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Abstract: Chronic hepatitis C virus (HCV) infection is a major worldwide cause of liver 

disease, including cirrhosis and hepatocellular carcinoma. It is estimated that more than 

170 million individuals are infected with HCV, with three to four million new cases each 

year. The current standard of care, combination treatment with interferon and ribavirin, 

eradicates the virus in only about 50% of chronically infected patients. Notably, neither of 

these drugs directly target HCV. Many new antiviral therapies that specifically target 

hepatitis C (e.g. NS3 protease or NS5B polymerase inhibitors) are therefore in 

development, with a significant number having advanced into clinical trials. The 

nonstructural 4B (NS4B) protein, is among the least characterized of the HCV structural 

and nonstructural proteins and has been subjected to few pharmacological studies. NS4B is 

an integral membrane protein with at least four predicted transmembrane (TM) domains. A 

variety of functions have been postulated for NS4B, such as the ability to induce the 

membranous web replication platform, RNA binding and NTPase activity. This review 

summarizes potential targets within the nonstructural protein NS4B, with a focus on novel 

classes of NS4B inhibitors.  
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1. Introduction 

Hepatitis C virus (HCV) infects an estimated 170 million people around the world [1]. Infection 

often leads to cirrhosis and sometimes to hepatocellular carcinoma [2,3]. No vaccine is currently 

available. The only FDA approved regimen relies on a combination of subcutaneously administered 

pegylated interferon-α (IFN) and oral ribavirin (RBV). These non-HCV specific antivirals, however, 

have limited efficacy. A sustained virologic response (SVR), defined as the absence of HCV RNA in 

the serum six months after the cessation of HCV therapy, can be achieved in only about 42% to 53% 

of patients with HCV genotypes 1 and 4, respectively, and up to 78% to 82% of patients infected with 

HCV genotypes 2 or 3 [4,5]. These genotype specific differences are hypothesized to be due in part to 

the evolution of anti-immune factors [6], which limit the immune response generated by exogenous 

interferon. Furthermore, because the majority of patients infected with HCV in the United States are 

infected with genotype 1, the most treatment-refractory genotype, nearly half of all patients treated for 

HCV with IFN/RBV therapy will fail treatment. IFN/RBV combination therapy is also expensive, and 

results in serious side effects such as fever, fatigue, anemia, leucopenia, thrombocytopenia, and 

depression [7-9].  

For these many reasons, there is an urgent need for HCV-specific antivirals that are both more 

efficacious and tolerable. Furthermore, given the ability of HCV to rapidly acquire resistance to 

antivirals, as has been already shown in multiple clinical trials [10-13], anti-HCV therapeutics that 

target multiple aspects of the HCV-life cycle are expected to be needed in order to control this 

infection—as is currently the case for HIV. The rapidity with which HCV acquires resistance is due in 

part to the fact that the HCV NS5B polymerase lacks a proofreading function, which results in an 

estimated erroneous base substitution rate of ~1 in 10,000 replicated bases [14]. Practically, this means 

that every copy of HCV that is made contains at least one mutation. Given the massive number of 

HCV virions produced in patients chronically infected with HCV (1.3 × 1012 virions per day) [15], 

every patient is therefore best considered as infected with a population of HCV quasi-species [16,17]. 

Such quasi-species, when under selective antiviral pressure, lead to the emergence of resistant strains.  

Therefore, a collection of well-tolerated HCV antivirals that target multiple steps of the HCV life 

cycle, and which thereby can overwhelm the ability of such quasi-species to adapt, represents the 

idealized goal for future HCV drug development. These agents are termed “specifically targeted 

antiviral therapy for HCV” or STAT-C drugs [18,19]. Among the most promising new anti-HCV 

agents in clinical development are those that target the NS3 protease, the NS5A protein, the  

RNA-polymerase NS5B, and compounds that directly inhibit HCV replication through interaction with 

host cell proteins (see [20-23] for more in depth reviews of these agents). Another new promising 

strategy consists of targeting the NS4B protein. This review focuses on the recent developments of 

potential antivirals against targets within NS4B. 
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2. Important features of NS4B  

NS4B is a relatively poorly characterized 27 kDa protein with at least four predicted 

transmembrane (TM) domains [24-26] (Figure 1). As a consequence of polyprotein processing by the 

