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Abstract: ST-246 (Tecovirimat) is a small synthetic antiviral compound being developed 

to treat pathogenic orthopoxvirus infections of humans. The compound was discovered as 

part of a high throughput screen designed to identify inhibitors of vaccinia virus-induced 

cytopathic effects. The antiviral activity is specific for orthopoxviruses and the compound 

does not inhibit the replication of other RNA- and DNA-containing viruses or inhibit cell 

proliferation at concentrations of compound that are antiviral. ST-246 targets vaccinia 

virus p37, a viral protein required for envelopment and secretion of extracellular forms of 

virus. The compound is orally bioavailable and protects multiple animal species from lethal 

orthopoxvirus challenge. Preclinical safety pharmacology studies in mice and non-human 

primates indicate that ST-246 is readily absorbed by the oral route and well tolerated with 

the no observable adverse effect level (NOAEL) in mice measured at 2000 mg/kg and the 

no observable effect level (NOEL) in non-human primates measured at 300 mg/kg. Drug 

substance and drug product processes have been developed and commercial scale batches 

have been produced using Good Manufacturing Processes (GMP). Human phase I clinical 

trials have shown that ST-246 is safe and well tolerated in healthy human volunteers. 

Based on the results of the clinical evaluation, once a day dosing should provide plasma 

drug exposure in the range predicted to be antiviral based on data from efficacy studies in 

animal models of orthopoxvirus disease. These data support the use of ST-246 as a 

therapeutic to treat pathogenic orthopoxvirus infections of humans. 

Keywords: Smallpox; ST-246; Tecovirimat; orthopoxvirus; p37; egress inhibitor;  

antiviral drug 
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1. Human Orthopoxvirus Infections 

Human orthopoxviruses cause a spectrum of diseases, ranging from severe disseminated lesional 

disease characteristic of the most common type of variola virus infection (variola major) to localized 

lesional infection caused by vaccinia virus. Of the several species of orthopoxvirus known to infect 

humans, variola virus, the etiological agent of smallpox, is by far the most virulent. Four major types 

of clinical disease are associated with variola virus infection and are defined by the morphology of the 

virus-specific lesion and severity of disease symptoms. Ordinary smallpox is characterized by raised 

pustular skin lesions that can be confluent or discrete. Variola sine eruptione is characterized by fever 

without rash and requires serological analysis to confirm diagnosis. Flat type smallpox is characterized 

by confluent flat pustules, and hemorrhagic type smallpox is characterized by widespread hemorrhages 

in the skin and mucous membranes. Both flat type and hemorrhagic type smallpox are usually fatal 

with 97% mortality in diagnosed cases [1]. A less severe form of variola virus infection (variola 

minor) has been observed during outbreaks characterized by less severe lesional disease and lower 

mortality. The molecular etiology of reduced disease severity of variola minor is not well understood. 

Three other species of orthopoxviruses (monkeypox, vaccinia, cowpox viruses) have been found to 

infect humans and cause disease. Monkeypox virus causes a generalized infection in humans 

resembling a milder version of smallpox. Monkeypox is a zoonotic disease that is endemic in some 

areas of the Democratic Republic of the Congo (DRC) [2,3]. The virus is poorly transmissible from 

person to person and outbreaks are self-limiting, resulting in small numbers of people contracting 

disease [2]. Vaccinia virus, the primary component of the currently licensed smallpox vaccine, is a 

laboratory strain with no known natural reservoir. Vaccinia virus causes localized infection in humans 

when administered percutaneously and generates protective immunity against variola virus [1,4]. 

Vaccinia-like viruses have been isolated from patients in Brazil. Patients infected with cowpox or 

vaccinia-like viruses present with localized lesions of the hands and arms similar to vaccinia virus 

infection [5,6]. Human orthopoxviruses are believed to be maintained in the population through rodent 

reservoirs and subclinical (and clinical) zoonotic infections occur with high frequency through contact 

with infected animals, or through an intermediate species such as cattle or domestic pets [2,7]. In 

Ghana, orthopoxvirus antibodies were detected in 53% of the people living in proximity to forest 

dwelling rodent populations, which also tested positive for orthopoxvirus exposure based on antibody 

titers and PCR analysis of selected tissue samples [8]. Disease severity in all cases is influenced by 

host immune status. Individuals suffering from certain skin disorders or who are immunocompromised 

suffer more severe infection [9–12].  

Other species of orthopoxviruses that are genetically related to variola virus such as camelpox and 

ectromelia viruses have not been found to infect humans. The genetic basis for susceptibility of 

poxviruses is not well understood, but is thought to be related to acquisition and adaptive evolution of 

host response modifier genes [13,14]. These genes are often found to be virulence factors that down 

regulate the host immune response and thereby facilitate systemic virus spread. Phylogenetic analysis 

of poxvirus genomes has identified a number of gene families undergoing positive selection, many of 

which are candidate host response modifier genes [15]. Recent outbreaks of fatal cowpox virus 

infections in non-human primates coupled with the observation that host-range genes and virulence 

factors are undergoing positive selection suggest that orthopoxviruses are evolving, leading to 
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increased zoonotic transmission and variants with altered virulence [16]. While smallpox is no longer a 

disease found in humans, the possibility exists that new variants of circulating orthopoxviruses may 

emerge to cause more frequent disease in humans. Thus, there is a need for new therapeutics to treat 

pathogenic orthopoxvirus infections. 

2. Discovery of ST-246 (Tecovirimat) 

In early 2002, prompted by a biodefense initiative launched by the National Institute of Allergy and 

Infectious disease (NIAID), a high throughput screening (HTS) assay was developed to quantify 

vaccinia and cowpox virus-induced cytopathic effects (CPE) in vero cell cultures. This CPE-based 

assay was used to evaluate 356,240 chemical compounds from a diverse collection of chemical 

scaffolds for their ability to inhibit orthopoxvirus-induced CPE. Compounds that inhibited 

virus-induced CPE by greater than 50% relative to untreated virus controls at a compound 

concentration of 5 µM were evaluated further. At total of 759 hits were discovered (0.2% hit rate) and 

grouped into nine distinct chemical series based upon the structure of their parent scaffolds. Several 

chemical series were optimized further based on nascent Structure Activity Relationships (SAR) of 

related analogs [17].  

Compound potency was evaluated from dose response curves generated by measuring 

virus-induced CPE in the presence of a range of compound concentrations. The effective concentration 

of each compound that protected cell monolayers by 50% (EC50) from virus-induced CPE was 

calculated from the dose response curve.  

Examination of hits from the HTS assay revealed a series of tricyclononene carboxamides  

(Figure 1) with EC50 values that ranged from 20 nM to the upper limit of measurement (>20 M). 

Nascent structure activity relationships (SAR) indicated that electron withdrawing substitution on the 

carboxamide aryl or heteroaryl enhanced potency of the molecules in the CPE assay. To validate these 

nascent structure activity relationships, a series of analogs were prepared, and tested against both 

vaccinia and cowpox viruses in cell-based CPE assays [18].  

