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Abstract: The virologic synapse (VS), which is formed between a virus-infected and 

uninfected cell, plays a central role in the transmission of certain viruses, such as HIV and 

HTLV-1. During VS formation, HTLV-1-infected T-cells polarize cellular and viral 

proteins toward the uninfected T-cell. This polarization resembles anterior-posterior cell 

polarity induced by immunological synapse (IS) formation, which is more extensively 

characterized than VS formation and occurs when a T-cell interacts with an antigen-

presenting cell. One measure of cell polarity induced by both IS or VS formation is the 

repositioning of the microtubule organizing center (MTOC) relative to the contact point 

with the interacting cell. Here we describe an automated, high throughput system to score 

repositioning of the MTOC and thereby cell polarity establishment. The method rapidly 

and accurately calculates the angle between the MTOC and the IS for thousands of cells. 

We also show that the system can be adapted to score anterior-posterior polarity 

establishment of epithelial cells. This general approach represents a significant 

advancement over manual cell polarity scoring, which is subject to experimenter bias and 

requires more time and effort to evaluate large numbers of cells. 
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1. Introduction  

Anterior-posterior (AP) cell polarity is defined as the asymmetric distribution of macromolecules 

and organelles in the x-y cell plane. This process, which becomes initiated by localized activation of 

receptors at the cell surface, is essential for diverse functions, including embryonic morphogenesis, 

tissue repair, and immune surveillance [1–4]. AP cell polarity is also exploited by HIV and HTLV-1 to 

form the virological synapse (VS), where virus cell-cell spread takes place [5,6]. Normal AP 

cell polarity is also disrupted by viruses [6–9]. For example, Barnard et al. showed that in T-cells, 

HTLV-1 blocks normal AP cell polarization while promoting AP cell polarization associated with VS 

formation [10]. 

The immunological synapse (IS) is a specialized cell-cell contact membrane junction formed by the 

interaction between a T-cell and antigen-presenting cell. Formation of the IS triggers activation of cell 

signaling cascades that promote AP polarization and contribute to activation, survival, and migration 

of T-cells [6,11,12]. During the process of AP polarization in T-cells, the microtubule-organizing 

center (MTOC) changes from a random orientation to an orientation near the IS of the cell and 

therefore represents a useful marker to score AP cell polarity [5,12,13]. 

Previous studies have scored AP cell polarity establishment in microscopic images using a time 

consuming and laborious manual process [5,10,14–18]. To improve upon this method, we have 

developed a new automated, high throughput technique to score AP polarity establishment in both 

T-cells and epithelial cells. This automated system should facilitate all studies of AP polarity, as well 

as those directed at investigating how viruses perturb and exploit this important cellular process. 

2. Results and Discussion 

2.1. Results 

To induce IS formation and AP polarity establishment, we chose the established method of 

incubating human Jurkat T-cells with anti-CD3/CD28 coated beads [5]. Microscopic imaging of 

cell:bead conjugates requires attachment to a slide or plate. While centrifugation of non-adherent 

T cells is often used for this purpose [5], this method causes Jurkat cells to have an abnormal 

morphology and irregular size (data not shown), which interferes with automated analyses detailed 

below. This problem is circumvented by allowing cell:bead conjugates to settle by gravity onto plates, 

thereby retaining normal Jurkat cell morphology. Binding of the anti-CD3/CD28 bead to the Jurkat cell 

subsequently induces AP polarity establishment characterized by redistribution of the MTOC near the 

IS formed at the bead-cell contact point. Thus, to assess cell polarity establishment, we must visualize 

the MOTC, which is stained with anti-pericentrin antibody [19]. DAPI staining additionally permits 

visualization of nuclei, whereas beads are detected directly due to their red color. The automated high 

throughput system then captures microscopic images of cell fields and uses the relative locations of the 
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MTOC, nucleus, and bead of each cell:bead conjugate to calculate a MTOC:bead angle. Finally, 

MTOC:bead angles output from the automated system are analyzed to score T-cell polarity 

establishment for a cell population. The overall procedure is outlined in Figure 1A. 

In the first step of the automated system, confocal microscopy images are collected and compiled 

by a Pipeline Pilot algorithm. The algorithm determines the eligibility of each cell for MTOC:bead 

angle determination based on two strict criteria. (1) The cell must contact only one bead and must not 

contact another cell to ensure that the cell receives only one polarization signal. (2) The cell must 

contain only one MTOC. Cells meeting both criteria are subjected to the second step of the automated 

system, in which a reference line, designated the 0 line, is drawn between the center of the nucleus 

and the center of the bead attached to this cell (Figure 1B). The system also draws a second line, 

designated the MTOC line, between the center of the nucleus and center of the MTOC. In each cell, 

the 0 and MTOC lines intersect at the center of the nucleus to define the MTOC:bead angle, which is 

the smallest angle formed between the two lines and which is accurate to four significant digits, with 

the dimension of a pixel representing the limiting factor. The Pipeline Pilot algorithm additionally 

allows one to view compiled images showing the MTOC:bead angle for each cell (Figures 1C,D). 

