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Abstract: Human endogenous retroviruses (HERVs) represent approximately 8% of our
genome. HERVs influence cellular gene expression and contribute to normal physiological
processes such as cellular differentiation and morphogenesis. HERVs have also been
associated with certain pathological conditions, including cancer and neurodegenerative
diseases. As HTLV-1 causes adult T-cell leukemia and HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM/TSP) and has been shown to modulate host gene expression
mainly through the expression of the powerful Tax transactivator, herein we were
interested in looking at the potential modulation capacity of HTLV-1 Tax on HERV
expression. In order to evaluate the promoter activity of different HERV LTRs,
pHERV-LTR-luc constructs were co-transfected in Jurkat T-cells with a Tax expression
vector. Tax expression potently increased the LTR activity of HERV-W8 and HERV-H
(MC16). In parallel, Jurkat cells were also stimulated with different T-cell-activating
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agents and HERV LTRs were observed to respond to different combination of Forskolin,
bpV[pic] a protein tyrosine phosphatase inhibitor, and PMA. Transfection of expression
vectors for different Tax mutants in Jurkat cells showed that several transcription factors
including CREB appeared to be important for HERV-W8 LTR activation. Deletion
mutants were derived from the HERV-W8 LTR and the region from —137 to —123 was
found to be important for LTR response following Tax expression in Jurkat cells, while a
different region was shown to be required in cells treated with activators. Our results thus
demonstrated that HTLV-1 Tax activates several HERV LTRs. This raises the possibility
that upregulated HERV expression could be involved in diseases associated with
HTLV-1 infection.
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1. Introduction

An estimated 8% of our genome is derived from Human Endogenous Retrovirus (HERV),
sequences which are resulting from integration events that took place millions of years ago. HERVs
are known to have endogenized from ancestral exogenous retroviruses during primate evolution.
HERVs are classified into 3 classes (class I, II, and III) based on their sequence similarities to different
infectious retroviruses. Each class is divided in subgroups, based on the specificity of the tRNA
primer-binding site (PBS) [1], i.e., HERV-W uses the tryptophan (W) tRNA as its primer whereas
HERV-K uses the lysine (K) tRNA. While most HERVs are defective and unable to produce infectious
particles, some of them have retained the capacity to encode viral proteins [2]. In addition, most
HERVs have lost their entire coding sequences by homologous recombination between the two LTRs,
leaving solitary LTRs [3]. These LTRs remain active in their promoter and can thereby modify the
expression of adjacent cellular genes.

HERYV genes play an important role in many physiological events such as placental development
[4,5], in which HERV-derived syncytin-1 and syncytin-2 genes seem to be the two major players by
promoting the cellular fusion of trophoblasts [4,6]. On the other hand, HERVs have also been
associated with several human autoimmune diseases and cancer. For instance, evidences suggest that
syncytin-1 is involved in breast cancer [7,8] and multiple sclerosis [9]. In addition, a reduction in the
expression of the capsid protein of HERV-W was observed in neurons and glial cells from brains of
patients with schizophrenia, bipolar disorder and major depression [10], while HERV-W transcripts
were more abundant in cerebrospinal fluid and plasma from patients with schizophrenia [11].

Human T-cell lymphotropic virus type-1 (HTLV-1) is the causative agents of adult T-cell leukemia
(ATL) and has also been associated with a chronically progressive neuro-inflammatory disease known
as HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP). However, the majority
of HTLV-1-infected patients remain asymptomatic throughout their lifetime. The HTLV-1 Tax protein
is a powerful transactivator strongly suggested to be determinant in the development of ATL as well as
HAM/TSP [12,13]. These links likely result from the capacity of this protein to activate several
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transcription factors such as CREB, NF-kB and SRF, which leads to upregulation or downregulation
of a number of cellular genes [14—18].

Previous studies have shown that viruses such as HSV-1 and the Influenza virus could modulate
HERV LTR activity [19-21]. Given that HERV overexpression has been associated with multiple
sclerosis, a disease resembling HAM/TSP, we thereby tested whether the Tax protein could modulate
HERYV gene expression. Our results indeed confirm, that alike T cell activators, Tax significantly, yet
selectively, induced LTR activity of several HERV family representatives.

