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Abstract: Intermediate filaments (IF) are essential to maintain cellular and nuclear 

integrity and shape, to manage organelle distribution and motility, to control the trafficking 

and pH of intracellular vesicles, to prevent stress-induced cell death, and to support the 

correct distribution of specific proteins. Because of this, IF are likely to be targeted by a 

variety of pathogens, and may act in favor or against infection progress. As many IF 

functions remain to be identified, however, little is currently known about these 

interactions. Herpesviruses can infect a wide variety of cell types, and are thus bound to 

encounter the different types of IF expressed in each tissue. The analysis of these 

interrelationships can yield precious insights into how IF proteins work, and into how 

viruses have evolved to exploit these functions. These interactions, either known or 

potential, will be the focus of this review. 
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cytoskeleton; infection 

 

1. Introduction 

Intermediate filaments (IF) constitute the third main cytoskeletal system of vertebrate cells. They 

not only provide structural and mechanical support to the cell, but are also involved in multiple 

cellular functions, including transport, protein and organelle targeting, migration, signaling, apoptosis, 

and protection from stress [1–4]. Because of this, IF are likely to play essential roles in enabling or 
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restricting pathogen infection, and have the potential to become useful targets for new antiviral 

therapies. The dissection of IF-virus interactions could also provide crucial insights into the molecular 

mechanisms underlying the more than 80 human IF-linked diseases, and into the workings of cellular 

processes with the potential to be exploited therapeutically, such as the intracellular trafficking and 

delivery of cargoes. Compared to our knowledge of how viruses utilize the other two cytoskeletal 

components, the microfilaments (MF) and microtubules (MT), however, our current understanding of 

IF-virus interactions is largely incomplete. This review will focus on the interrelationships between 

human herpesviruses and IF during virion entry and egress, and during viral genome replication. 

1.1. IF: An Overview 

With an average diameter of 10 nm, IF owe their name to being of ―intermediate‖ size between MF 

(6 nm in diameter) and MT (25 nm in diameter). Numerous types of IF are formed by the assembly of 

different polypeptides, displaying common structural domains but distinct expression profiles  

(Table 1). Because of their tissue-specific functions, the 70 currently known human IF proteins have 

been associated with a number of pathologies affecting various organs including the skin  

(e.g., epidermolysis bullosa simplex), the heart (e.g., dilated cardiomyopathy), the cornea (e.g., cataract), 

muscles (e.g., muscular dystrophy) and neurons (e.g., Charcot-Marie-Tooth disease) [4,5]. 

Table 1. Identity, tissue distribution and intracellular localization of intermediate filament 

(IF) family members. 

Type Protein Name Cell Type Tissue Type 

I 

Acidic keratins:  

K9-K28 

K31-K40 

Epithelial cells, keratinocytes Mucosae, epidermis 

Hair, epidermal appendages 

II 

Basic keratins:  

K1-8, K71-80 

K81-86 

Epithelial cells, keratinocytes 

Mucosae, epidermis 

Hair, epidermal appendages 

III 

Vimentin 

 

Peripherin 

Glial fibrillary acidic protein  

Syncoilin  

Desmin 

Mesenchymal cells: 

fibroblasts, endothelial, 

hematopoietic cells 

Neuronal cells 

Astrocytes and glia 

Muscle cells 

Connective tissue, blood, 

blood vessels 

Nervous system 

Nervous system 

Muscles 

IV 

-internexin 

Neurofilament H, L, and M  

Nestin  

Synemin , synemin  

Neuronal cells 

Neuronal cells 

Neuroepithelial cells 

Muscle cells 

Nervous system 

Nervous system 

Nervous system 

Muscles 

V Lamin A, B1, B2, C1, C2 Ubiquitous Ubiquitous 

VI 
CP49/phakinin, 

filensin/CP115 
Eye lens cells Eye lens 

 

IF monomers consist of an alpha-helical rod flanked, at each end, by globular domains. Monomer 

dimerization is followed by the formation of tetramers via dimer association in antiparallel orientation, 
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a setting that gives rise to smooth filaments devoid of polarity [6–8]. The polymerization of soluble, 

nucleotide-bound actin or tubulin, by contrast, generates polarized filaments possessing a plus end, to 

which subunits are added, and a minus end, from which subunits can be removed in a process known 

as treadmilling [9,10]. In contrast to MF and MT, IF assembly: (i) occurs spontaneously and in the 

absence of ATP or GTP [6–8,11]; (ii) does not depend on nucleotide availability or on the presence of 

cofactors and regulators, albeit new proteins facilitating IF polymerization have recently been 

identified [12]; (iii) is primarily, although not exclusively, regulated by phosphorylation [13]; and  

(iv) cannot be blocked by any currently available pharmaceutical compound.  

IF are durable, stable and remarkably more resistant to breakage than MF and MT [14]. Despite 

this, their intracellular networks are far from being static, and can quickly reorganize in response to a 

variety of extra- or intracellular stimuli. The molecular mechanisms at the basis of IF dynamics appear 

to depend on the kind of IF, the type of cell, and the specific intracellular location of filaments [8]. 