The SAR demonstrated that electron withdrawing substitution on the carboxamide carbonyl 

R-group provided the most potent inhibitor compounds (Figure 1). This was exemplified by the 

4-nitrophenyl substituted carboxamide, which was 100-fold more potent than the electron-donating 

4-dimethylaminophenyl analog against both vaccinia and cowpox viruses. While the aza--deficient  

3- and 4-pyridyl displayed potency against vaccinia, the 2-pyridyl analog displayed a dramatic loss of 

potency. In all cases, heterocyclic substitution provided modest to weak potency against vaccinia, and 

no potency against cowpox. For the chloro- and bromo-substituted phenyls, a similar pattern was 

observed for both vaccinia and cowpox where 3- and 4-substitution was more potent than  

2-substitution. Reduction of the olefin had little effect on potency [18].  

In vitro metabolic stability assays of selected analogs from this chemical series were conducted to 

assess the potential for in vivo stability. The 4-trifluoromethyl phenol derivative (designated ST-246) 

was selected for further characterization from a group of analogs based on relative metabolic stability.  
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Figure 1. Structure activity relationships and chemical information for ST-246. A summary 

of antiviral activity of chemical analogs of ST-246 (adapted from Bailey et al. [18]). 

EWG—Electron withdrawing groups; EDG—Electron donating groups. R refers to 

modifications of the phenyl ring. 

EWG decrease activity

EWG increase activity

EDG decrease activity
EWG increase activity

Activity independent of 
degree of saturation

R 
Vaccinia 
EC50(M) 

Cowpox 
EC50(M) 

CC50 (M) 

4-nitrophenyl 0.02 0.15 >86 ± 20 
4-Me2Nphenyl 2.0 15.5 >100 ± 0 
4-aminophenyl 7.7 >20 >92 ± 11 
2-pyridyl >20 >20 >100 ± 0 
3-pyridyl 0.74 >20 >100 ± 0 
4-pyridyl 0.5 17.2 >100 ± 0 
2-chlorophenyl 3.0 >20 >100 ± 0 
3-chlorophenyl 0.04 0.6 >100 ± 0 
4-chlorophenyl 0.02 0.77 >100 ± 0 
2-bromophenyl 2.3 >20 >100 ± 0 
3-bromophenyl 0.05 0.6 >100 ± 0 
4-bromophenyl 0.02 1.6 >100 ± 0 
4-CF3phenyl 0.04 0.6 >100 ± 0 
sat. 4-CF3phenyl 0.02 0.3 >100 ± 0 
4-methoxyphenyl 2.2 >20 >100 ± 0 
2-(1-methyl)pyrrolyl 15.8 >20 >100 ± 0 
5-(3-methyl)pyrazolyl 7.1 >20 >100 ± 0 
 

Chemical Name:  
N-[(3aR,4R,4aR,5aS,6S,6aS)-3,3a,4,4a,5,5a,6,6a-octahydro
-1,3-dioxo-4,6 ethenocycloprop[f]isoindol-2(1H)-yl]-
4-(trifluoromethyl)benzamide, monohydrate.

USAN designation:  
tecovirimat monohydrate

Molecular Formula
C19H15F3N2O3•H2O

CAS Registry Number
Anhydrous ST-246 (C19H15F3N2O3):  869572-92-9

(Phenyl ring)

ST-246

 
 

3. Preclinical Pharmacology 

3.1. Selectivity  

ST-246 exhibited potent antiviral activity against a broad spectrum of orthopoxviruses in CPE 

assays while showing little activity against unrelated RNA and DNA containing viruses [17]. The EC50 

values for inhibition of viral replication ranged from 0.01 M for vaccinia virus to 0.07 M for 

ectromelia virus to greater than 40 M for unrelated viruses. Notably, cowpox appears to be less 

susceptible to ST-246 when compared on the same cell lines (5 to 50-fold) [19]. The mechanism of 

reduced susceptibility to ST-246 is unknown but may reflect a different mode of virus spread that is 

less dependent upon formation of extracellular virus. ST-246 was active against a CDV-resistant 

(CDVr) cowpox virus (EC50 = 0.05 M), suggesting that the mechanism by which ST-246 inhibits 

virus replication is distinct from that of CDV. Furthermore, ST-246 inhibited clinical isolates from 

both of the major clades of monkeypox and variola viruses in cell culture [20]. ST-246 inhibited 
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orthopoxvirus replication in a variety of cell types including human embryonic lung fibroblasts, 

primary human keratinocytes, and organotypic endothelial raft cultures [19].  

3.2. Cellular Toxicity  

The cytotoxicity of ST-246 was measured in selected cell lines from mouse, rabbit, monkey, and 

humans. Cell viability was determined by measuring the reduction of alamar blue (resazurin) by 

fluorescence spectroscopy or by direct cell counting. The CC50 values were found to be >50 μM in all 

cell lines tested including human embryonic lung fibroblasts and primary human keratinocytes [19]. In 

addition, the growth rate of HEK-293, L929, MRC5, and SIRC cells, measured over a 72 hour time 

period in the presence and absence of 50 uM ST-246 for three days was reduced by 30–40% relative to 

untreated controls. Growth of vero and BSC40 cells was not affected by ST-246 treatment [21]  

3.3. Mechanism of Action 

Orthopoxviruses are large double-stranded DNA viruses that replicate exclusively in the cytoplasm 

of infected cells. There are four types of infectious virus particles produced during productive 

infection; intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell associated 

enveloped virus (CEV), and extracellular enveloped virus (EEV) (Figure 2A). The intracellular and 

extracellular forms of the virus are thought to play unique roles in orthopoxvirus pathogenesis [22,23]. 

IMV particles assemble from crescent-shaped membranes in virus factory areas of the cytoplasm. 

Particle formation requires a series of temporally regulated proteolytic cleavage events of viral core 

proteins that result in condensation of the viral core [24]. The core particles are enveloped by 

intracellular membranes to form IMV particles. Once formed, these particles remain inside the cell and 

are released upon cell lysis. IMV particles are stable in the environment and are thought to play a role 

in host transmission [23].  

Approximately ten percent (10%) of the total infectious particles produced during infection are 

wrapped in virus modified membranes derived from post-trans Golgi or endosomal membrane systems 

to form IEV particles [25]. Once formed, IEV particles travel to the cell surface in a 

microtubule-dependent fashion where the outer membrane of the IEV containing vesicle fuses with the 

plasma membrane to release CEV that remain associated with the cell surface. Approximately one 

percent (1%) of CEV particles are released into the extracellular space as EEV particles by a process 

involving motile actin tail formation [26,27].  