2. Results and Discussion
2.1. Different HERV LTRs Are Activated upon T Cell Activation

We first tested whether the activation of T lymphocytes could modulate the expression of HERVs.
Different T-cell-activating agents known to activate many transcription factors in T-cells were thus
first tested. Jurkat cells were transfected with luciferase reporter vectors harboring 5'LTR from
different HERV families. LTRs from HERV-W4, HERV-WS§, HERV W18, HERV-H (MC16),
HERV-K (TD47) and HERV-E (E2) were thus tested individually for their responsiveness to T-cell
activators. As shown in Figure 1A, HERV-WS8 and HERV-H (MC16) LTRs were highly responsive to
a combination of Forskolin and bpV[pic], a cAMP pathway activator and an inhibitor of protein
tyrosine phosphatases, respectively and to the bpV[pic]/PMA combination. Both LTRs were also
significantly responsive to the addition of bpV[pic] alone. While HERV-E and HERV-K representative
LTRs were not activated by any tested agents, HERV-W4 and HERV-WS presented a significant
induction of LTR activity only in the presence of the Forskolin/bpV[pic] combination, although the
response was more modest. To confirm these results, RNA from Jurkat cells was analyzed by RT-PCR
for transcript levels of gag or pol genes from HERV-H, HERV-K, HERV-W and HERV-E families
(Figure 1B). In bpV[pic]/Forskolin-stimulated cells, we confirmed that activation indeed led to an
increase in HERV-W gag and HERV-H pol transcript levels when compared to untreated cells. A
limited modulation of HERV-K gag and HERV-E pol expression was noted upon stimulation, again
confirming the results obtained with the LTR constructs. The induction mediated by the
bpV[pic]/PMA combination was also specific to HERV-H and HERV-W LTRs and was again less
pronounced than the one observed with the Forskolin/bpV[pic] combination.

We and others have previously indicated that the PTP inhibitor bpV[pic] in T-cells can activate a
multitude of transcription factors, such as NF-xB, NFAT, STAT, AP-1 and CREB [22-25]. Our results
thereby first indicated that activation of T cells and activation of some of these transcription factors led
to induction of HERV gene expression. Interestingly, we have previously demonstrated that
Forskolin/bpV[pic] strongly induced the LTR of syncytin-1 (HERV-W) and syncytin-2 (HERV-FRD)
genes in the choriocarcinoma BeWo cell line [4]. Other studies in T lymphocytes have indicated that
HERV-H transcripts could be induced in T-cell leukemia cell lines by PHA [26] Our studies in the
T-cell context are thus in line with the induction potential of HERV LTRs [27].
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2.2. HTLV-1 Tax Activates Different HERV LTRs

As HTLV-1 has been linked to HAM/TSP and as similar diseases are associated with elevated
HERYV expression, we were thus interested in looking whether the powerful Tax transactivator could
positively modulate HERV expression. Since our first results indicated that specific T-cell activators
could indeed upregulate HERV LTR-driven gene expression, we thereby tested whether the expression
of Tax protein could also modulate HERV LTR activities. Jurkat cells were co-transfected with the
different pHERV-LTR-Luc constructs along with a Tax expression vector and promoter activity was
subsequently measured. As shown in Figure 2, Tax expression increased promoter activity of
HERV-W (4 and 5 fold for HERV-W8 and HERV-W18 respectively) and HERV-H (MC16) (7 fold
induction) but also demonstrated a significant effect on HERV-K and HERV-E LTRs.

Figure 1. Increased expression and promoter activity of different HERVs after T-cell
activation. (A) Reporter plasmids carrying the complete 5'LTR of different HERVs were
transfected into Jurkat T-cells. At 24 h post-transfection, cells were stimulated with PHA,
PMA, PHA/PMA, PMA/ionomycin, bpV[pic], Forskolin, bpV[pic]/Forskolin, bpV[pic]
/PMA, OKT3(anti-CD3)/9.3 (anti-CD28) and TNFa. After stimulation (8 h), cells were
lysed and measured for luciferase activity. Results are shown as fold induction relative to
luciferase activity of untreated cells and are the mean of three independently treated cell
samples. (B) Total RNA was extracted from cells treated or not with bpV/{[pic]/Forskolin or
bpV|[pic]/PMA and RT-PCR was performed for the detection of the following transcripts:
the gag gene of HERV-K and HERV-W, the pol gene of HERV-H and HERV-E and
B-actin. Expression levels were compared with the RNA from non-stimulated Jurkat cells
(NS). Controls consisted of RT-PCR reactions conducted in the presence of RNA with no