Lamin, vimentin and neurofilament polymerization, for instance, occurs at a slower rate than that of 

keratin [15], with the majority of nascent filaments moving in anterograde direction toward the cell 

surface. Keratin assembly, on the contrary, occurs principally at the cell periphery, and newly formed 

filaments are continually shifted toward the cell center [16]. The presence of intact MF and MT is 

required to support these movements, as transport of IF precursors relies on motor proteins associated 

with MT (kinesins and dyneins), and MF (myosins) [17–22]. All three cytoskeletal systems are thus 

largely interconnected, both functionally and physically. Vimentin IF and MT are tightly linked in 

human fibroblasts [23], with the pharmacological fragmentation of MT leading to the collapse of 

vimentin networks [17,23–25]. Bundling of vimentin IF by antibody injection, however, did not alter 

MT structure, indicating that MT-IF interactions are functionally unidirectional [26–28].  

Contrary to MF and MT, IF lack polarity and are not exploited as rails for intracellular transport. IF 

do, however, participate in a variety of trafficking events, including sorting of endo-lysosomes, 

mitochondria, and Golgi stacks [29], targeting of proteins to specific locations [29], and transmission 

of signals from the periphery to the nucleus for gene expression control [30]. IF are also crucial for 

proper shaping [31], positioning [32] and anchoring [33] of the nucleus, and to reduce the impact of 

mechanical and other types of stress on key cellular activities [13]. 

1.2. Human Herpesviruses and Their Tropisms 

Herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), human 

cytomegalovirus (CMV), human herpesvirus-6 and -7 (HHV-6 and HHV-7), Epstein-Barr virus (EBV) 

and Kaposi’s sarcoma associated herpesvirus (KSHV) comprise the eight currently known human 

members of the Herpesviridae family (Table 2). All share a similar virion structure, consisting of a 

linear, double-stranded DNA molecule densely packaged into an icosahedral capsid, with a diameter 

of 115–130 nm. The capsid is surrounded by an amorphous protein layer, called the tegument, 

consisting of more than 30 proteins of viral and cellular origin, and by a lipid envelope containing 

approximately 10–12 viral glycoproteins plus a few cellular polypeptides [34]. Infectious virions are 

spherical, and measure approximately 200 nm in diameter. 
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Table 2. Human herpesviruses and permissive cell types. 

Subfamily 
Virus 

Name 
Productive Infection Latency 

Alpha 

HSV-1 Epithelial cells, neurons Neurons: trigeminal ganglia 

HSV-2   

VZV Epithelial cells, neurons, monocytes, 

dendritic cells, T and B lymphocytes 

Neurons: dorsal root ganglia 

Beta 

CMV Most cell types except lymphocytes, 

eosinophils, basophils, and neutrophils 

Myeloid progenitors 

HHV-6 CD4+ T cells, neurons, astrocytes, 

microglia, fibroblasts, epithelial, 

endothelial and dendritic cells 

Lymphocytes, 

Monocyte/macrophages, other? 

HHV-7 CD4+ T cells  

Gamma 

EBV B and T cells, dendritic, NK and 

smooth muscle cells 
Memory B cells 

KSHV B cells, endothelial cells, epithelial 

cells, keratinocytes and fibroblasts 

 

All herpesviruses are species-specific, but the range of cell types and tissues they can infect within 

each species varies widely. In vitro, HSV-1 and HSV-2 can enter most primary and established cells 

lines, while in vivo their tropism is highly restricted to the epithelial cells of the oropharyngeal, 

respiratory and genital mucosae and to the innervating sensory neurons, where they establish latency 

[35,36]. In contrast to HSV, the range of cells permissive to VZV infection in vitro is extremely 

limited, whereas in vivo this virus can infect not only epithelial cells and neurons, but also monocytes, 

dendritic cells, and T and B lymphocytes [37].  

Almost all cell types, with the notable exception of lymphocytes and polimorphonuclear 

leukocytes, are permissive to CMV infection in vivo [38]. Consequently, virtually all organs have been 

found to harbor replicating virus in acutely infected individuals [39,40]. Among permissive cell types, 

fibroblasts, epithelial, endothelial, smooth muscle and dendritic cells are particularly relevant to the 

development of disease, acting as sites of virus amplification, spread and immune evasion [38,39,41–45], 

while CD34
+
 hematopoietic progenitors and monocytes are major reservoirs of latent virus [38,46].  

In vitro HHV-6 replicates most efficiently in activated CD4
+
 lymphocytes, but can infect additional 

cell types including NK, liver, epithelial, endothelial and dendritic cells, fibroblasts, fetal astrocytes, 

and microglia [47]. In vivo, this virus is frequently detected in CD4
+
 T cells and endothelial cells, 

brain and liver tissue, tonsils and salivary glands and, in latent form, in monocytes [47–49].  