Images include the white cell mask, green-stained MTOC, blue-stained nucleus, and red-colored bead. 

The algorithm creates the cell mask to simulate the cell perimeter based on information obtained about 

the unique size and shape of Jurkat cells. 

To assess cell polarity establishment, MTOC:bead angles calculated for cell sample populations are 

compiled and sorted into four different 90 regions: region 1 includes two adjacent 45 sectors bisected 

by the 0 line; region 2 includes two separate 45 sectors adjacent to and on either side of region 1; 

region 3 includes two separate 45 sectors adjacent to and on either side of region 2; region 4 includes 

two adjacent 45 sectors next to region 3 (Figure 1E). Thus, by definition, region 1 is closest to the 

bead whereas regions with higher numbers are progressively further from the bead. Sorted data are 

then subjected to an ANOVA analysis to determine whether the number of cells found in any region is 

statistically different from that of other regions. Theoretically, unpolarized cells should show equal 

(25%) distribution within regions 1–4, whereas polarized cells should show higher distribution within 

region 1 and concomitantly lower equivalent distributions in regions 2–4. 

We first used the automated system to establish the kinetics of AP polarity establishment following 

incubation of Jurkat cells with anti-CD3/CD28 beads for 5, 10, 15, 20, 30, 60 or 120 min (Figure 2). 

The results showed that the percentage of cells containing an MTOC in region 1 progressively 

increased from 0 min, peaked at 20 min, and remained approximately steady thereafter through the 

120 min time point. As expected, we also observed that a smaller percentage of cells contained the 

MTOC in regions 2–4 than in region 1 at all time points (Figure 2). Differences between the numbers 

of cells containing an MTOC in region 1 and those with an MTOC in regions 2–4 were statistically 

significant for the 20, 30, 60 and 120 min time points. These findings show that T-cell polarization 

occurs rapidly, as it is detected as early as 5 min after addition of anti-CD3/CD28 beads. Also notable 

was that the automated system permitted imaging of large numbers of cells fitting our strict scoring 

criteria at each time point. For example, the lowest number of scored cells was 474 at the 5 min time 

point, presumably due to the short time available for cells to adhere to the plate surface and to attach to 

beads. In contrast, the number of scored cells increased to a maximum of 2,417 at 30 min of 

conjugation time. We considered scored cell numbers greater than 1,000 to be optimal for statistical 
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approximately equally (25% of cells/region) within each region, whereas polarized cells should instead 

distribute predominantly in the region encompassing the polarization stimulus (anti-CD3/CD28 coated 

bead contact site). Indeed, in Jurkat cells, we observed a significantly increased accumulation of 

MTOC in regions adjacent to the site of bead contact, an effect that was maximal after a 20 min 

incubation period. This finding led us to hypothesize that the MTOC migrates relatively rapidly to a 

position immediately adjacent to the cell polarization stimulus. We investigated this idea by re-sorting 

cells into smaller 20 or 30 regions. To our surprise, we found that the MTOC does not concentrate 

closest to the bead contact site, but rather to a 20–30 region on either side of this site (region 3 in 

Figure 3A or region 2 in Figure 3B). This finding led us to observe that many cells become dimpled at 

the point of bead contact, and to suspect that this altered cell architecture may restrict MTOC 

movement into this region. Also possible is that cellular factors or pathways restrict MTOC migration 

into this region or anchor the MTOC at a position offset from this region. Determining the molecular 

basis for this effect requires additional study. 

To determine whether the automated system could be adapted to other cell types, we modified the 

algorithm to score polarity in adherent MCF-10A epithelial cells. At present, a reference point is 

manually added to the images of epithelial cells. To fully automate polarity scoring of migrating 

epithelial cells, we plan in the future to use an antibody to mark the leading edge membrane of wound 

edge cells and to develop an algorithm that places a dot at the center of the leading edge membrane. 