RT enzyme.
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Figure 2. Activation of different HERV LTRs by Tax. Jurkat cells were co-transfected
with a plasmid carrying the luciferase reporter gene under the control of different HERV
S5'LTRs, pHBPr.1neoTax (vs. the empty vector pHBPr.1neo) and pRcActin-LacZ. At 24 h
post-transfection, cells were harvested and assayed for luciferase activity. Results are
shown as normalized luciferase values and represent the mean values of three
independently transfected cell samples.
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In order to better understand how Tax could activate transcription of HERV LTRs, the pHERV-W§
LTR-Luc construct was co-transfected with expression vectors for different Tax mutants. Both Tax
K88A (Tax deficient for CBP/p300 recruitment) and Tax M47 (deficient for CREB activation) showed
a limited induction of luciferase activity in transfected Jurkat cells when compared to wild-type Tax
(Figure 3A). TaxM22, a NF-kB activation-defective Tax also was not able to transactivate the LTR of
HERV-W8 whereas inactivation of the PDZ binding motif had a more limited effect on the Tax
activation potential, which was not statistically significant. To further confirm the impact of the
various Tax mutants on HERV LTR activation, similar transfections were repeated in Jurkat cells with
the HERV-H (MC16) LTR-driven luciferase gene. As depicted in Figure 3B, all Tax mutants
(including the APBM mutant) were significantly less efficient in activating the HERV-H LTR than
was wild-type Tax. Since two Tax mutants are deficient for CREB-specific activation, we next tested
whether CREB is involved in the activation of HERV-W using a CREB-specific dominant negative
mutant termed Killer CREB (KCREB). Jurkat cells were thus co-transfected with wild-type Tax and
KCREB expression vectors along with the HERV-W8 LTR-driven luciferase reporter vector. When
KCREB was expressed, Tax-induced HERV LTR activity was significantly reduced (Figure 3C). In
the above experiments, levels of Tax expression were controlled for each transfection condition and
demonstrated comparable levels as determined by Western blot analyses (Figures 3C,D).

A limited number of studies have looked at possible association between viruses and HERV
expression. HSV-1 and the influenza virus have been shown to modulate LTR activity of HERV-W
while HERV-K LTR activity was positively modulated by the influenza A/WSN/44 strain [19-21]. A
number of studies have also highlighted an increase in the expression of mostly HERV-K family
members in HIV-1-infected patients, thereby leading to a CTL response toward HERV proteins [28-30].
An in vitro study has further shown that HIV infection leads to increase in HERV-K expression [31].
We therefore present for the first time data indicating that HTLV-1 through Tax also mediates the
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activation of HERV LTRs. Interestingly, based on the data with the Tax mutants, multiple transcription
factors seem to mediate the activation of HERV LTRs. Although there are similarities between the
response of the different HERV LTRs to Tax expression, a difference in the response of HERV-W and
HERV-H LTRs to the Tax APBM mutant was observed. This likely reflects differences in the

composition of responsive elements in their promoter region.

Figure 3. Requirement of different HTLV-1 Tax domains for HERV LTR activation.
(A,B) Jurkat cells were co-transfected with a reporter plasmid carrying the HERV-WS§ (A)
or HERV-H (B) LTR and expression vectors for wild type or mutated version of Tax
(vs. the empty vector). At 24 hr post-transfection, cells were harvested and measured for
luciferase activity. (C) Using an anti-Tax antibody, Western blot analyses was carried out
on extracts from Jurkat cells transfected with different Tax mutants to show equal
expression of all Tax mutants and Tax WT. GAPDH is shown as a loading control (D)
Jurkat cells were co-transfected with the luciferase reporter construct under the control of
the HERV-WS8 LTR in the presence or absence of a Tax expression vector (vs. the empty
vector) and the expression vector for KCREB (vs. empty vector). All transfections were
conducted in the presence of pRcActin-LacZ for normalization. Results are shown as
normalized luciferase values and represent the mean values of three independently
transfected cell samples. A western blot analysis using an anti-Tax antibody was carried
out to confirm equal expression of Tax between samples. GAPDH is shown as a loading
control.*, P < 0.05;** P <0.01.
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2.3. HERV-WS8 LTR-Responsive Regions to Tax and T-Cell Activators Are Different