Although B lymphocytes and epithelial cells are the main targets of EBV infection, numerous other 

cell types can be infected in vivo, including T lymphocytes, dendritic cells, NK and smooth muscle 

cells. KSHV’s tropism appears to be broader than that of EBV, both in vitro and in vivo, with B cells, 

endothelial cells, epithelial cells, keratinocytes and fibroblasts all capable of supporting production of 

viral progeny [50]. Both viruses establish lifelong latency in resting memory B cells [51]. 

Owing to their broad tissue tropism, herpesviruses are bound to encounter virtually all types of IF 

during infection in vivo. Despite this, our current knowledge of these interactions is still largely 

limited to just a few IF proteins.  
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2. Intermediate Filaments in Herpesvirus Entry 

Herpesviruses replicate their genomes in the nucleus. To start productive infection, therefore, 

penetrated virions must be actively transported from the cell periphery to the nuclear compartment. 

This is accomplished in essentially two ways, depending on the virus mode of entry [52]. If 

penetration occurs by fusion of the viral envelope with the plasmalemma, ―naked‖ virions, i.e., capsids 

and tightly associated tegument proteins, are transported toward the nuclear envelope along cellular 

MT [53–55]. If, by contrast, viral entry occurs by endocytosis or macropinocytosis, the initial 

movement of virions toward the cell center takes place within cellular vesicles. Upon fusion of the 

viral envelope with vesicular membranes, capsids are then released into the cytosol, and reach the 

perinuclear space by associating, once again, with MT [36,51,52]. The long journey virions endure to 

enter host cells and reach the nucleus provides IF with numerous opportunities to support or hinder 

infection initiation (Figure 1).  

Figure 1. Steps during herpesvirus entry that may require intermediate filaments’ 

assistance for efficient completion. IF and microtubules are shown as three parallel thin  

red lines and as thick blue lines, respectively. Black hexagons enclosed in a circle  

depict enveloped virions, while isolated black hexagons represent virus capsids.  

(A) Keratin-type IF potentially strengthening initial virion interactions with the cell 

surface; (B) enhancement of capsid attachment to microtubules via IF; (C) internalization 

of integrin-bound virions under the control of IF; (D) endosomes trafficking towards the 

cell center accompanied by IF; (E) AP-3 mediated endosome acidification and viral 

particles release facilitated by IF; (F) capsid movement along the nuclear envelope towards 

the nuclear pore complex assisted by IF; and (G) regulation of viral gene transcription 

onset by nuclear IF. MTOC, microtubule organizing center.  
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2.1. Virion Binding at the Cell Surface 

Natural transmission of herpesviruses occurs by contact between virions present in the bodily fluids 

of infected individuals and the oral or ano-genital mucosae of a new host. The epithelial cells and 

keratinocytes lining these openings express different types of keratins, while fibroblasts and endothelial 

cells in the underlying connective tissues contain vimentin. Both proteins can be exposed at the cell 

surface, where they may participate in cell-pathogen interactions.  

Keratins are deposited outside of the cell in specific areas of the mouth such as the hard palate, the 

gingiva, the tongue and the outer lip [56]. Their presence at these sites usually provides an effective 

barrier against pathogen invasion, although several bacteria were shown to use surface keratins as 

host-binding anchors [57–61]. Although the actual presence of non-keratin types of IF at the cell 

surface is still under debate and a matter of controversy, extracellular exposure of vimentin was 

reported to favor attachment and internalization of viruses such as the porcine reproductive and 

respiratory syndrome virus [62], human immunodeficiency virus-1 [63], and Theiler’s murine 

encephalomyelitis virus [64]. As the entry process of most herpesviruses, except EBV, begins with 

virion attachment to the ubiquitous heparan sulfate proteoglycans [65], surface keratins are unlikely to 

act as primary sites of virion binding to the cell surface, although a role for these proteins in 

strengthening these initial virus-host contacts remains possible (Figure 1A). Primary HSV infection of 

the oral cavity generally occurs within non-keratinized tissues [66], and in an organotypic culture 

system mimicking stratified human epithelia, successful initiation of HSV-1 infection required virions 

to slip through microabrasions in the keratinized suprabasal layers of the epithelium [67]. At least for 

HSV, thus, keratins appear to hinder, rather than promote, virion entry. Whether surface vimentin 

plays any role in supporting initiation of herpesvirus infection, by contrast, remains to be determined. 

2.2. Virion Penetration 

All herpesviruses enter host cells by fusion of the viral envelope with cell surface or vesicular 

membranes, depending on the complement of proteins present on the virion and on the cell type [52]. 

CMV entry into epithelial and endothelial cells, for instance, occurs by macropinocytosis followed by 

capsids release in a low-pH-dependent [68,69] or independent [70,71] way, and requires the presence 

of the gH/gL/UL128/UL130/UL131A complex on the viral envelope [43,72,73]. CMV strains lacking 

this complex have a more limited tropism, and enter cells by fusion at the plasma membrane [38]. 