The extracellular virus particles (EEV and CEV) are responsible for efficient cell-to-cell spread and 

long range dissemination of virus in the host [25,28,29]. Virus variants containing defects in genes 

required for production of extracellular virus particles produce small plaques in vitro and are 

attenuated for virus spread in vivo [30–32]. Passive immunization with antibodies directed against 

IMV particles are less protective than antibodies directed against whole virus, suggesting that 

neutralizing antibodies to EEV antigens play a significant role in disease prevention [33]. Finally, 

inhibitors of extracellular virus formation or more specifically, production of EEV particles, protect 

animals from lethal orthopoxvirus infection [17,34,35]. These observations suggest that extracellular 

virus particles play an important role in virus spread and orthopoxvirus disease progression.  
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Figure 2. ST-246 inhibits production of extracellular virus and systemic virus spread  

in vitro and in vivo. (A) Diagram showing the four infectious forms of vaccinia virus and 

viral genes required for each step in the morphogenesis process. Vaccinia virus genes 

involved in each step in the pathway are shown (adapted from Smith et al. [23]).  

(B) ST-246 inhibits extracellular virus (CEV and EEV) formation. BSC-40 cell 

monolayers were infected with vaccinia virus at 5 pfu/cell in the presence and absence  

of 10 M ST-246. The cell monolayers were radiolabeled with 35-S methionine and 

vaccinia virus particles, either cell-associated (upper graph) or released into the culture 

medium (lower graph) were fractionated by equilibrium centrifugation on cesium chloride 

gradients. The radiolabeled material in each fraction was quantified by liquid scintillation. 

The assignment of each type of virus particle was based upon their reported density 

(adapted from Chen et al.) [48] (C) ST-246 inhibits plaque formation. BSC-40 cell 

monolayers (1 × 106 cells/well) were infected with 10-fold serial dilutions of vaccinia virus 

in the presence and absence of 5 µM ST-246. At 3 days post-infection, the cultures were 

fixed in 5% glutaraldehyde and stained with crystal violet to visualize plaques. (D) ST-246 

protects mice from systemic disease. Mice were inoculated with a lethal dose of vaccinia 

virus (WR) via the intranasal route. ST-246 was administered at 100 mg/kg as a liquid 

suspension by oral gavage once per day for 14 days. Shown are mice treated with ST-246 

or placebo at day 8 post-infection. 

No Drug

10 M
ST-246

CA

B

ST-246

Placebo

Day 8 post-infection
D

ST-246

10-4 10-5 10-6
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At least seven virus-specific gene products are required for synthesis of extracellular virus particles. 

These gene products participate in the wrapping of IMV particles (B5R and F13L), transport of 

particles to the cell surface (F12L), actin tail formation (A33R, A34R, and A36R), and release of 

particles from the cell (A33R, A34R, and B5R). EEV particles have a higher specific infectivity 

compared to IMV particles and are more resistant to complement mediated neutralization [36,37]. 

Complement resistance is the result of incorporation of host complement control proteins, CD46, 

CD55, and CD59, into the outer membrane of the virus [36]. These properties of extracellular virus 

particles facilitate long-range spread of the virus in the host. 

The target of ST-246 has been identified through mapping genetic resistance to the vaccinia virus 

F13L gene. Vaccinia virus recombinants containing deletions in F13L are not sensitive to ST-246 

suggesting that F13L is the sole target of ST-246 activity. These variants produce a small plaque 

phenotype, fail to produce extracellular virus, and are attenuated for replication in mouse models of 

vaccinia virus infection. F13L gene encodes a highly conserved 37 KDa peripheral membrane protein 

(p37) required for the production of extracellular forms of virus [25,38]. Indeed, ST-246 inhibits 

extracellular virus production and plaque formation consistent with known activities associated with 

p37 (Figure 2B and 2C).  

ST-246 prevents formation of extracellular virus by inhibiting the formation of a putative wrapping 

complex derived from virus-modified late endosomal (LE) membranes. The wrapping complex 

catalyzes the envelopment of intracellular mature virus particles to produce egress-competent forms of 

the virus [23,39–41]. The formation of the wrapping complex requires the activities of p37 and other 

viral proteins that interact with membrane proteins associated with the LE [23,40]. The LE is enriched 

for Rab9 protein that mediates recycling of cation-dependent mannose-6-phosphate receptor  

(CD-MPR) [42] and cation-independent mannose-6-phosphate receptor (CI-MPR) from the LE to the 

trans Golgi network (TGN) [43]. Rab9-dependent recycling is mediated through interactions with  

the tail interacting protein of 47 kD (TIP47), a Rab9-specific effector [44,45]. TIP47 binds to a 

proline-rich motif found within the C-terminus of CI-MPR and a diaromatic (Tyr-Trp) motif found 

within the cytosolic tail of CD-MPR [43]. Likewise, TIP47 has also been shown to interact with the 

HIV Env protein through a similar diaromatic (Tyr-Trp) motif [46,47]. RNAi-mediated depletion of 

Rab9 inhibited replication of human immunodeficiency virus type 1, filoviruses, and measles virus 

consistent with Rab9-containing vesicles playing a role in virus assembly [48].  

The putative wrapping complex is thought to be formed through interactions of p37 with 

components of LE-derived transport vesicles [49]. Immunoprecipitation studies have demonstrated 

that p37 associates with Rab9 and TIP47 in membrane fractions from infected cells and that these 

interactions are essential for plaque formation [49]. Moreover, ST-246 blocks the interaction of p37 

with Rab9 and TIP47, suggesting that the compound inhibits formation of the wrapping complex. 

These results suggest that p37 and other viral proteins involved in extracellular virus formation, may 

substitute for cellular cargo to induce Rab9-TIP47-dependent vesicle formation. These vesicles contain 

p37 and B5R protein and resemble the virus modified-membrane precursors or post-TGN vesicles 

required for envelopment described previously [40,41]. These results support the idea of a common 

pathway used by viruses that assemble at the LE whereby virus envelope proteins act as cargo to 

concentrate and recruit host effector and Rab proteins to stimulate envelopment of virus particles. The 

exact mechanism by which ST-246 inhibits IMV wrapping has not been fully elucidated. 
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4. Metabolism and Pharmacokinetics 

4.1. In vitro Absorption, Distribution, Metabolism, and Excretion (ADME)  

ST-246 is poorly soluble in aqueous solution but shows good Caco-2 membrane permeability 

categorizing ST-246 as a biopharmaceutical classification system 2 drug. The evaluation of ST-246 

ADME properties showed it has moderate to high plasma protein binding, is relatively stable and not 

metabolized to any significant degree by any cytochrome P450 isozymes. There was no significant 

cytochrome P450 (CYP) induction at 10 M ST-246 (3,700 ng/mL) but at 100 M induction was 

observed for the following CYP enzymes: 2B6, 2C9, 3A4, and 2C19. Inhibition of nine CYP enzymes 

that were tested (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and 

CYP3A4) was less than 50% at a concentration of 300 M. Thus, the potential for drug-drug 

interactions via induction or inhibition of human cytochrome p450 enzymes is low. The in vitro patch 

clamp assay for potential hERG channel inhibition showed interaction with the potassium ion channel 

was quite low. The highest ST-246 concentration, 30 M, showed only 7% inhibition. 