To identify the region responsive to both T-cell activators and Tax, 5' deletion mutants were
generated from the HERV-W8 LTR construct (Figure 4A). Jurkat cells were first transfected with
these deletions mutants and the full-length LTR construct and stimulated with the different T-cell
activators. As indicated above, the HERV-W8 LTR was mostly induced in Jurkat cells stimulated with
a combination of Forskolin and bpV[pic]. A dramatic decrease in the induction was noted exclusively
with the A240 mutant (Figure 4B). Deletion mutants were subsequently co-transfected with the
wild-type Tax expression vector in Jurkat cells and compared to cells transfected with the empty vector
(Figure 4C). Interestingly, a significant reduction in basal and Tax-mediated LTR activation was
observed with the 5' deletion mutant A137. Although basal activity was affected, fold induction was
nonetheless greatly decreased, thereby showing a distinct region of responsiveness between Tax and
our tested T-cell activators.
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Figure 4. Identification of HERV-W8 LTR regions required for activation by T cell
activators and by Tax. (A) Tested 5' deletion mutants of the HERV-WS8 LTR. (B) Reporter
plasmids carrying the complete LTR and 5' deletion mutants were transfected into Jurkat
cells along with pRcActin-LacZ. At 24 h post-transfection, cells were stimulated with
PHA, PMA, PHA/PMA, PMA/lonomycin, bpV[pic], Forskolin, bpV[pic] /Forskolin,
bpV|[pic] /PMA, OKT3/9.3 and TNFa. After 8 h of stimulation, cells were harvested and
assayed for luciferase activity, which was normalized against (-galactosidase activity.
Results are shown as fold stimulation relative to luciferase activity of untreated cells.
(C) Jurkat cells were co-transfected with a plasmid carrying the luciferase reporter gene
under the control of different HERV 5' LTRs, pHPPr.lneoTax (vs. the empty vector
pHPPr.1neo) and pRcActin-LacZ. At 24 h post-transfection, cells were harvested and
assayed for luciferase activity. Results are shown as normalized luciferase values and
represent the mean values of three independently transfected cell samples.
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Previous studies have identified several elements acting on basal and induced HERV LTR-driven
gene expression, which can bind specific transcription factors. For HERV-W and HERV-H, previous
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reports had indeed indicated that HSV infection mediates LTR activation through Oct-1- and AP-1-
binding sites, respectively [19,20]. More specific studies focused on a HERV-W representative
encoding for syncytin-1 have revealed that several transcription factors were acting on basal and
cAMP-mediated LTR activation in trophoblast cells, such as GCMa, Sp1, GATA transcription factors
and other potential transcription factors [5,32—34]. A potential NF-kB-binding site has also been
identified for its importance in TNF-a-mediated activation of syncytin-1 expression in astrocytes [35].
Our results suggest that different transcription factors act upon the induction of HERV-W8 LTR by
T-cell activators and Tax. We are currently conducting experiments to more precisely identify these
LTR regions.

3. Experimental Section
3.1. Plasmids

pBL-based constructs containing different HERV LTRs (HERV-W4, HERV-WS8, HERV-W18,
HERV-E2, HERV-H (MC16), and HERV-K (TD47) inserted upstream of the firefly luciferase reporter
have been previously described [36]. The Tax expression vector pHBPr.IneoTax and the empty vector
pHPPr.Ineo were generously provided by Dr. M. Nakamura (Tokyo Medical and Dental University,
Tokyo, Japan) [37]. Vectors expressing wild-type and mutated Tax [38] were kindly provided by
Dr. JM. Mesnard (Universit¢ Montpellier 1, Montpellier, France). The CREB dominant negative
mutant KCREB and the control empty vector [39] were provided by Dr. R.H. Goodman (Vollum
Institute for Advanced Biochemical, Research, Portland, OR, USA). The pRcActin-LacZ vector
contains the B-galactosidase gene under the control of the B-actin.

3.2. Generation of Deletions Mutants by Exonuclease 111

The pHERV-W8 LTR-Luc construct was first digested with BstX1 and BamHI and subsequently
incubated in the presence of exonuclease III at 37 °C. At 15 s intervals, an aliquot was taken and added
to a tube containing S1 nuclease. At the end of the time course, the S1 nuclease reaction was
completed at 30 °C. Each samples were heat inactivated and after religation, transformed in DH5a..
Sequencing of plasmid DNA from resulting colonies was conducted for positioning the resulting 5' end
of the LTR. Five deletion mutants were chosen for subsequent experiments.