Engagement of cellular vesicles is also required for entry of HSV into epithelial cells such as 

keratinocytes and HeLa cells, and of EBV into B cells, while penetration of HSV into fibroblasts, 

neurons and African green monkey kidney epithelial cells, and of EBV into primary human foreskin 

epithelial cells occurs by fusion at the cell surface [74–77]. 

All herpesviruses enter host cells by fusion of the viral envelope with cell surface or vesicular 

membranes. Irrespective of the mechanism used, herpesvirus entry usually leads to MF remodeling, 

accompanied or not by filament disassembly, while the structural integrity of MT is generally 

maintained to support capsid transport toward the nucleus [78–87]. Currently available data also point 

at a remarkable conservation of IF networks [83–85,88,89], suggesting that the integrity of this system 

may be required for viral entry. In a recent work, we tested this hypothesis using human fibroblasts 

and two different CMV strains, one entering cells by fusion at the plasma membrane (AD169) [90] 
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and one expected to enter by fusion with both surface and vesicular membranes (TB40/E) [83]. 

Penetration of both types of virions was severely impaired in cells where the vimentin cytoskeleton 

had been disrupted with acrylamide, a neurotoxin causing IF collapse in perinuclear aggregates [25]. 

Onset of infection was also delayed (AD169), and both delayed and reduced (TB40/E), by vimentin 

bundling in fibroblasts from patients with giant axonal neuropathy. Finally, the complete absence of 

this protein in vimentin
−/−

 mouse embryo fibroblasts deferred AD169 particle translocation across the 

cytosol, and completely blocked progression of TB40/E virions [83]. These results show that the 

presence of an intact vimentin network is required for CMV infection onset, and hint at a differential 

role for these IF in supporting virion progress toward the nucleus. Virion entry by fusion at the cell 

surface, indeed, appeared to be less dramatically affected by the absence of vimentin than entry by 

macropinocytosis, suggesting that vimentin’s role in managing intracellular vesicles’ movement may 

be more relevant to CMV infection than its scaffolding functions at the cell periphery.  

Whether other types of IF are required for viral entry in clinically-relevant cells like epithelial cells 

and neurons, and whether the presence of intact vimentin networks is also necessary for infection with 

other herpesviruses besides CMV remains to be determined. Also to be explored is the precise role 

played by IF during herpesvirus entry, a task complicated by the fact that the exact function of 

numerous IF proteins has not yet been established. Based on current knowledge, however, the 

following possibilities may be envisaged: (i) being tightly connected with MT, some IF proteins might 

facilitate binding of penetrated capsids to MT motor proteins at the cell periphery (Figure 1B);  

(ii) vimentin interacts with integrins 21, 64 and V3 at the cell surface, and mediates recycling 

of integrin-containing endocytic vesicles [91,92]. These IF could thus support entry of herpesviruses 

that use integrins as receptors, such as CMV [93–95], KSHV [96,97], and EBV [98], by enhancing the 

internalization of vesicles containing virion-integrin complexes (Figure 1C); (iii) vimentin also 

accompanies endocytic vesicles in their migration toward the nucleus [99] and, together with the glial 

fibrillary acidic protein (GFAP), promotes the directional mobility of vesicles in astrocytes [100]. 

These functions could thus be exploited by endocytosed viral particles to traffic from the periphery to 

the center of the cell (Figure 1D). Vimentin’s role in stimulating clathrin uncoating from endocytic 

vesicles [101], by contrast, may not have an impact on infection onset, as herpesvirus virions are 

considered to be too large to fit into clathrin-coated endosomes, with the notable exception of KSHV 

[87,102]; (iv) finally, vimentin, peripherin and -internexin also bind to AP-3 [103], an adaptor 

complex that regulates trafficking of vesicles in the endo-lysosomal compartment [104], maintains 

endo-lysosomal stores of cellular ionic zinc in fibroblasts [105], and controls the intracellular 

localization of the chloride channel ClC-3 [106], thus potentially contributing to influence lysosomal 

pH [107,108]. In the absence of vimentin, lysosomes are small, do not properly acidify, and 

redistribute from their usual disperse cytoplasmic location to a juxtanuclear region [101,103]. Thus, at 

least in those instances where release of internalized capsids from cellular vesicles is pH-dependent 

[68,69,74,102,109,110], the presence of vimentin, peripherin or -internexin may be required to 

induce the rapid acidification of endo-lysosomes via AP-3 (Figure 1E). Both vimentin and keratins, 

however, also appear to have a role in stimulating the formation of autophagosomes, as disruption of 

hepatic keratin networks completely inhibited autophagy [111], while vimentin
−/−

 cells were shown to 

contain lower number of autophagocytic vesicles than wild-type cells [103]. This specific IF function 

may thus favor the host, rather than the virus, by fostering the active degradation of penetrated 
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particles. Herpesviruses have indeed evolved a number of strategies to manipulate this cellular defense 

mechanism, although none have yet been reported to affect IF’s participation in this process [112]. 