4.2. Metabolism  

While the evaluation of metabolic stability in isolated microsomes showed that small amounts of 

ST-246 were cleaved, liberating 4-trifluoromethylbenzoic acid from the parent compound in rats, mice 

and dogs, these metabolites were not seen in either the monkey or human microsomes. No other 

metabolites were identified from the in vitro studies. An in vivo mass balance study in mice showed 

that radioactivity associated with 14C-ST-246 was nearly completely eliminated within 96 hours after 

oral administration. At 24 hours post dose, the radioactivity was broadly distributed to all organs, 

including the brain, with the highest concentration outside of the intestinal tract observed in the 

gallbladder. By 96 hours after oral administration, approximately 72% of the radioactivity had been 

eliminated through the feces and 24% was eliminated in the urine. Whereas all of the radiolabel in the 

feces co-eluted on HPLC with intact ST-246 none of the radiolabel in the urine did. The urine 

contained multiple metabolites; however, the only ones that could be identified, in addition to 

trifluorobenzoic acid, were glucuronidated ST-246 metabolites.  

4.3. Pharmacokinetics 

The nonclinical pharmacokinetic profile of ST-246 was evaluated in several in vivo studies in 

BALB/c mice, Spraque-Dawley rats, New Zealand White rabbits and Cynomolgus monkeys. Although 

the solubility of ST-246 is low it is highly permeable (Biopharmaceutics Classification System (BCS) 

Class II) and has high levels of oral bioavailability, which increases when the compound is  

co administered with food. The initial evaluation of bioavailability in mice showed that approximately 

40% of the compound was bioavailable when the area under the concentration time curve (AUC) value 

of a 1 mg/kg intravenous infusion was compared to an oral dose of 30 mg/kg of ST-246. Higher doses 

had lower apparent bioavailability. This was most likely due to decreased absorption that was 

observed as the dose was increased. In rats, the bioavailability was 90% and 33%, respectively, for 

males and females after oral administration of 30 mg/kg ST-246. The lower concentrations of ST-246 
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exposure observed in female rats was consistent with first pass metabolism while multiple dose 

administration resulted in much lower exposure in both male and female rats, suggesting induction of 

metabolism. Over the course of extensive repeat dose studies in mice, however, there was no 

consistent evidence of induced metabolism, suggesting that this phenomenon was rat specific. The 

predominant cause of nonlinearity in the pharmacokinetics of ST-246 observed in mice was the 

apparent decreased absorption with increasing dose. The decreased absorption was observed in both 

the observed maximum plasma concentrations as well as the exposure (as determined by AUC values). 

Thus, as the doses were increased, exposures also increased but not dose proportionally (Figure 3).  

Figure 3. Dose normalized exposure of ST-246 in BALB/c mice from Day 1 of multiple 

studies. Dose normalized area-under-the curve values are plotted versus dose for mouse 

toxicology studies. The results suggest that absorption limits increased exposure as the 

dose is increased. AUCinf = Area under concentration time curve for plasma drug levels 

after oral dosing from time 0 extrapolated to infinite time. 
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Due to this apparent saturation of absorbance of ST-246 in mice the apparent clearance and volume 

of distribution increased with increasing doses after oral administration. The compound was dosed 

once a day with the terminal elimination half-life in mice of approximately four hours. In the 28 day 

repeat dose study, mice showed a modest amount of accumulation over the course of the study for the 

higher two of the three doses, approximately 25% increase in AUC values at the 1000 mg/kg dose and 

approximately 50% at the 2000 mg/kg dose. However, in the 90 day study the AUC values were lower 

on Day 90 than Day 1 by 25% to 50%.  

As was observed in mice, the bioavailability in monkeys increased when the animals were fed, 

doubling from approximately 25% when animals had been fasted to roughly 50% when the animals 

were administered ST-246 in the fed state. Dose proportional exposure was observed at lower doses 

but, as mentioned above, it appeared that absorption may have limited exposure increases at higher 
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doses. In the 28 day study, the exposure at the end of the study tended to be lower than on Day 1 of the 

study, with values that ranged from 25% of the Day 1 exposure to equivalent exposure. In contrast, in 

the three month monkey study, the exposure at the last time point was nearly double that observed on 

the first day of the study. Thus, in multiple dose studies in both mice and monkeys there was no strong 

evidence of significant accumulation of ST-246 nor induction of metabolism. It may be that the 

differences observed in the different studies were more related to the different absorption properties of 

dose formulation suspensions used on a given day than of any metabolic differences between the 

animals throughout the course of the safety studies.  

The steady state volume of distribution in monkeys was calculated after a 1 mg/kg IV dose 

administered during the initial bioavailability study. The values for both male and female monkeys 

were greater than the total body water volume in monkeys (693 mL/kg [50]), indicating a broad 

distribution of the compound, consistent with the radiolabel distribution and mass balance study in 

mice. The clearance for both male and female monkeys was close to 1100 mL/hr/kg. Although in some 

studies there were statistical trends indicating gender differences in the pharmacokinetics, as with the 

level of accumulation during multi-dose studies, these differences were not consistently observed.  

5. Safety Evaluation 

5.1. Genotoxicity 

ST-246 was not genotoxic in either bacterial or mammalian cell genotoxicity assays. In addition 

ST-246 did not cause chromosomal damage or bone marrow toxicity in the mouse micronucleus test. 

Because of the completely negative results in the evaluation of genotoxicity tests carcinogenicity tests 

have not been done nor are they anticipated or warranted. 

5.2. Safety Pharmacology 

Safety pharmacology studies for ST-246 were conducted. Plethysmography was used to measure 

tidal volume in mice after single oral dose administration of ST-246 of up to 2000 mg/kg. There were 

no abnormal values associated with the administration of ST-246 and the no observable effect level 

(NOEL) was determined to be the highest administered dose, or 2000 mg/kg. An initial study in mice 

used the Functional Observational Battery (FOB) to evaluate the potential for CNS toxicity. As with 

the pulmonary safety pharmacology, the top dose of 2000 mg/kg in mice did not elicit any behavioral 

or other functional changes such as core body temperature. However, studies in dogs found an 

association between ST-246 administration and behavioral and electroencephalogram (EEG) evidence 

of seizures. The maximum tolerated dose in dogs, based on this observed toxicity, was 30 mg/kg. A 

follow up study in primates found no evidence of altered electroencephalograms or lowered seizure 

thresholds in NHP after administration of 12 daily doses of 300 mg/kg of ST-246 indicating that dogs 

are uniquely sensitive to ST-246. In addition, analysis of brain and CSF levels of ST-246 were found 

to be much higher in dogs than NHP, suggesting that the toxicity was specific to dogs. Cardiovascular 

safety evaluation in NHP showed no prolongation of QTc at the highest dose administered in repeat 

dose studies, 300 mg/kg. 
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5.3. General Toxicology 