We succeeded in scoring polarity from large numbers of epithelial cells. Furthermore, contrary to 

polarized Jurkat T cells, the MTOC of polarized MCF-10A cells is known to concentrate in the region 

directly opposite from the polarizing stimulus. Indeed, we observed maximal MTOC accumulation in 

the region directly opposite from the polarizing stimulus, rather than offset from the predicted pattern 

seen in Jurkat cells. The difference between MTOC accumulation patterns in Jurkat and MCF-10A 

cells may depend on the physical nature of the stimulus itself as no equivalent to the bead-induced 

dimple in Jurkat T cells is seen in scratch-wounded MCF-10A epithelial cells. It is also possible that 

MTOC migration away from the polarizing stimulus in MCF-10A cells does not enforce the same 

physical restriction for MTOC movement postulated in Jurkat cells. 

The new automated system also has important virological applications. The loss of cell polarity is a 

feature of epithelial-derived cancer cells, and there is increasing evidence that this defect in polarity 

may play a pivotal role in the pathogenicity of cancer [22]. In support of this idea, several oncogenic 

human viruses are known to target and affect cell polarity proteins [22–25]. For example the E4-ORF1 

oncoprotein from human adenovirus (Ad) type 9 binds cell polarity proteins Dlg1, PATJ, and ZO-2 

[22]; the E6 oncoprotein of high-risk human papillomavirus (HPV) binds cell polarity proteins Dlg1, 

PATJ, and Scribble [22,24]; and the Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) 

binds cell polarity proteins Dlg1 and Scribble [26]. Thus, our original goal was to develop an assay to 

facilitate scoring of polarity in T-cells and epithelial cells, the natural host cells of HTLV-1, Ad, and 

HPV. We propose that this automated system can be used to provide key mechanistic insights about 

how cells polarize and how viruses disturb this process to alter cell growth and spread cell to cell. In 

summary, the high resolution use of this flexible, high throughput system will likely help to reveal new 

biologic mechanisms. 
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3. Experimental Section  

3.1. Cells 

Human Jurkat T cells and MCF-10A human mammary epithelial cells were acquired from the 

American Type Culture Collection (Manassas, VA, USA). Jurkat cells were maintained in RPMI 1640 

media with L-glutamine containing 10% fetal bovine serum (FBS) and antibiotic-antimycotic solution 

(1,000 units penicillin, 1,000 µg streptomycin, and 0.25 µg amphotericin B per mL), whereas 

MCF-10A human mammary epithelial cells were maintained in Dulbecco’s Modified Eagle 

Medium:F12 supplemented with 5% horse serum, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone, 

100 ng/mL cholera toxin, 20 ng/mL EGF, and 20 µg/mL gentamicin. All cells were cultured at 37 °C 

under a 5% CO2 atmosphere. 

3.2. Jurkat T-Cell IS Formation and Immunofluorescence Assays 

Exponentially growing Jurkat cells and Dynabeads conjugated to anti-CD3/CD28 (Invitrogen Dynal 

AS, Oslo, Norway, catalog # 111.31D) or anti-CD19 (catalog # 111.43D) antibodies were separately 

washed in PBS (Invitrogen catalog # 14190-144) containing 0.5% FBS (PBS FBS buffer). Washed 

Jurkat cells (8 × 104) mixed with beads (4 × 104) in 0.1 ml total volume of PBS FBS buffer were added 

to each poly-L-lysine-coated well of a 96-well optical grade plate (Greiner Bio-One, Monroe, North 

Carolina, catalog # 655892P) and allowed to settle for 20 min at 37 C in a tissue culture incubator. 

After aspiration of the PBS-FBS buffer, cells were fixed in 3.5% paraformaldehyde (PFA) in PBS for 

10 min at room temperature (RT), rinsed, and permeabilized with 0.1% Triton-X 100 in PEM buffer 

for 30 min at RT. Permeabilized cells were washed three times for 5 min, blocked in filtered IF buffer 

containing 10% goat serum for 1 h at RT, and incubated with rabbit anti-pericentrin (1:1000) (Abcam, 

Cambridge, MA, catalog # ab4448) in KB buffer for 1 h at 37 C in a tissue culture incubator. After 

incubation with the primary antibody, cells were washed three times for 5 min, incubated with goat 

anti-rabbit AlexaFluor-488 (1:5000) (Invitrogen, Carlsbad, California catalog # A-11008) in KB buffer 

for 45 min at 37 C in a tissue culture incubator, washed three times for 5 min, counterstained with  

1 µg/µL DAPI, and rinsed with PBS. Unless otherwise indicated, rinses and washes mentioned above 

were done with PEM buffer (80 mM PIPES, pH 6.8, 5mM EGTA, pH 7.0, and 2 mM MgCl2). Images 

were collected on a Beckman IC100 high throughput microscope at the Baylor College of Medicine 

Integrated Microscopy Core. 