2.3. Viral Genome Deposition into the Nucleus 

Dynein-bound capsids traveling along MT [113] are thought to reach the MT-organizing  

center (MTOC), where most MT plus ends are anchored [114]. This organelle is usually, but not 

always, located in proximity of the nucleus, at distances spanning from ~1.5 m in fibroblasts [115]  

to 5–10 m in neurons [116]. Exactly how capsids reach the nuclear envelope across this gap, 

corresponding to about 10- to 80-fold their average size, remains unclear. Although most capsids are 

initially located close to the MTOC, their distribution becomes more evenly dispersed around the 

nucleus at later times [117]. The precise mechanisms mediating this spread are also currently unknown.  

Electron microscopy imaging of HSV-1 and of murine gammaherpesvirus 68 entry into mammalian 

cells revealed that, once within 40 nm from the nuclear pore complex (NPC), capsids attach to the 

filaments radiating from the pore’s outer rim [117,118]. This binding step is followed by the 

translocation of the viral genome from the capsid into the nucleus through the capsid portal and the 

NPC, in a process that requires energy and the presence of cellular proteins other than those 

comprising the nuclear pore, and whose identity is currently unknown [119–121]. 

Cytoplasmic IF form cage-like webs around the nucleus, and can tightly associate with the nuclear 

envelope and with nuclear IF through a series of mediator proteins, including the recently discovered 

SUN (Sad1 and UNC-84) and KASH (Klarsicht, Anc-1 and Syne/Nesprin Homology) family  

members [122–128]. Thus, nuclear lamins bind to SUN protein dimers located in the inner nuclear 

membrane (INM). These, in turn, interact with KASH domain-containing proteins residing in the outer 

nuclear membrane (ONM). One of these proteins, nesprin-3, then completes the link between the 

nucleus and the IF cytoskeleton by interacting with plectin, an IF-binding protein [129,130]. At least 

in the case of vimentin, this tight grip of IF on the nuclear envelope was shown to be essential for 

maintenance of a rounded nuclear shape [31], for anchoring of the nucleus within the cell [131], for 

force transfer from the periphery toward the cell center [132], and to prevent nuclear spinning [33]. By 

forming a crate of filaments surrounding the nuclear envelope, IF are likely to dock to the nuclear 

membrane at multiple locations. Thus, IF could potentially support not only the transfer of capsids 

from the MTOC to the nucleus, but also their spread along the nuclear envelope, in order to reach 

NPCs located at greater distances from the centrosome (Figure 1F). Evidence in favor of a role for 

vimentin in fostering uptake of HIV-1 preintegration complexes into the nucleus has indeed been 

provided [63].  

3. Intermediate Filaments in Herpesvirus Replication 

Following genome deposition into the nucleus, transcription of the viral immediate-early (IE) genes 

must occur to start productive viral replication, while their silencing is required to establish latency.  

Several lamina proteins were recently shown to participate in gene expression control by recruiting 

transcription factors and chromatin modifying enzymes to the nuclear periphery, thus leading to the 

formation of a transcriptionally repressive environment that is interrupted only in proximity of the 

nuclear pores [133]. For instance, while lamin A itself can inhibit gene expression when artificially 
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tethered to promoters, [134], the lamina-associated protein 2 mediates transcriptional silencing by 

stimulating histone H4 deacetylation after binding to histone deacetylase 3 [135]. The lamin B 

receptor protein (LBR), by contrast, supports heterochromatin anchoring to the nuclear envelope by 

interacting with the heterochromatin protein 1 and with deacetylated histones H3/H4 [136].  

Regularly spaced nucleosomes displaying the typical markers of heterochromatin are also usually 

associated with latent viral genomes maintained in episomal form within the nucleus of specific cells 

[137]. This transcriptionally silent status is reversed during reactivation bouts, possibly via reductions 

in the number of genome-associated histones, or via histone acetylation. Although a few viral and 

cellular proteins with roles in controlling these events have already been identified, a number of 

questions regarding the mechanisms and players involved in viral genome silencing during latency 

remain open [137]. Because of the prominent participation of the nuclear lamina in mediating 

transcriptional repression, nuclear IF are highly likely to be involved in viral latency establishment 

and/or maintenance, although this possibility has not yet been explored. By contrast, a role for lamin A 

in supporting the viral lytic replication cycle has been demonstrated [138]. In the absence of this 

lamin, nascent replication compartments were no longer retained within transcriptionally active areas 

of the nucleus, leading to increased heterochromatinization of the viral genome, strong inhibition of IE 

protein expression, and markedly reduced viral yields [138].  

Other types of IF besides the lamins could also, potentially, be involved in herpesvirus replication 

events, on account of their involvement in intracellular signaling cascades [29]. Keratin mutation, 

GFAP overexpression and desmin downregulation were indeed shown to lead to changes in cellular 

gene transcription [29,139–141]. Theoretically, thus, these IF proteins could affect viral gene 

expression during both productive and latent life cycles (Figure 1G).  