SIGA has conducted safety evaluations in multiple species, mice, rats, rabbits, dogs, and NHP. The 

two species used for repeat dose toxicity studies were mice and NHP, as these species are also used in 

efficacy evaluations so that a thorough knowledge of safety in these species helped with the design of 

efficacy and pharmacology studies. The maximum tolerated dose in mice was 2000 mg/kg for both 

single dose as well as the 28 Day study. In the single dose study there was a slight loss of body weight 

but recovery by the second day. Although both liver and spleen weights were slightly increased at the 

end of the 28 Day study in mice for the 2000 mg/kg dose of ST-246 there were no corresponding 

histological correlates and no alterations in clinical chemistry or liver enzymes. The no observable 

adverse effect level (NOAEL) was 2000 mg/kg. The three month study evaluated a top dose of 1000 

mg/kg of ST-246 in mice and the same slight increase in liver weight with no accompanying 

histopathology was observed, meaning the NOAEL was 1000 mg/kg for the three month study. The 

highest single dose administered orally to NHP was 2000 mg/kg, which resulted in decreased activity 

and ataxia in both male and female NHP. This was also observed after single dose administration of 

1000 mg/kg. At 300 mg/kg ataxia was observed four hours post dose in one female NHP. Because of 

these observations the highest dose used in multiple dose safety studies in NHP was 300 mg/kg. This 

was used for both the 28 Day and 3 Month Safety studies and the NOEL was the top dose of 

300 mg/kg in both of these studies. ST-246 is a well-tolerated compound and seems to elicit very little 

toxicity at doses that are much higher than those required for the antiviral activity. 

5.4. Reproductive Toxicology 

Definitive Segment I, II, and III reproductive studies were conducted in both mice and rabbits. 

There was no evidence in either mice or rabbits of decreased fertility or fetal resorptions, fetal 

abnormalities or toxicity. The highest dose used in the rabbit Segment II study, 100 mg/kg, resulted in 

some maternal toxicity. Administration of 14C-ST-246 to pregnant mice resulted in only very low 

levels of radiolabel in the placenta and to nursing dams very low levels (<1%) in the milk.  

6. Chemistry Manufacturing and Control 

ST-246® is a tetracyclic acylhydrazide compound being developed for treatment of pathogenic 

orthopoxvirus infections. ST-246 is a small synthetic molecule with a molecular weight of 376.33 g/mol. 

The calculated logP (log of the octanol-water partition coefficient) for ST-246 is about 2.94 and it has 

a melting point of 196 C. ST-246 is very soluble in organic solvents such as methanol, ethanol and 

acetonitrile and is sparingly soluble in water and simulated gastro-intestinal fluids. Based on its low 

solubility in aqueous fluid and good partition coefficient, ST-246 can be classified as a BCS class II 

drug per US-FDA definition. ST-246 is non-hygroscopic and is a chemically stable molecule. It does 

not undergo degradation under normal room temperature storage conditions. Stability studies per 

International Conference on Harmonisation (ICH) guidelines are in progress and data available to date 

demonstrate that ST-246 is stable for up to two years at controlled room temperature.  

ST-246 is a white to off-white crystalline powder and exhibits polymorphism. Polymorphic 

screening using various solvents suggests that ST-246 can exist in three major physical forms: 
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anhydrous, hemihydrate and monohydrate. Physico-chemical properties of all the forms were found to be 

similar. Manufacturing processes have been developed to produce all the forms of ST-246 consistently.  

ST-246 drug substance is manufactured via a four-stage convergent process consisting of three 

bond-forming chemical reactions together with four solid isolations, one of which is highly purifying. 

Process has been demonstrated from small scale (gram level) to full commercial scale (>1000 kg). The 

process is rugged and produces high quality (>99.0%) pure material. SIGA has produced several small 

batches, three NDA one-tenth commercial (NDA (New Drug Application) registration batches) scale 

and is in the process of full commercial scale process validation.  

Comprehensive Quality by Design (QbD) study per ICH Q8 was completed to identify an 

appropriate Design Space for each step of the manufacturing process. The ICH Q9 Quality Risk 

Assessment has also been conducted to identify Focus Areas in the each step of the manufacturing 

process. In general, typically Focus Areas (FAs) included the reaction, work-up, solvent 

displacement(s), crystallization and drying. This work also supported the critical process parameter 

study. The early stages of the study included a Quality Risk Assessment, per ICH Q9, to identify FAs 

that aided in designing the multivariate experiments. This approach satisfied criteria outlined in ICH 

Q8 and Q9 with the goal being a process that will consistently deliver (Active Pharmaceutical 

Ingredient (API) that meets the Critical Quality Attributes (CQAs).  

ST-246 drug product consists of hard gelatin capsules containing 200 mg of active ingredient along 

with few inactive ingredients. All inactive ingredients are generally accepted as safe (GRAS) and 

USP/NF excipients. Several small scale drug product batches have been completed for clinical and 

development purpose.  

A series of QbD experiments were completed to understand the drug product manufacturing 

process. A systematic approach using QbD per ICH guidelines (Pharmaceutical Development Q8(R2), 

Quality Risk Management Q9) along with the knowledge and experiences gained from the prior lab 

scale batches was used for the drug product development of ST-246 capsules. Moreover, a continuous 

quality improvement during the entire product life cycle, including formulation and manufacturing 

process of ST-246 capsules is intended.  

The QbD approach included identification of Critical Quality Attributes (CQAs), critical steps and 

process parameters in the manufacture of the drug product, and establishment of a design space. 

For the construction of a control strategy for the final manufacturing process and quality assurance 

of ST-246 capsules, the following approaches were employed: Setting the Target Product Profile 

(TTP), development of an Ishikawa (fishbone) diagram which identifies the potential variables that can 

have an impact on the desired quality attributes, initial (or early phase) risk assessment of ST-246 drug 

product manufacturing process, QbD studies using Design of Experiments, assessment and 

construction of Design space as a control strategy Failure Mode Effect Analysis (FMEA) and Risk 

Analysis and Evaluation: This includes identification and ranking of process variables based on 

probability, severity and detectability, and determination of the risk score or risk product number 

(RPN) score and construction of Pareto chart.  

Based on various QbD studies, design space and Critical Process Parameters were identified for 

drug product manufacturing process. The manufacturing process used for drug product is simple and 

has been scaled-up to one-tenth commercial scale. Three NDA registration batches at pilot scale were 

successfully completed and process optimization at full commercial scale was also completed 
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successfully. The pilot scale batches and early clinical lots were staged on stability per ICH guidelines 

in the final packaging containers. Drug product is found to be stable for more than one year at 

controlled room temperature demonstrating that ST-246 product is stable and can be stored at room 

temperature.  

7. Animal Efficacy 

Since smallpox is no longer found in nature, human clinical trials designed to link antiviral efficacy 

to clinical outcome have been replaced by antiviral efficacy evaluations in animal models of 

orthopoxvirus disease. The FDA has established guidance “Animal Efficacy Rule” (21 CFR Parts 314 

and 601) for developing animal models to link efficacy data to clinical correlates predictive of human 

disease outcome. A number of animal models of orthopoxvirus disease have been developed to 

evaluate anti-poxvirus compounds. While these models are useful for evaluating antiviral activity of 

compounds in animals, each model by itself fails to capture all aspects of human disease and, therefore 

cannot be predictive of clinical outcome. Thus, multiple models of orthopoxvirus infection will be 

required to evaluate antiviral efficacy of poxvirus inhibitor compounds.  