NS3-4A protease, the N- and C-terminal parts of NS4B are believed to be oriented towards the 

cytosolic side of the endoplasmic reticulum (ER) membrane. An amphipathic helix (AH), a helix in 

which one side is hydrophobic and the other hydrophilic, is located within the first 27 amino acids of 

NS4B and designated AH1 [27]. When N-terminally fused to a construct containing GFP, AH1 was 

shown to mediate membrane association, and point mutations disrupting its hydrophobic face 

abrogated membrane association [27]. Of note, fusion of amino acids 1 to 29 or 1 to 40 of NS4B did 

not confer membrane association [28], possibly reflecting differences in the respective expression 

constructs. Insertion of artificial glycosylation acceptor sites at various positions in NS4B yielded 

evidence in support of the predicted ER luminal loops around amino acid positions 112 and 161 

[24,29]. In addition, a fraction of NS4B may acquire a fifth TM domain, postulated to result from  

post-translational translocation of the N-terminal domain into the ER lumen (see Figure 1) [29].  

Recently, we and others have identified a second AH (AH2) immediately following AH1 (Figure 1) 

that is sufficient to confer tight membrane association and is required for viral replication [28,30,31]. It 

is suggested that this amphipathic -helix has the potential to traverse the phospholipid bilayer as a 

transmembrane domain [28]. We have shown that AH2 can both oligomerize with itself and 

specifically mediate lipid vesicle aggregation [30]—a function that might be relevant for the role of 

NS4B in forming the membranous web replication platform [32] (discussed below). A variety of 

biophysical measurements have confirmed the predicted helical nature of AH1 [33] and AH2 [28,30]. 

Secondary structure analyses have also predicted two helices in the C-terminal portion of NS4B. 

The first of these C-terminal helices (H1) is composed of amino acids ~200–213 and is highly 

conserved among HCV genotypes. The second helix (H2), also confirmed by CD [31], is composed of 

amino acids ~229–253 and is more variable. H2 also has an amphipathic structure, mediates membrane 

association, and is involved in the formation of functional HCV replication complexes 

[26,28,31,32,34-38]. NS4B has also been shown to interact with itself, suggesting an ability to form 

homo-multimers [39,40]. Finally, NS4B has been shown to be palmitoylated at two C-terminal 

cysteine residues [40]. It is hypothesized that this palmitoylation plays an important role in NS4B 

oligomerization. However, the role of C-terminal palmitoylation of NS4B in the HCV life cycle 

remains to be further explored. 

One of the more striking NS4B functions identified to date is its reported effect on intracellular 

membranes. Expression of the HCV NS4B protein alone is sufficient to cause formation of the  

so-called “membranous web” structure [32,37] which is thought to represent the platform upon which 

HCV replication takes places. Like all positive strand RNA viruses, HCV replicates its genome in 

intimate association with intracellular membranes. The membranous web is believed to be derived in 

part from the ER. A number of studies have also suggested that the early endosome proteins Rab5 and 

Rab7 [41,42], phosphatidylinositol 4-kinase III alpha [43] and autophagy protein ATG5 [44] may play 

a role in HCV genome replication or membranous web formation. The membranous web consists of a 

collection of vesicular-like structures detectable by electron microscopy. Under light microscopy, the 

membranous web is believed to be correlated with so-called membrane associated foci (MAF) [45]. 
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Both N- and C-terminal amphipathic helices have been implicated in the formation of such  

foci [28,31]. The mechanism(s) by which NS4B induces the membranous web, and which host cell 

components are hijacked for this purpose are still largely unknown.  

Site-directed mutagenesis in the replicon and HCVcc systems has demonstrated the essential role of 

NS4B in HCV RNA replication [24,27,28,31,38,46,47]. Jones et al. [38] revealed an additional role of 

NS4B in viral assembly when a single amino acid substitution, N216A, in NS4B was shown to be 

sufficient to increase the titer of JFH1 virus by five-fold without affecting HCV RNA replication. This 

highly conserved position, located between helices H1 and H2, might be critical for interaction 

between NS4B and other components of the viral assembly machinery.  

Physical interactions between NS4B and other nonstructural proteins have been demonstrated by 

glutathione S-transferase pull-down experiments [39]. In addition, intragenotypic interactions between 

NS3 and NS4B were demonstrated in the replicon system [48], which may underlie recent findings of 

synergy between pharmacologic inhibitors of NS3 and NS4B (see Section 3.2. below). 