3.3. Epithelial Cell Scratch Wound Assays and Immunofluorescence Assays 

MCF-10A cells were seeded at 3 × 105 cells/well on 2-well glass slides in complete medium and, 

upon reaching confluency, were incubated overnight in complete medium lacking EGF. The cell 

monolayer was then scratch-wounded five times per well using a P200 pipette tip, washed with 

complete medium lacking EGF to remove detached cells, and incubated in complete media for 6 h. 

Immunofluorescence assays were conducted as described for Jurkat cells, except PFA was quenched 

with 7.5% glycine solution prior to blocking with goat serum, goat anti-rabbit AlexaFluor-488 (1:500) 

(Invitrogen, Carlsbad, California catalog # A-11008) secondary antibody was used, and images were 
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captured on a Zeiss Axioplan upright microscope or a Nikon A1 confocal microscope at the Baylor 

College of Medicine Integrated Microscopy Core. 

3.4. High Throughput Image Collection, Preprocessing, Segmentation, Filtering, and Angle 

Measurement Epithelial Cell Scratch Wound Assays and Immunofluorescence Assays 

Background subtracted from images was approximated as m + m1/2, where m is the minimum pixel 

intensity of the image. Objects (sets of contiguous foreground pixels) in different channels were 

detected using a local threshold approach in which an image pixel is placed in the foreground if its 

intensity is greater than the mean intensity in a surrounding window plus some constant, C, which was 

empirically assigned based on its ability to exclude non-objects and retain real objects. Holes in objects 

were filled to make them solid. Any objects touching the border of an image field were excluded. 

Nuclei were detected in the DAPI channel using a window of 11 × 11 pixels and C = 3; MTOC were 

detected in the GFP channel using a window of 7 × 7 pixels and C = 10; and beads were detected in the 

red channel using a window of 7 × 7 pixels and C = 20. 

Cell boundaries were approximated from the nuclear objects using a distance map, whose pixels 

have values based on their distance in pixels to the nearest nuclear foreground pixel. Contiguous pixels 

in the distance map with a value of five or less were used to define cell objects. Beads that did not 

overlap with cells were excluded. Next, the centers of all objects in an image field were calculated, and 

these measurements were used to associate a cell with the closest bead and MTOC. Cells associated 

with more than one bead were also excluded. For the remaining cells, the MTOC:bead angle, defined 

as the smallest angle between a line from the center of the nucleus to the center of the bead 

(0 reference line) and a line from the center of the nucleus to the center of the MTOC (MTOC line), 

was calculated. Automated image preprocessing, segmentation, filtering, and measurement were 

performed in Pipeline Pilot 8.0 using a custom-built protocol. The custom code for the Pipeline Pilot 

software (Accelrys) used to score T-cell and epithelial cell polarity will be provided upon request 

through a Materials Transfer Agreement (MTA) between the end-user institution and the Integrated 

Microscopy Core of Baylor College of Medicine. 

The above protocol was modified slightly to process adherent epithelial cells, which were present at 

a higher density than Jurkat cells. Nuclear objects from the DAPI channel were detected using a local 

threshold with a window size of 60 × 60 pixels and C = 5. To identify overlapping nuclei, region 

splitting was applied to the objects by calculating an inverse distance transform on the thresholded 

image (that is, measuring a pixel’s distance to the nearest non-foreground pixel) and then finding peaks 

in the resulting distance map, where each peak corresponds to a nuclear seed. Starting from these 

seeds, a watershed transformation was run on the distance map to identify overlapping nuclei, which 

were discarded from the analysis using a shape filter. MTOC were detected as described for Jurkat 

cells. Leading edge cells were located visually from the DIC channel and then labeled manually with a 

red dot to mark the center of the leading edge. The centers of the nucleus, MTOC, and leading edge 

were calculated and used to determine the MTOC:leading edge angle. 

3.5. Sorting MTOC:Bead Angles and MTOC:Leading Edge Angles into Designated Regions 

Angles generated by the algorithm in Pipeline Pilot were sorted and analyzed in Microsoft Excel. 
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3.6. Statistics 

ANOVA with Tukey post-hoc analysis using R statistical software was used. 

4. Conclusions 

This paper describes a new automated, high throughput system to score cell polarity establishment 

by capturing cell images, applying strict criteria to exclude unwanted cell images, compiling data, and 

calculating MTOC:bead angles. This flexible system permits sorting and evaluation of MTOC 

positions within cells using a variety of cell sectoring strategies. The system rapidly analyzes 

thousands of cells, facilitating acquisition of statistically significant results from very small regions of 

the cell and high resolution insight into the establishment of cell polarity. The approach has a variety 

of applications, including visualization and analysis of the virologic synapse and/or the role and effect 

of viral oncoproteins on polarity, and can be adapted for use in other systems and cell types.  
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