Progression of herpesvirus infection is also associated with dramatic changes in transcription levels 

of numerous cellular genes, including those encoding IF proteins (Table 3). Although the relevance of 

these changes for viral replication has not been fully established, they are likely to contribute to the 

pathological consequences of infection. The impact of VZV infection on IF gene expression, for 

instance, appears to be highly cell type-dependent, with the majority of changes observed in infected 

human skin implants in SCID mice (Table 3) [142]. In this tissue, transcription of numerous keratin 

genes was down-regulated, providing a possible molecular basis for the development of the typical 

skin blisters observed in patients with chickenpox. Moreover, the concomitant up-regulation of 

vimentin expression may indicate the onset of epithelial-to-mesenchymal transitions. In contrast, CMV 

infection of fibroblasts appeared to induce the appearance of an opposite phenotype, with reductions in 

vimentin, syncoilin and keratin 19 expression, and induction of keratin 5, 13, 18, 85 and 86 synthesis 

[143]. CMV infection in human neural progenitor cells also leads to the marked down-regulation of 

GFAP expression, and to the skewing of these cells’ differentiation toward a nonneuronal lineage. 

Both events are likely to lead to the severe nervous system malformations observed in newborns with 

cytomegalic inclusion disease [144]. Finally, transcription of different keratin genes is also altered in 

tissues infected with EBV or KSHV [145–147], while expression of EBV LMP or EBNA4 proteins 

stimulated expression of vimentin [148–150], but the significance of these changes for viral 

pathogenesis is still unclear.  
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Table 3. Changes in expression levels of IF-encoding genes as reported in functional 

genomics analyses of infected human tissues and fibroblasts (HF). 

Gene Name 
Gene 

Symbol 

VZV in 

T Cells * 

VZV in 

Skin * 

VZV in 

HF * 

HSV in 

HF 
&

 

CMV in 

HF 
@

 

Keratin 1 

Keratin 5 

Keratin 6A 

Keratin 8 

Keratin 13 

Keratin 17 

Keratin 18 

Keratin 19 

Keratin 33A 

Keratin 71 

Keratin 85 

Keratin 86 

KRT1 

KRT5 

KRT6A 

KRT8 

KRT13 

KRT17 

KRT18 

KRT19 

KRT33A 

KRT71 

KRT85 

KRT86 

- 

- 

- 

- 

- 

- 

- 

- 

UP 

- 

- 

- 

DOWN 

DOWN 

DOWN 

- 

- 

DOWN 

- 

UP 

- 

DOWN 

- 

- 

- 

- 

UP 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

UP 

- 

- 

UP 

- 

- 

- 

- 

- 

- 

UP 

- 

- 

UP 

- 

UP 

DOWN 

- 

- 

UP 

UP 

Desmin 

Peripherin 

Syncoilin 

Vimentin 

DES 

PRPH 

SYNC 

VIM 

- 

- 

UP 

- 

UP 

- 

- 

UP 

- 

- 

- 

- 

- 

UP 

- 

DOWN 

- 

- 

DOWN 

DOWN 

Neurofilament 3 

Neurofilament heavy 

NEF3 

NEFH 

- 

DOWN 

DOWN 

- 

- 

- 

- 

- 

UP 

- 

Lamin B1 LMNB1 - - - - UP 

Data derived from the following references: * [142]; & [151,152]; @ [143]. 

4. Intermediate Filaments in Herpesvirus Egress 

After being filled with newly replicated viral genomes, nucleocapsids leave the nucleus by 

sequentially budding through the INM and ONM in the so-called envelopment-deenvelopment-

reenvelopment process, followed by the acquisition of tegument proteins and envelope membranes 

from the trans-Golgi network and the ER in the cytoplasm. Mature virions are then incorporated into 

exocytic vesicles for release at the cell surface [153–155]. Once again, this itinerary provides 

herpesviruses with numerous opportunities to interact with a variety of IF proteins. 

4.1. Nucleocapsid Egress from the Nucleus 

Because of their size (115–130 nm), herpesvirus nucleocapsids cannot exit the nucleus through the 

NPC, whose functional internal diameter measures 38 nm in size. All other passageways to the 

cytoplasm necessarily entail crossing of the nuclear envelope, whose INM, however, is supported and 

protected by a dense IF network composed of A- and B-type lamins, and of their partners [156]. As 

destabilization of the nuclear lamina is required for capsids to reach the INM, all herpesviruses have 

been reported to induce changes in the structure and/or distribution of lamina components at late times 

post-infection. Although the exact mechanisms mediating these rearrangements are not completely 

understood, they are thought to depend, at least in part, on lamin phosphorylation events, similar to 

those leading to the dissolution of the nuclear envelope during mitosis [154]. 
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At late times post-infection with HSV-1, the usually uniform distribution of lamin A/C and B at the 

nuclear rim becomes irregular and discontinuous. While a proportion of the lamin B and LBR proteins 

is relocated to a perinuclear cytoplasmic region, possibly corresponding to the ER [157,158], changes 

occurring to the lamin A/C proteins appear to be more conformational than positional [159]. Lamin 