Another functionality of NS4B was identified by Einav and colleagues, who discovered a functional 

nucleotide-binding motif (NBM) within NS4B. This motif was found to mediate GTP hydrolysis and 

is essential for HCV replication [49]. Thompson et al. confirmed this finding recently and also 

demonstrated ATPase and adenylate kinase activity for NS4B [50]. 

Finally, NS4B has been shown to bind the viral RNA, an interaction that is critical for HCV 

replication [51]. These aspects of NS4B functionality are discussed further, below. 

Figure 1. NS4B membrane topology. Schematic representation of the HCV NS4B protein, 

and its proposed topology with respect to the ER membrane, depicting the N-terminal 

amphipathic helices (AH1, AH2), the four transmembrane domains (TM1-4), and the two 

C-terminal helices (H1, H2). A fraction of NS4B appears to be able to undergo a  

post-translational translocation event wherein the N-terminus of NS4B adopts a luminal 

orientation (indicated by dashed blue arrow), thereby creating a fifth transmembrane 

domain. Walker A and B motifs and RNA binding motif are also indicated. 
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3. NS4B as an antiviral target  

NS4B is particularly difficult to study due to its integral membrane association. In the following 

sections, we will summarize the potential of some of the above-described features of NS4B as antiviral 

targets and describe recent advancements in the development of new pharmacological approaches for 

inhibiting NS4B functions. 

These pharmacologic inhibitors derive in large part from the above identified functions of NS4B. 

As our knowledge of the latter increases, this list is expected to grow. 

3.1. NTPase activity  

NS4B has been shown to contain a nucleotide binding motif (NBM), with the Walker A motif 

(129GSIGLK135) located between transmembrane domains 2 and 3, and the Walker B motif 

(228DAAA231) located in a central portion of the C-terminus [49,50]. This NBM binds and 

hydrolyses GTP and ATP. The NS4B NBM has also been shown to mediate an adenylate kinase 

activity, which catalyzes the synthesis of ATP and AMP from two ADP molecules [50]. The precise 

role of NS4B’s NTPase activity in the HCV life cycle, however, remains unknown, although it has 

been suggested that NS4B’s GTPase activity might play a role in NS4B-induced cellular 

transformation and tumor formation [52]. The NS4B NBM motif is conserved across all HCV 

genotypes and isolates, highlighting its importance for HCV infectivity in vivo. Introduction of point 

mutations with the NBM can dramatically inhibit RNA genome replication [49], providing strong 

genetic validation that the NBM represents an attractive potential target for anti-HCV therapy. One  

so-called adaptive mutation in the NS4B NBM (K135T) has been reported to enhance replication [53]. 

While the effect of this mutation on NS4B GTPase activity has not been determined, it is interesting to 

note that many host GTPases have a highly conserved T at the corresponding adjacent position of their 

Walker A motif (GX1X2X3X4GKT), whereas the unadapted wild-type NS4B does not (e.g. amino acid 

136 is a V in the genotype 1b replicon) [49]. 

The specificity of NS4B for ATP versus GTP is another interesting area of investigation.  

Einav et al. found NS4B to have a preference for GTP binding [49], while Thompson et al. found ATP 

to be its more active hydrolysis substrate [50]. Thompson et al. showed slow hydrolysis of GTP and 

suggested that this represents the intrinsic hydrolysis of the enzyme and that a yet unknown NS4B 

GTPase activating protein (GAP) [50] might stimulate catalysis.  

The HCV NBM has features that distinguish it from host cell GTP-binding and hydrolyzing 

proteins. In particular, while the amino acids within the NS4B NBM are similar to those found in the 

NBMs of host GTPases, the amino acids immediately flanking the NS4B NBM are highly conserved 

across HCV isolates, yet very different from those found in host cell GTPases [49]. Moreover, T221 of 

NS4B, which corresponds to the so-called PM2 motif that has been implicated in chelating a  

Mg++ ion in available structures of host GTPases, can be mutated without apparent effect on HCV 

replication [54], suggesting that the co-factor requirements for NS4B may be different than for host 

cell GTPases. Thus, pharmacologic inhibition of the enzymatic activity encoded in the NS4B NBM 

might be achievable with a sufficiently favorable therapeutic index. Such an inhibitor might also have 

the additional benefit of potentially reducing malignant transformation, and could be relevant to the 

hepatocellular carcinoma associated with HCV. 
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3.2. RNA binding  

NS4B has been found to bind the 3’ terminus of the negative strand of the HCV genome [51]. One 

means by which this was demonstrated involved the use of a microfluidics device in combination with 

a mechanical button that enhances the detection of intermolecular interactions [51]. This button system 

is known as MITOMI: the mechanical trapping of molecular interactions [55]. Advantages of this 

method include the requirement for very small sample volumes and the ability to express the protein in 

the presence of microsomal membranes, which enables membrane proteins to adopt a more natural 

folding. 