Perhaps the most relevant animal models of orthopoxvirus infection use host-adapted viruses where 

replication at the periphery and spread is dependent upon the host response to infection and the ability 

of the virus to counteract this response. In mice and rabbits infected with ectromelia and rabbitpox 

virus, respectively, lethal infection can be established with as little as 1 pfu of virus delivered by 

intranasal administration. However, animals die before development of the rash/lesional disease that is 

the hallmark of smallpox.  

7.1. Clinical Features of Smallpox 

The clinical course of smallpox is presented to better understand the relevance of pathogenesis in 

various animal modes to the human disease. The life-cycle of variola virus resembles that of other 

orthopoxviruses in which infection of the natural human host results in virus replication at the 

periphery followed by systemic spread. The spread of variola in humans has been inferred from animal 

studies, especially those conducted in mice infected with ectromelia virus [1]. Variola virus is thought 

to enter the respiratory tract via aerosolized droplets, seeding mucous membranes and passing rapidly 

into local lymph nodes. Based on animal studies, virus replicates in the local lymph tissue to produce a 

primary viremia. Virus then travels to the spleen, liver, and reticulo-endothelial system where 

replication in these organs produces a secondary viremia which is accompanied by disease onset.  

Clinical latency ends with the rapid onset of severe headache, backache, and fever, termed the 

prodromal phase. The prodromal phase correlates with a secondary viremia in which infectious virus 

can be detected in the mucous membranes of the mouth and pharynx [51]. In animal models of 

orthopoxvirus infection, the secondary viremia is measured by quantitative PCR (Q-PCR) to determine 

the amount of viral DNA in blood and tissue samples [52,53]. The virus invades the capillary 

epithelium of the dermal layer in skin, perivascular cells, and epidermis where replication results in 

necrosis and the formation of a rash. The spleen, lymph nodes, liver, bone marrow, kidneys, and other 

viscera may contain large quantities of virus based upon data from animal studies. Replication in the 
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epidermis may be enhanced by secretion of virus-specific growth factors that bind to cellular receptors 

on keratinocytes and stimulate growth [54].  

Infection results in 30% mortality for variola major and 1% for variola minor with the cause of 

death attributed to toxemia, associated with immune complexes, and hypotension. Toxemia is a poorly 

defined clinical condition thought to be caused by an excessive inflammatory immune response similar 

to septicemia associated with systemic bacterial infections. Examination of dermal layers of blood 

vessels from autopsy patients infected with variola virus shows extensive leakage of the endothelial 

layer consistent with the presence of high levels of pro-inflammatory cytokines [55]. 

7.2. Disease Symptoms that Define Orthopoxvirus Infections 

The current CDC clinical case definition for smallpox is listed as “An illness with acute onset of 

fever >101 °F (38.3 °C) followed by a rash characterized by firm, deep seated vesicles or pustules in 

the same stage of development without other apparent cause.” [56]. Laboratory confirmation is based 

upon polymerase chain reaction (PCR) assay or culture of variola virus from patient tissue. Thus, 

lesion formation and detection of viral DNA are early symptoms that are used in differential diagnosis 

of smallpox disease. Moreover, smallpox disease severity is characterized by the extent and 

appearance of smallpox lesions [1].  

7.2.1. Lesion Formation 

Skin lesions are the hallmark of orthopoxvirus infection and formed the basis of clinical diagnosis 

of smallpox infection [51]. Skin lesions or pocks, are formed by infection of the capillary epithelium of 

the dermal layer of the skin by circulating virus during the secondary viremia phase of infection. The 

lesions that develop are similar in appearance in humans and non-human primates (NHP) infected with 

variola virus or monkeypox virus providing a link between human disease and NHP models of 

orthopoxvirus infection.  

A comparison of the pathophysiology of skin lesion formation from smallpox patients, a 

monkeypox patient, and NHPs infected with MPX reveals a remarkable similarity in the histological 

changes associated with lesion formation [55,57,58]. The process of lesion development in all cases 

begins with the productive infection of endothelial cells in the blood vessels within the papillary 

dermis. Infection leads to dilatation of the capillaries followed by endothelial swelling of the dermal 

blood vessel walls. Virus spreads to the overlying epithelium and replication in this tissue initiates the 

characteristic rash associated with orthopoxvirus infection. This process results in the formation of a 

papule that is characterized by swollen, degenerating cells in the middle layer of the epidermis. 

Virus-induced inclusion bodies or Guarnieri bodies can be detected in the cytoplasm of degenerating 

cells. The nuclei of these cells condense and ultimately disappear due to lysis. The cell membranes 

rupture giving rise to multiloculated vesicles, which increase in size as more cells become involved. 

The basal layers of the surrounding vesicles proliferate and may be twice the size of the unaffected 

epidermis giving rise to the elevated border surrounding the vesicle. This appears as a raised area on 

the skin surrounded by unaffected skin.  

The pustule is formed by infiltrating polymorphonuclear granulocytes that degenerate within the 

vesicle and their nuclei fragment forming a cavity at the center of the lesion. Umbilication, a hallmark 
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of orthopoxvirus lesions, is thought to be caused by swelling of the cells surrounding the cavity 

through edema and reticulation and proliferation of the basal layers surrounding the vesicles. The 

proliferating cells surrounding the lesion encroach upon the cavity to form the raised edges of the 

lesion with a depression in the center as fluid drains from the cavity. During the healing stage, 

proliferating cells from the surrounding lesion encroach upon the cavity to form parakeratotic cell layer 

which upon desiccation of the cavity initiates the encrustation process. The parakeratotic cell layer 

increases in density as the lesion heals. Finally the scab is shed, revealing newly formed epidermis. 

The appearance and extent of lesion formation provides a useful marker of orthopoxvirus disease 

severity and links human smallpox to orthopoxvirus disease in NHP. Lesion development requires 

systemic virus spread and productive infection of the capillary epithelia. Antiviral therapies that reduce 

lesion formation in NHP models of orthopoxvirus disease will likely be effective treatments for  

human smallpox. 

7.2.2. Viremia 

Systemic disease is a characteristic of smallpox and is caused, in part, by the host response to 

generalized virus infection. While the primary site(s) of infection in humans has not been well defined, 

studies of mousepox, rabbitpox, and monkeypox indicate that virus replication occurs predominantly 

in the reticuloendothelial system to produce a secondary viremia characterized by high levels of 

circulating virus in the blood [57,59,60]. In animal models of orthopoxivrus infection, the level of 

circulating viral DNA in the blood measured by Q-PCR, correlates with disease severity [53,61–64]. 

While plaque assay can also be used to measure infectious virus, interfering substances found in  

the blood can confound interpretation of the data making PCR a more reliable assay to measure  

viremia [65]. In humans, information regarding the level of variola virus DNA in blood from smallpox 

patients is unavailable since PCR technology did not exist prior to the eradication. However, infectious 

virus has been cultured from the oral mucosa of smallpox patients during the prodromal phase  

of infection prior to the onset of lesions suggesting that patients contained high levels of circulating 

virus [51]. Thus, quantifying viral DNA levels in the blood by Q-PCR is a valid measure of disease 

severity in animal models of orthopoxvirus infection and provides a link to smallpox in humans.  