A/C and B amounts were also reduced in infected COS-1 cells [157], while no change in lamin A/C 

and lamin-associated protein 2 levels were detected in infected Vero cells [160]. This suggests that 

degradation of lamina components is cell type-specific, and is not necessarily required for its 

disruption. Both lamin B and the lamina-associated protein emerin are phosphorylated during infection 

[158,161], leading to the loss of connections between emerin and the nuclear membrane [162]. Lamin 

A/C is also phosphorylated on multiple sites by the viral kinases US3 and UL13, at least in vitro 

[163,164]. Whether these phosphorylation events are sufficient to induce fragmentation of the lamina 

to the extent required for virions to access the INM is unknown. Expression of HSV-2 UL13 alone, 

however, was shown to almost completely recapitulate the changes in lamin A/C and B distribution 

observed in infected cells [164].  

According to the current model, the HSV nuclear egress complex (NEC) consists of the following 

components [158–169] (Figure 2, left): a UL34-UL31 heterodimer, anchored to the INM via the 

transmembrane domain of UL34; the viral kinase UL13, which can phosphorylate US3, lamin A/C and 

lamin B, and regulates UL31 and UL34 recruitment to the INM; the viral kinase US3, which 

phosphorylates UL34 and lamin A/C, but is not necessary for lamina disruption, and may instead 

function as a negative regulator of the process; PKC and PKC, which are recruited to the INM by 

the UL34-UL31 complex and are responsible for at least part of the observed phosphorylation of lamin 

A/C and B, and other, as yet unidentified, cellular kinases mediating emerin phosphorylation.  

Quite interestingly, although lamins constitute a formidable barrier to nucleocapsid egress from the 

nucleus, and could thus be considered negative regulators of infection, HSV-1 titers are decreased 

(instead of increased) by at least 10-fold in LmnB1
−/−

 murine fibroblasts lacking expression of lamin 

B1 [170]. This suggests that lamin B is required for efficient viral replication, possibly because of its 

function in gene transcription and DNA replication [171,172]. Finally, although rearrangement of the 

nuclear lamina is required for efficient replication, it is possible for nucleocapsids to leave the nucleus 

in the absence of these changes, as mutant viruses lacking expression of UL31 and UL34 can still 

replicate to some extent in non-complementing cells [166]. Intriguingly, the nuclei of cells infected 

with bovine herpesvirus 1 were shown to contain large gaps through which nucleocapsids could reach 

the cytoplasm without budding into nuclear membranes [173]. Although the existence of these gaps is 

still a matter of debate, their generation may involve different kinds of interaction with the lamina than 

those mediating its dissolution, potentially requiring the activity of an alternative set of viral proteins.  

CMV infection of human fibroblasts also profoundly modifies the structure of the lamina, inducing 

the appearance of deep INM invaginations that may favor capsid egress by acting as channels for the 

direct transport of virions towards the ONM [174–178]. The requirement for the presence of two viral 

proteins, M50 and M53, to achieve dissolution of the nuclear lamina was first demonstrated for murine 

CMV [179]. Their human CMV homologs, UL50 and UL53, were subsequently shown to be part of 

the CMV NEC (Figure 2, center), together with the viral kinase UL97, and the cellular proteins p32, 

LBR and PKC [180]. A new viral protein we just identified and named RASCAL also appears to 

localize to the NEC, likely through interactions with UL50 [82], while recruitment of the cellular 
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peptidyl-prolyl cis/trans isomerase Pin1 to the nuclear rim was recently described to occur by binding 

to phosphorylated lamin A/C [181]. 

Figure 2. Herpes simplex virus 1 (HSV-1), cytomegalovirus (CMV) and Epstein-Barr 

virus (EBV) nuclear egress complex components and their interactions with the nuclear 

lamina. The two brown and thick lines represent the nuclear envelope, while the short 

black thin lines depict the lamin A/C and lamin B proteins comprising the nuclear lamina. 

Asterisks represent phosphorylation events performed by kinase proteins, whose names are 

contained in yellow-colored circles or ovals linked to the asterisks by orange arrows or 

arrowheads. The names of the two viral proteins composing the core of each nuclear egress 

complex (NEC) are contained within red- or orange-colored circles. 

 

 

How, exactly, the nuclear lamina is disassembled during CMV infection is not completely 

understood. The complete disappearance of lamin A/C at late times post-infection has been described 

in some [182,183], but not other [82,184,185] reports. Whether proteolytic degradation of this lamin 

occurs and, if so, how much it contributes to the whole disassembly process is therefore still uncertain. 