3.3. Transfection and Assay for Luciferase Activity

Transfection of Jurkat cells was carried out by electroporation for 24 hours with a total of 15 pg of
DNA (250 V and 950 uF) according to the Hughes and Pober’s protocol (Hughes and Pober, 1996).
Transiently transfected cells were seeded at a density of 10° cells/well in 6-well plates and left
unstimulated or treated for 8 h with PHA (3 pg/mL), PMA (20 ng/mL) (Sigma), ionomycin (1 pM)
(Calbiochem), anti-CD3 antibody (clone OKT3) (3 pg/mL), anti-CD28 antibody (clone 9.3) (1
pg/mL), Forskolin (100 uM) (BioMol, Plymouth Meeting, PA) and bpVpic (10 uM)
in a final volume of 3 mL. Cells were then lysed in a 1x lysis buffer (25 mMTris phosphate, pH 7.8,
2mM DTT, 1% Triton X-100, 10% glycerol). Luciferase activity was determined as follows.
After a freeze/thaw cycle, 25 pL of cellular extract was transferred to a 96-well luminometer
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plate and luciferase activity was quantified on a Dynex MLX microplate luminometer (MLX;
Dynex Technologies, Chantilly, VA, USA) following a single injection of a luciferase buffer
[137 mM NaCl, 20 mM tricine, 1.07 mM(MgCO;)4-Mg(OH),-5H,0, 2.67 mM MgSO4, 0.1 mM
EDTA (ethylenediaminetetraacetic acid), 220 uM coenzyme A, 4.7 uM D-luciferin potassium salt, 530
uM ATP, 33.3 mM DTT]. B-galactosidase activity was measured using the Galacto-Light™ kit
(Applied Biosystems, Bedford, MA, USA) according to manufacturer's instructions. Luciferase
activity was calculated in terms of relative light units (RLU) and represents the mean +£SD of three
transfected samples normalized for P-galactosidase activity. Fold inductions were calculated by
dividing the values of activated samples by values of non-stimulated samples.

3.4. Total RNA Extraction and Semi-Quantitative RT-PCR

Total RNA was isolated from Jurkat cells using the Trizol reagent (Invitrogen Canada Inc). Prior to
RT, total RNA was treated with TurboRNAse-Free DNAse (Ambion, Austin, TX, USA) for 5 min at
70 °C. RNA (1 pg) was then incubated in the presence of oligo(dT) (25 ng/uL), 10 mM DTT, 100 mM
dNTP (deoxynucleotide triphosphate), SuperScript reverse transcriptase (10 U) (Invitrogen Canada
Inc.), and SUPERase-In (20 U) at 42 °C for 50 min. Aliquots from the RT reactions were then
PCR-amplified in the presence of 1U Taq DNA polymerase (New England Biolabs, Pickering,
Canada), 1x ThermoPol buffer, 100 uM dNTP, and 15 uM of each primer. Primers used for HERV-H
pol cDNA amplification were 5'-CCTTTATTACCCAATCTGCTCCCGA(CT)AT-3'(forward) and
S'-TTTAGTGGTGGACAGTCTCTTTTCCA(AG)TG-3' (reverse).

For HERV-K gag cDNA amplification, the primers were
5'-TCCCCTTGGAATACTCCTGTTTT(CT)GT-3' (forward) and
5'-CATTCCTTGTGGTAAAACTTTCCA(CT)TG-3' (reverse).

For HERV-W gag cDNA, the primers were 5'-GGCCAGGCATCAGCCCAAGACTTG-3' (forward)
and 5'-CTTTAGGGCCTGGAAAGCCACT-3' (reverse), as for HERV-E pol cDNA amplification, the
primers were 5'-CATCAACCTACTTGGGATTGTCA(AG)CA-3' (forward) and
5'-CAATGACCTTTTTCTTTACAGTAGGC(AG)CA-3' (reverse).

For RT-PCR analyses of B-actin mRNA, the primers 5-CGTGACATTAAGGAGAAGCTG-3'
(forward) and 5'-CTCAGGAGGAGCAATGATCTT-3'(reverse) were used. PCR conditions were as
follows: a first step of denaturation at 95 °C for 3 min. followed by 35 cycles of denaturation (94 °C
for 30 s), annealing (60 °C for 15 s) and elongation (72 °C for 12 s).