7.2.3. Mortality 

Death is often a primary endpoint in animal models of severe orthopoxvirus disease. The cause of 

death in these experimental systems is not well understood and has been attributed to severe 

bronchopneumonia, multi-organ failure, and septic shock syndrome [57,66,67]. In humans, mortality 

due to smallpox has been attributed to bronchopneumonia and toxemia, a poorly defined clinical 

syndrome that resembles bacterial septicemia [1,55]. While differences may exist in the primary cause 

of death between infected humans and animals, mortality as an endpoint is still a useful measure of 

disease severity in animal models of orthopoxvirus infection in that it reflects excessive viral 

replication in the host. Moreover, therapies that limit virus replication and spread reduce mortality. 

Animal models that don’t produce 100% mortality require larger treatment and control populations to 

show statistical significance of the treatment effect. Thus, mortality in these models is less useful than 

other endpoints for evaluating therapeutic efficacy of an antiviral product.  
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7.3. Efficacy of ST-246 in Small Animal Models of Orthopoxvirus Disease 

Models of orthopoxvirus disease were developed in mice, including BALB/c, NMRI, ANC/R and 

Nu/nu, rabbits, prairie dogs, and ground squirrels (reviewed in [68]). These models provided 

opportunities to evaluate the antiviral activity of ST-246 against multiple species of orthopoxviruses, 

including vaccinia virus strains IHD-J, Lister, and WR, ectromelia virus, strain Moscow, cowpox 

virus, rabbitpox virus, and monkeypox virus [17,69–71]. Infections were established by a variety of 

routes including intranasal, intravenous, intradermal, subcutaneous and aerosol delivery of virus. In all 

cases, ST-246 protected animals from severe disease and death. ST-246 treatment has been 

demonstrated to inhibit poxvirus dissemination virus shedding and systemic disease in mice [72]. 

These models were used to optimize dosing strategies for antiviral efficacy and studies were conducted 

to evaluate the effect of varying the dose level, dose duration, and time of treatment post-infection on 

disease outcome (Table 1). From these studies, we have determined that once per day oral dosing in 

mice at 100 mg/kg, for a period of greater than seven days appears to be optimal for providing 

protective efficacy. Treatment can be initiated as late as 72 hours post-infection for full protection. In 

one experiment in prairie dogs infected with monkeypox virus, treatment initiated 10 days  

post-infection resulted in 100% protection from death. This result is striking in that the mean time to 

death in this experimental system is 11 days.  

Table 1. Summary of ST-246 efficacy in animal models of orthopoxvirus disease. 

Virus Host 
Optimal oral 

dose 
mg/kg, s.i.d. 

Optimal dose 
duration  

(% efficacy) 

Time of 
treatment  

(% efficacy) 
Reference 

Vaccinia Mouse 100 >5 days (100%] TBD [17,69] 
Cowpox Mouse 100 >7 days (93%] 48 h.p.i. (93%) [69] 
Ectromelia Mouse 100 >5 days (100%) 72 h.p.i. (100%) [69] 
Monkeypox Squirrel 100 TBD 72 h.p.i. (100%) [71] 
Rabbitpox Rabbit 40 TBD 48 h.p.i. (100%) [70] 
Monkeypox Monkey 3 TBD 96h.p.i. (100%) [64,63] 
Variola Monkey 10 TBD 24 h.p.i. (100%) [63] 

TBD—To be determined.  

s.i.d.—Once a day. 

 

Mice that survive lethal infection due to ST-246-treatment are resistant to subsequent challenge 

with lethal doses of vaccinia virus due to acquisition of protective immunity during the initial  

infection [17]. ST-246 has also been shown to protect in mice from lethal infection that are deficient  

in either CD4+ or CD8+ T cells, but not both, regardless of the presence or absence of B-cell 

deficiency [73]. ST-246 treatment in combination with smallpox vaccination does not appear to 

diminish the immune response raising the possibility that ST-246 could be co-administered with the 

smallpox vaccine to reduce vaccine-related side-effects and protect individuals from infection prior to 

acquisition of protective immunity [74]. Taken together these results support further development of 

ST-246 for treatment of pathogenic orthopoxvirus infections.  
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7.4. Non-human Primate Models of Orthopoxvirus Infection 

Primate models of orthopoxvirus disease have been developed to evaluate efficacy of new smallpox 

vaccines and antiviral drugs. Inoculation of cynomolgus macaques with monkeypox virus or variola 

virus delivered by intravenous or intratracheal injection produces a lethal (or semi-lethal in the case of 

variola virus) infection that reproduces the lesional disease characteristic of smallpox and monkeypox 

virus infection in humans [53,63,75]. In fatal cases of monkeypox or variola virus infection, animals 

die between 10 and 18 days post-infection with over 750 poxvirus lesions. The extent of the pox rash 

correlates with disease severity in humans based on the World Health Organization (WHO) grading 

scale of mild disease, 5–25 lesions; moderate disease, 26–100 lesions; severe disease, 101–250 lesions; 

and grave disease, >250 lesions. This model appears to mimic disease produced during the secondary 

viremia phase of human smallpox. In addition, there is a direct correlation between lesion number and 

viral DNA in the blood (Figure 4) and the level of viral DNA is correlates well (p < 0.05) with the 

mean time to death in the IV monkeypox model (data not shown).  

Infection of non-human primates (NHP) via intravenous injection (IV) of monkeypox virus has 

been used to evaluate efficacy of ST-246 [63,64]. ST-246 administered at three days post-infection 

(dpi) at four different doses, from 100 mg/kg down to 3 mg/kg, once a day for 14 days, protected  

NHP 100% from a lethal infection with monkeypox virus (MPX) and reduced the viral load and lesion 

formation [64] (Figure 5). In NHP, a ST-246 dose of 10 mg/kg/day for 14 days resulted in blood 

exposure comparable to levels attained in humans administered 400 mg in the fed state. A randomized 

double blind, placebo controlled study was conducted to evaluate the efficacy of ST-246 in 

cynomolgous macaques inoculated with a lethal dose of monkeypox virus via intravenous injection. 

Treatment was initiated at three and four days post-infection and ST-246 delivered at 10 mg/kg or 

placebo was administered by oral gavage once per day for 14 consecutive days. The results show that 

ST-246 administered at three or four days post infection protected animals from lethal infection and 

reduced lesion formation and viral DNA levels in the blood. In this model, five of the 16 NHPs 

showed lesion onset on Day 3 while the remaining 11 animals in the study all had lesions by Day 4 

post-inoculation [76].  

