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Abstract: Although generally regarded as pathogens, viruses can also be mutualists. A 

number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. 

Other examples of mutualism are less common, but this is likely because viruses have 

rarely been thought of as having any beneficial effects on their hosts. The effect of 

mutualism on the population dynamics of viruses is a topic that has not been addressed 

experimentally. However, the potential for understanding mutualism and how a virus might 

become a mutualist may be elucidated by understanding these dynamics. 
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1. Introduction 

Viruses have been studied predominantly as pathogens, beginning with the first virus ever 

described, Tobacco mosaic virus [1] that was causing spots on tobacco plants. However, a number of 

viruses in plants, animals, fungi and bacteria have been described that are not pathogens; many are 

commensals and some are mutualists. Traditionally, mutualistic symbioses are thought of as long-term 

stable relationships, but viruses can clearly switch lifestyles depending on conditions. What effect does 

mutualism have on the population dynamics of a virus? Do the population dynamics of conditional 

mutualists change depending on their lifestyle? This is the subject of this brief perspective. It is not 

intended to be a comprehensive review, but rather to provoke some thought about how the dynamics of 

virus populations might change when viruses have different lifestyles. For a more comprehensive 

review on mutualistic viruses the readers are directed to [2]. 
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2. Symbiogenic Viruses 

Symbiogenesis is the process whereby symbiotic entities fuse and create a new species. This 

process was first recognized in the discovery of the relationship between mitochondria and bacteria, 

and is now recognized as an important evolutionary force that may be responsible for major leaps that 

cannot be explained by Darwinian natural selection [3], and that has probably played a major role in 

the evolution of new viruses [4,5]. The most extreme cases of virus mutualism are really 

symbiogenic relationships. 

2.1. Polydnaviruses  

The most well studied mutualistic viruses are the polydnaviruses (poly DNA viruses) [6]. The 

polydnaviruses are obligate symbionts of their braconid (bracoviruses) or ichneumonid (ichnoviruses) 

parasitoid wasp hosts. The viruses are required for the successful development of the wasp eggs in the 

insect hosts that they parasitize [7]. They have been associated with the wasps for so long that some 

question if they should still be considered viruses [8,9]. Most of the viral genes reside in the nuclear 

genome of the wasp, while the virions package wasp genes for delivery into the caterpillar where the 

wasp deposits its eggs. These wasp genes suppress the immune response of the caterpillar and prevent 

encapsulation of the egg by the caterpillar [7]. Recently, the bracovirus relationship to the insect 

nudiviruses was demonstrated [10], and the ichnovirus relationship to an as yet unclassified insect 

virus [11] was also suggested [12]. The most likely scenario for the evolution of the mutualistic 

relationship is that the viruses were first acquired from insects that the wasps parasitized. The wasps 

were likely a vector for the insect viruses. This is supported by the characterization of an ascovirus in 

ichneumonid wasps that has become a mutualist of the wasp that parasitizes its insect host [13]. 

Unfortunately, no studies have compared the population dynamics of this virus in the wasp where it is 

a mutualist versus the insect where it is a pathogen.  

2.2. Endogenous Retroviruses  

The endogenous retroviruses that make up large portions of many eukaryotic genomes [14] are 

another example of symbiogenic viruses. Endogenous retroviruses constitute a very large topic (see [2] 

and references therein); however, the best example of endogenization leading to speciation is in the 

evolution of placental mammals [15–17]. There are also speculations that endogenous (and exogenous) 

retroviruses played a role in the evolution of adaptive immunity [18]. There are many other endogenous 

retroviruses that play a beneficial role in their hosts including protection from pathogens [2]. In 

addition, in plants the pararetroviruses can protect their hosts from pathogen infections [19]. 

For the endogenous viruses, there is very limited population variation for the virus outside of the 

dynamics of the host, since their genomes are replicated as part of the host genome. Hence, in this 

most extreme case of mutualism the viral populations probably vary only as much as their hosts vary. 