Using this method, a Kd for NS4B RNA binding was determined to be ~3 nM, with a preference for 

the 3’ terminus of the negative sense HCV RNA. This region is predicted to harbor a highly conserved 

secondary structure that is presumably recognized by NS4B. Moreover, specific binding to this region 

suggests that NS4B may play a role in the initiation of progeny plus strand RNA genomes that begin 

their transcription at the 3’ terminus of the negative strand. Highly conserved arginine residues within 

NS4B were predicted to mediate NS4B’s RNA binding activity, and this hypothesis was tested by 

determining the effect of mutating specific arginines to alanines. Such mutations could both abrogate 

RNA binding and HCV genome replication, highlighting the importance of this activity for the viral 

life cycle and providing genetic validation of the potential of NS4B’s RNA binding activity as an 

antiviral target. 

Einav and colleagues then used the above microfluidics platform to perform a high-throughput 

screen for small molecules capable of inhibiting the binding of NS4B to HCV RNA. This screen 

identified the small molecule clemizole hydrochloride, which inhibited NS4B-HCV RNA binding with 

an IC50 of ~24 nM. Cellular-based replication assays subsequently demonstrated the ability of 

clemizole to inhibit HCV replication [51]. Clemizole’s antiviral effect is notably modest, with an EC50 

of 8 µM against HCV genotype 2a. Interestingly, when combined with some of the NS3 protease 

inhibitors in most advanced clinical development (i.e., telaprevir and boceprevir), clemizole exhibits 

dramatic in vitro synergy [56]. This is in contrast to most combinations of anti-HCV agents, which 

generally exhibit additive interactions. The synergy between clemizole and a protease inhibitor was 

found to decrease the emergence of resistant mutations without conferring cross-resistance [56] in the 

HCV replicon system. It is speculated that an interaction between NS4B and NS3, perhaps involving a 

conformational change, is one reason for the observed dramatic synergy between clemizole and the 

NS3 protease inhibitors.  

If the above in vitro synergistic effects are operative in vivo, such clemizole-protease inhibitor 

combinations may represent an ideal foundation for future interferon-free anti-HCV cocktails. Another 

attractive implication of such synergy is the potential to use these protease inhibitors at lower doses in 

patients, where the desired antiviral and anti-resistance effects could be maintained, while decreasing 

the incidence of important toxicities associated with the protease inhibitors (such as severe rash and 

anemia). 

Clemizole hydrochloride is a H1 histamine receptor antagonist that was widely used in the  

1950-60s to treat allergic disorders. One of its hallmarks is that it is very well tolerated [57]. Because 

of its prior excellent safety record, the re-purposing of this drug for treatment of chronic HCV is being 

actively pursued in clinical trials (e.g. NCT00945880).  
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Finally, the search for clemizole derivatives with increased potency is an active area of research, 

with a number of analogs with increased antiviral activity having already been identified [58].  

3.3. Lipid vesicle aggregation and 4BAH2 oligomerization  

Because formation of the membranous web is essential for HCV replication, but dispensable for the 

host cells, disrupting the molecular machinery employed to establish the membranous web represents 

an attractive potential therapeutic target. As stated above, recent work suggests that a second 

amphipathic helix (AH2) exists within the N-terminus of NS4B [28,30]. This AH has been designated 

(4BAH2) [30]. It spans amino acids 43 to 65 [30] or 42–66 [28] and plays an important role in this 

process. 4BAH2 is notably conserved across all HCV genotypes and isolates. Studies of the interaction 

of 4BAH2 with lipid vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

demonstrate that 4BAH2 mediates both helix oligomerization and specific aggregation of lipid vesicles 