Also unclear is whether expression of UL50 and UL53 alone can support these changes as described 

in COS7 cells [184], or whether their main function is to recruit other NEC components including the 

kinases PKC and UL97, whose activity, by contrast, is absolutely required for lamina disassembly 

[179–182,185–187]. Because of its role in lamin A/C phosphorylation, UL97 has been proposed to act 

as a viral analog of the cellular cyclin-dependent kinase 1 (CDK1) [188], which supports dissolution 

of the nuclear lamina during mitosis [189]. Interestingly, the appearance of pathological mitoses, 

characterized by the presence of multiple spindle poles and by the complete dissolution of the nuclear 

envelope, was observed to occur at late times post-infection with different strains of CMV, but in 

substantial amounts during infection with the fibroblast-adapted strain AD169 [190,191]. Pseudomitoses 

generation required the presence of CDK1, but the activity of this kinase was dispensable for the 

production and release of new viral particles [191]. By contrast, the simultaneous inhibition of 

multiple cyclin-dependent kinases, coupled or not to the inhibition of UL97, substantially reduced 
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viral yields [191]. These results suggest that CMV may use a number of different cellular kinases, in 

addition to PKC and UL97, to support dissolution of the nuclear lamina during egress. Additionally, 

induction of pseudomitoses per se may represent an alternative method for CMV virions to leave the 

nucleus, since their presence in more than one quarter of infected cells did not have any negative effect 

on viral yields.  

Finally, not much is known about the impact of EBV or KSHV infection on the nuclear lamina. In 

striking contrast to HSV and CMV infection, which cause a dissociation of the INM and ONM, EBV 

infection induces duplications of the nuclear membrane [192]. These were generated by the activity of 

the viral protein BFRF1, which localizes at the nuclear rim, interacts with lamin B and recruits a 

second viral protein, BFLF2, a putative modulator of BFRF1 activity [193–195]. Similar to the alpha 

and beta herpesviruses, however, EBV also appears to encode a nuclear rim-localized kinase, BGLF4, 

which can induce lamina disassembly by lamin A/C phosphorylation [154,196] (Figure 2, right). 

4.2. Subviral Particle Trafficking from the Nucleus to the Cell Surface 

After leaving the ONM, nucleocapsids must cross the cytoplasm to reach the cell surface. During 

infection with a variety of viruses, this step is associated with IF disassembly, possibly to enhance the 

speed of capsid movement by reducing the viscosity of the cytoplasm. Infection of epithelial cells with 

HSV-1 was indeed shown to cause partial proteolysis of keratins [197], while keratin 17 phosphorylation 

by HSV-2 US3 kinase was associated with reductions in these IF’s density [198]. However, 

considering the complexity of herpesvirus maturation in the cytoplasm, a role for IF in supporting, 

instead of hindering, herpesvirus egress is far more likely.  

The interactions between vimentin, keratin and neurofilament IF and the Golgi apparatus [29], for 

instance, may be important for transfer of intracellular membranes to virions during their envelopment. 

In addition, desmin, keratins and neurofilaments are essential to maintain the correct morphology, 

distribution and function of mitochondria. In heart and skeletal muscles of desmin-null mice, 

mitochondria are misshapen and mislocalized, leading to a decrease in energy production and to the 

induction of apoptosis [199,200], while in neurons from patients with Charcot-Marie-Tooth disease 

caused by mutations in the neurofilament light subunit gene NF-L, mitochondria cluster close to the 

cell soma, leading to defects in axonal transport [201]. Through their interaction with mitochondria, 

thus, IF may support herpesvirus infection by securing an uninterrupted flow of energy, required to 

fuel viral genome synthesis and capsid transport. Also, IF may cooperate with viral anti-apoptotic 

proteins to prevent cell death. Finally, IF have a prominent role in targeting a variety of proteins to the 

plasma membrane [29], and in anchoring cells to each other as well as to the substratum by attaching 

to desmosomes and hemidesmosomes, respectively [202]. These functions could thus be exploited by 

maturing virions to promote the delivery of specific proteins to the sites of fusion between exocytic 

vesicles and the plasmalemma, and to target virion egress to the sites of cell-to-cell contact for lateral 

transmission within tissues. The NP protein of the lymphocytic choriomeningitis virus was indeed 

shown to promote intercellular spread of mature virions by binding to keratin 1 and stabilizing its 

filaments, leading to the establishment of stronger cell-to-cell contacts that favored viral  

transmission [203]. A similar role for keratins and other types of IF can be easily envisaged during 
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herpesvirus egress, particularly so in the case of HSV and VZV, whose transmission and pathological 

manifestations involve keratinized organs such as the skin.  

5. Concluding Remarks 

In summary, IF are highly dynamic structures whose role in cellular physiology is just starting to be 

unraveled. The analysis of their functions during herpesvirus infections is certain to provide exciting 

new insights into how key steps of the viral cycle are completed, and is likely to lead to potentially 

new avenues in the treatment of herpesvirus infections. 
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