3. Epigenomic Mutualistic Viruses 

For non-endogenous mutualistic viruses population studies are very limited. Some viruses, such as 

acute RNA viruses of plants that confer drought and cold tolerance, are single-stranded (ss) RNA 
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viruses [20], and are known to have rather large populations within their hosts [21]. However, these 

viruses have a primary lifestyle that is not mutualistic, but rather pathogenic, so their population 

dynamics are probably driven by the pathogenic lifestyle. The mutualistic fungal virus, Curvularia 

thermal tolerance virus (CThTV), is an obligate partner in a three-way symbiosis involving the virus, a 

fungus and a plant [22]. The holobiont, first discovered in Yellowstone National Park [23], is tolerant 

of extremely high soil temperatures. This virus has no detectable population variation when grown in 

its fungal host in culture [24]; the population dynamics of the virus in the intact holobiont have not 

been studied. However, in addition to being a mutualist, CThTV is a persistent virus. The population 

dynamics could be driven by either of these forces, or a third, its double-stranded (ds) RNA genome 

(see below). 

Although there are a number of other examples of epigenomic mutualistic viruses [2], there have 

been few reported studies on the population dynamics of these viruses. 

4. Within-host Dynamics 

4.1. Quasispecies 

There have been volumes written in recent years about virus populations within individual hosts 

(see for example [25,26]); for ssRNA viruses these populations are often called quasispecies, and the 

level of variation can be extreme. It seems likely that ssDNA viruses develop similar diverse 

populations [27].  

4.2. Replicase Fidelity 

The major source of variation comes from errors made during replication, although chemical 

mutagens and recombination may also contribute. A number of studies have estimated the fidelity of 

ssRNA virus polymerases [28], and more recently of a viroid [29]. For ssRNA viruses the polymerases 

are estimated to make an error about once in 10
4
 nucleotides. For viroids this is much higher, one in 

between 10
3
 and 10

2
 nucleotides. The fidelity of dsRNA virus polymerases has only been measured for 

the bacteriophage 6 and it is in the range of one in 10
6
 [30]. Studies with this virus suggest that 

replication occurs in a stamping machine method, such that all the progeny in a burst are derived 

directly from the infecting virus genome [30]. It seems unlikely that ssRNA viruses follow this type of 

replication [31], which would further serve to limit the amount of variation in a population. For viruses 

that replicate in a geometric fashion, polymerase fidelity is very difficult to measure and for the most 

part has been approximated. There is only one study of polymerase fidelity directly measured in an 

intact host, and this only measured indels [32]. Substitutions have not been measured directly. 

5. Emerging Viruses and Persistence 

5.1. Emerging and Acute Viruses 

Many emerging viruses have ancestors that are not pathogens, but rather persistent viruses of other 

hosts. A classic example is Human immunodeficiency virus (HIV) that apparently emerged numerous 

times from the closely related Simian immunodeficiency virus, endemic in chimpanzees [33] and only 
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rarely pathogenic [34], and more recently Severe acute respiratory syndrome virus (SARS) that 

apparently emerged from wild civet cats [35,36]. Even Influenza virus, which has been a human 

pathogen for a long time, has new strains that emerge periodically from wild waterfowl populations, 

usually via a secondary domesticated host like swine [37–39]. In the wild waterfowl the virus does not 

cause disease. In wild animals these viruses would be called persistent viruses.  

There are no studies that directly compare within-host populations of viruses that are both 

pathogens and mutualists under different circumstances. There is a general conception that 

quasispecies are large in recently emerged viruses like HIV that are still adapting to their hosts, or in 

highly virulent pathogens. In poliovirus, greater quasispecies variation correlated with increased 

virulence [40]. However, in West Nile virus the opposite was found [41]. Hence there is no general 

model for a correlation between population variation and virulence. 