(for example, no such activity was observed with a peptide corresponding to the NS4B AH1 

amphipathic helix). The structures formed by this vesicle aggregating activity are reminiscent of the 

membranous web [30], and we hypothesize that the activity encoded in 4BAH2 may represent a key 

component of the molecular machinery employed by NS4B to establish the membranous web. This 

ability of 4BAH2 to cause lipid vesicle aggregation was also exploited to identify small molecule 

inhibitors of 4BAH2-mediated vesicle aggregation, using a novel high-throughput screen. In this 

screen, a synthetic peptide comprising the 4BAH2 sequence was added to fluorescently labeled lipid 

vesicles in 384-well plates, wherein each well contained a different member of a small molecule 

library. The vesicle aggregating activity of 4BAH2 was monitored by automated fluorescent 

microscopy. Pattern recognition software was then used to quantitate the amount of fluorescent signal 

contained within 4BAH2 induced lipid vesicle aggregates. In this manner, several candidate 

pharmacologic inhibitors of lipid vesicle aggregation were indentified. The specificity of their 

inhibitory activity was confirmed in secondary assays that were based on monitoring aggregate size 

using dynamic light scattering (DLS), in the presence or absence of individual compounds. The most 

potent inhibitory molecules in the DLS assay were then subsequently found to inhibit HCV genome 

replication with EC50s in the nanomolar range [30]. Two compounds were further studied in detail 

using quartz-crystal microbalance and dissipation to monitor the effects of compounds on the 

membrane association of 4BAH2, and atomic force microscopy to monitor the compounds’ effects on 

4BAH2 oligomerization. Interestingly, at least two different mechanisms of inhibition could be 

defined: one compound (“C4”--5-(N-Methyl-N-isobutyl)amiloride) was able to inhibit 4BAH2 

oligomerization while another (“A2”--7-[chloro(difluoro)methyl]-5-furan-2-yl-N-(thiophen-2-

ylmethyl)pyrazolo[1,5-a]pyrimidine-2-carboxamide) was found to inhibit the ability of 4BAH2 to 

associate with membranes [30]. Importantly, clemizole was found to have no activity in the 4BAH2 

vesicle aggregation assay, and the 4BAH2 inhibitors were found to have no effect on NS4B RNA 

binding—suggesting that 4BAH2 inhibitors and NS4B RNA binding inhibitors represent two distinct 

classes of NS4B inhibitors, with different mechanisms of action. Thus, each class can be independent 

components of future anti-HCV cocktails. Consistent with this is the observation that, in vitro, 

clemizole is synergistic with 4BAH2 lipid aggregation inhibitors [58]. Gouttenoire et al. [28] have also 

suggested that the 4BAH2 segment is likely associated with oligomerization. Moreover, their study 
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suggested that this helix is capable of traversing the phospholipid bilayer as a transmembrane domain. 

Because all of 4BAH2 is initially cytosolically oriented, C4 and A2 may thus inhibit the majority of 

4BAH2 that remains on the cytosolic side of the ER membrane in the presence of other NS proteins 

[29] as well as the fraction of 4BAH2 that might be destined for more profound interactions with the 

membrane. Finally, we postulate that just as therapeutics that target AH2’s functionality inhibit HCV 

replication, therapeutics that target AH1 and disrupt its membrane interaction activity will inhibit HCV 

replication. 

4. Conclusions 

The functions of NS4B identified to date have enabled the development of two new classes of  

anti-HCV drugs: one class that interferes with the ability of NS4B to bind HCV RNA; and another that 

inhibits NS4B’s interactions with membranes. Notably, preliminary data suggests that the drugs that 

target these individual functions of NS4B are synergistic. It is expected that these inhibitors will be 

used as a basis for future structure-function studies designed to yield more potent derivatives and 

eventual new clinical candidates. Furthermore, as other functions for NS4B have already been 

identified, (e.g. its ability to hydrolyze NTPs), it is hoped that these too can be targeted by separate 

classes of antivirals. 

Knowledge of the molecular virology of HCV, and the functions of its encoded proteins, has 

allowed for the design of new drugs that directly target HCV. Other than safety and efficacy, the major 

challenges of HCV drug development are the ability to design therapeutics that inhibit all HCV 

genotypes and yet are insensitive to the emergence of drug mutants. One solution to this latter 

challenge is to administer a cocktail of antiviral agents that target different functions in the viral cycle. 

Accordingly, most current clinical trials test a combination of antiviral agents that combine STAT-C 

agents with IFN or RBV. As more and more STAT-C agents emerge, and more efficacy data is 

accumulated, future studies that are able to omit or decrease IFN or RBV may be considered—such an 

approach would hopefully provide even more tolerable and efficacious therapies to fight HCV and its 

complications. 
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