these cells to 

enhance their replication in the host and become persistent. The function of Tregs in coronavirus-infected 

mice highlights the potential dichotomy in protective versus harmful outcome, depending on the 

anatomic location of disease. Along this line of reasoning, one might argue that the perspective of Tregs 

protecting the host or enhancing disease may depend on which outcome is more deleterious, viral 

persistence or immunopathology associated with viral clearance. 

Understanding the mechanism of Treg activation by viruses is critical for identifying new strategies 

to prevent the immunosuppressive effects or enhance the immunoprotective effects on the host.  

In many cases, activation of Tregs not only dampens the immune response to the virus, but  

non-specifically dampens the immune response to other pathogens. While the initial immune 

suppression likely plays a role in virus persistence, the non-specific immune suppression is one of the 

mechanisms by which secondary infection can occur. The complete effects of these viruses on the 

immune response of the host are still under investigation. The ability of certain viruses to stimulate 

Tregs provides valuable insight as to how viruses modulate the immune system. Understanding the 

mechanisms of Treg induction is important in determining the contribution of these viruses to the 

development of disease and is also essential for vaccine development.  
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