3.5. Western Blot Analyses

Western blot analyses from total protein isolated from transfected Jurkat cells were performed. 24 h
post-transfection, cells were washed with PBS 1x and lysed with lysis buffer (50 mM Tris-HCI,
pH 7.4, 120 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 0.2 mM Na3;VO,4, 1 mM dithiothreitol,
1 mM phenylmethylsulfonyl fluoride) in the presence of protease inhibitors (Complete, Roche Applied
Science), and incubated on ice for 30 minutes. Cell debris were pelleted by centrifugation for 10 min at
high speed. Protein concentrations were quantified with the bicinchoninic acid (BCA) protein assay
(Thermo Fisher Scientific Inc., Rochester, NY, USA). Extracts were migrated on a 12% sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred on a polyvinylidene
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fluoride (PVDF) membrane (Millipore). Membrane was blocked with 5% Bovine Serum Albumin
(BSA) and incubated with anti-Tax antibody (dilution, 1/100) (or a polyclonal anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) antibody (1/5000; Santa Cruz, CA, USA). Membranes were
further incubated with a horseradish peroxidase-coupled anti-mouse antibody (1/10,000) (Amersham
Biosciences, Buckinghamshire, UK), and signals were detected using the BM chemiluminescence
blotting substrate (Roche Diagnostics). Membranes were subsequently exposed on an ECL high
performance chemiluminescence film (Amersham Biosciences). Antibodies from the HTLV-I Tax
hybridoma 168A51-42 (Tab176) was obtained from Dr. J.M. Mesnard [40].

3.6. Statistical Analyses

All experiments were performed in triplicates. Results are expressed as the mean+SEM and
statistically analyzed using a 2-tailed Student t test for 2-group comparisons.

4. Conclusions

We herein have demonstrated that LTRs from different HERV families can both be activated by the
combination of T-cell activation agent bpV[pic]/Forskolin and bpV[pic]/PMA and by the Tax
transactivator. Furthermore, we identified a Tax-responsive region different from the region responsive
to T-cell activators suggesting the implication of different transcription factors. Indeed the use of the
various Tax mutants reveals that each of them affects this LTR activation at different degrees. Through
the CREB dominant negative mutant, our results argue that members of the CREB/ATF family are
playing a role in the upregulation of the LTR activity. The HTLV-1 Tax protein is a powerful
transactivator, capable of inducing many cellular genes with its activation domains. It is thereby not
surprising that it also acts on the HERV-W LTRs, which are known to be upregulated by inducing
agents such as Forskolin and bpV([pic] in human trophoblasts and by HSV-1 and Influenza virus
infection [4,20,21]. We conclude that Tax can modulate these LTRs in Jurkat cells by activating CREB
and possibly NF-kB, which can positively regulate the transcription of the HERVs genes or other
cellular genes in proximity. Transcription factors mediating the upregulation of HERV LTRs by both
Tax and T-cell activators are likely different and we are currently working on their identification.

Since our results indicate that Tax can modulate the expression of HERVs, a link between
HTLV-1-associated diseases and HERV dysregulation is an interesting speculation. Indeed,
upregulation of HERV gene expression has been associated with various inflammatory and
autoimmune diseases such as multiple sclerosis and arthritis [9,41]. Interestingly, HTLV-1-associated
diseases HAM/TSP and HTLV-1-associated arthropathy have been shown to be very similar to these
latter diseases. In addition, activation of HERV LTR nearby proto-oncogenes may constitute a
mechanism by which Tax could promote cell transformation via HERV sequences. Alternatively,
induced expression of near full-length HERV proviral DNA could generate potential substrates for
reverse transcriptase activity. Newly synthesized proviruses could then reintegrate the host genome in
infected cells and contribute to genomic instability.

More advanced studies are needed to clearly determine if HERV expression is increased in
HTLV-1-infected patients and modulated during the course of HTLV-l-induced pathologies.
Furthermore, in this study, we have focused on the modulation of HERV-LTR by the viral protein Tax
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of HTLV-1. Clearly, other viral proteins such as HBZ could impact on the extent of Tax-mediated
HERV LTR activation or could affect HERV LTR activation. These experiments, as well as the
analysis of HERV expression in HTLV-I-infected cells are currently ongoing. These studies will
indicate whether HER Vs could become possible new disease markers in HTLV-1-infected patients.
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