5.2. Persistent Viruses 

Virtually all life forms that have been examined carry persistent viruses [42,43]. Definitions vary 

somewhat for persistence in animal hosts, where this term generally refers to a long-term or lifetime 

infection, in plants and fungi, where persistent viruses are vertically transmitted and remain with the 

host indefinitely (i.e., though many generations), and in bacteria where persistent viruses are usually 

lysogenic (i.e., incorporated into the host genome until they excise in a lytic phase). However, in all 

cases persistent viruses rarely cause detectable disease, and may provide significant benefit to their 

hosts, either by providing additional functional proteins, or by preventing infection by related acute 

viruses [43,44].  

The effect of persistence on virus population dynamics is almost unknown. In one study of mouse 

hepatitis virus no population variation was detected in persistent infections, contrasting with acute 

infections that have a quasispecies nature [45]. This is an intriguing finding that merits some thought. 

If virulence is associated with high levels of variation, then a commensal or mutualistic virus might be 

more likely to maintain its lifestyle if its variation level is kept low. This implies something beyond 

random error-prone virus replication controlling the degree of variation in a quasispecies. Purifying 

selection may be stronger in these viruses, such that mutants are not tolerated. 

The plant persistent viruses are very poorly studied, but it seems quite likely that they provide other 

essential functions in an epigenetic manner. At least one persistent plant virus, White clover cryptic 

virus, encodes a gene for its legume plant host that can affect nodulation [46], and hence is a mutualist. 

Additional similar relationships may be discovered in EST libraries from plants, where some ESTs do 

not have any matches in their cognizant plant genome. However, only a subset of known persistent 

viruses in plants use poly-adenylation as a strategy to stabilize their RNAs; since most EST libraries 

are based on poly-A enriched RNA, they may not turn up. 

Plant persistent viruses have two features of interest when considering their population dynamics: 

they all have relatives that are viruses of fungi; and they all have dsRNA genomes. Only one fungal 

virus population, CThTV, has been studied. However, the amount of population variation in viruses 

with dsRNA genomes is an interesting question. In fungi almost all the known viruses have dsRNA 

genomes, and are persistent [47]. A few are known that cause some disease in their fungal hosts [47], 
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and at least one, CThTV, is clearly a mutualist, but the vast majority seem to play no defined role in 

the lives of their hosts.  

6. Common Themes 

For plant and fungal viruses, persistence and/or mutualism have been found in viruses with dsRNA 

genomes. The exception is the conditional mutualism of ssRNA acute plant viruses in plants found 

under extreme conditions of drought or cold [20]. For animals, most of the mutualistic viruses are 

dsDNA viruses that tend to have much lower population variation, although persistent viruses in 

animals can have any genome type. The ssRNA viruses described as mutualists are generally 

conditional mutualists, so their populations may vary with their lifestyles. One well-defined RNA virus 

mutualism outside of plants and fungi also involves a dsRNA virus, a reovirus that is a mutualist of a 

parasitic wasp [48]. In many other viral mutualisms, the viruses are either symbiogenic viruses or 

dsDNA viruses [2], where population variation is naturally more limited. If the limited amount that is 

known about dsRNA populations (high fidelity replication and very low levels of population diversity) 

is a general theme for these viruses, then it may be that this is more than coincidence: limited 

population variation may favor mutualistic relationships. Persistent and mutualistic viruses may be the 

only types of viruses that could truly be said to have co-evolved with their hosts (i.e., engaged in an 

arms-race). This could impose significantly more stringent selection pressures that would favor less 

variation. At this early stage in analyzing the population dynamics of mutualistic viruses, there is a 

correlation between mutualism and low levels of in-host diversity. However, it is almost certain that 

we have only begun to scratch the surface of the mutualistic relationships between viruses and their 

hosts, and the relationships that we do know about have not been carefully examined for population 

dynamics. Clearly a lot more work is required in this exciting area of research. 
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