A compilation of the efficacy data from NHP studies conducted with ST-246 shows a strong 

correlation between viral DNA levels in the blood and lesion formation (Figure 4). Moreover, in all 

studies ST-246 protected NHPs from lethal infection with monkeypox virus and reduced lesion 

formation and viral DNA levels in blood even when compound was administered as late as five days 

post-inoculation. This time point is approximately 24 to 48 hours after initial lesion formation. These 

results demonstrate that ST-246 provides therapeutic efficacy against lethal monkeypox virus infection 

of NHP. 
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Figure 4. Correlation between maximum monkeypox viral DNA levels in the blood versus 

maximum lesion number in non-human primates infected with monkeypox virus. Viral 

DNA levels were determined by quantitative PCR assay. Maximum viral DNA levels and 

lesion number were determined over a period of 21 days starting at the time of infection 

(Day 0). All doses were administered by oral gavage. Dose levels ranged from 

0.3 mg/kg/day to 300 mg/kg/day for 14 days. Treatment was initiated on Day 1 (E3), Day 5 

(E6), Days 3 or 4 (21G) or lesion onset on Day 3 or 4 (26G). Studies 21G and 26G were 

randomized, double blind, placebo-controlled studies conducted in compliance with GLP 

guidelines. Pearson’s correlation coefficient was calculated to show the degree of correlation.  
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ST-246 was also shown to be effective at reducing disease in NHP infected with variola virus [63]. 

Based upon this preliminary data, a second randomized double blind placebo controlled study was 

conducted to evaluate the efficacy of ST-246 in cynomolgous macaques infected with variola virus via 

intravenous injection. In this study treatment, was initiated at lesion onset (between day 3 and day 4 

post-infection). The results show that ST-246 reduced lesion numbers compared to placebo-treated 

animals [77]. Moreover the rate of increase in viral DNA levels in the blood were significantly 

different between ST-246-treated and placebo-treated animals. While the amount of virus delivered 

was expected to result in some mortality, all of the animals survived infection. Taken together these 

results suggest that ST-246 administered at lesion onset at 10 mg/kg can protect monkeys from lethal 

infection with monkeypox virus and reduce variola virus induced disease. 
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Figure 5. Efficacy of ST-246 in a non-human primate model of monkeypox virus 

infection. Cynomolgus macaques were infected with 5 × 107 pfu of monkeypox virus via 

intravenous inoculation. At 3 days post-inoculation, ST-246 was administered by oral 

gavage once per day for 14 consecutive days. Viral DNA in the blood was determined by 

quantitative PCR. Viral DNA and lesion counts were measured every day for 21 days 

(adapted from Jordan et al.) [63]. (A) The maximum viral DNA levels in the blood and 

lesion number for individual animals over the course of the experiment were plotted per 

treatment group. The average value (bar) for each treatment group is shown. (B) Daily 

lesion numbers and viral DNA levels in the blood were shown for vehicle-treated animals 

(blue circles) and ST-246-treated animals at 3 mg /k g (red squares) with the average 

values plotted as a single black line. Cross symbols indicate day of death. The dashed 

horizontal line shows the limit of quantification of viral DNA. 
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8. Clinical 

ST-246 has been shown to be safe and well tolerated in single and multiple dose human clinical 

trials with exposure levels consistent with once per day dosing [78,79]. The human dose selection 

process for phase I clinical trials was based on the NOAEL for the monkey converted to the human 
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equivalent dose using the common conversion factors as recommended in FDA guidance 81 and 

calculated based on body surface area, not direct mg/kg weight. The monkey was selected as the most 

relevant species based on the single dose NOAEL of 2000 mg/kg, the multiple-dose NOEL  

of 300 mg/kg/day, and its physiologic similarities to humans. The clinical volunteer starting single 

dose of 500 mg in the first Phase 1 study was conservatively calculated to be within a 10 fold safety 

margin. Single and multiple ascending dose studies in healthy human volunteers established that  

ST-246 was safe and well tolerated with plasma drug exposures in the range predicted to be sufficient 

for inhibiting orthopoxvirus replication. No severe adverse events (SAEs) were observed, and no 

subject was withdrawn due to ST-246. The most commonly reported drug-related AE was neutropenia 

that was found, upon further analysis, not to be treatment related. ST-246 was readily absorbed 

following oral administration with mean times to maximum concentration from 3 h to 4 h. Absorption 

was greater in non-fasting volunteers compared to fasting volunteers.  

To establish the effective human dose, the exposure levels in humans will have to be comparable to 

exposure levels in non-human primates that protect animals from lethal orthopoxvirus infection. Based 

upon data from our preliminary animal efficacy studies using survival as a primary endpoint, an oral 

dose of approximately 3 mg/kg in non-fasted non-human primates confers 100% protection from death 

following intravenous injection of 5 × 107 plaque forming units of monkeypox virus strain Zaire [63]. 

Pharmacological assessment in non-human primates, found that a dose of 10 mg/kg results in blood 

exposure levels comparable to levels attained in humans administered a 400 mg dose in the fed state 

(Figure 6). This dose level is well below the no observed adverse effect level (NOAEL) of 2000 mg/kg 

in a single dose experiment in non-human primates and the no observable effect level (NOEL) 300 mg/kg 

in a 28-day repeat dose experiment in non-human primates. Given the variability in exposure levels in 

monkeys and humans in the fed and fasted states, we predict that human doses of 400 mg in the fed 

state will encompass plasma drug exposure levels comparable to those that provide protective efficacy 

in the non-human primate model of orthopoxvirus disease.  

ST-246 was used to as part of the treatment regimen for several clinical cases of orthopoxvirus 

infection. ST 246 was used for the treatment of a child with eczema vaccinatum [9]. The patient,  

a 28 month old male child with a history of eczema and failure to thrive, was exposed to virus through 

direct contact with a vaccinee. He presented to the emergency room with high fever and severe 

eczema. Vesicular skin scrapings and viral culture supernatant from vesicles on the child’s skin were 

obtained and determined to be positive non-variola orthopox virus by polymerase chain reaction 

(PCR). The child’s condition continued to worsen despite initial treatment with vaccinia immune 

globulin intravenous (VIG IV) and he exhibited progressive metabolic then respiratory acidosis, 

hypoalbuminemia, hypothermia, and hypotension. ST-246 was orally administered via a nasogastric 

tube. The subject also received one dose of Cidofivir and repeated doses of VIG IV. Clinical signs of 

the child’s improvement were observed within 1 week of the anti-viral intervention (ST 246, Cidofivir, 

and VI-IV). The patient’s clinical symptoms continued to improve and the child is thriving and 

continues to do well. 

A second case was reported in a 20-year-old male who received the smallpox vaccine and was 

subsequently diagnosed with acute myeloid leukemia approximately 12 days after vaccination [80]. 

Chemotherapy was initiated to treat the leukemia caused a severe impairment of immune function 

resulting in progressive vaccinia six to seven weeks after vaccination. He received topical imiquimod 
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(5%) at the vaccination site and VIGIV was administered intermittently throughout the course of 

treatment. ST-246 was administered at 400 mg once per day for 15 days and increased to 800 mg for 

five days and then 1200 mg for approximately two months. CMX-001, an oral prodrug of CDV, was 

administered at 200 mg approximately 3.5 weeks after diagnosis or progressive vaccinia and 100 mg 

every week for five weeks. An increase in lymphocyte count correlated with improvement of 

symptoms and the patient was declared virus free and treatment was discontinued nine weeks  

after diagnosis.  

Figure 6. A comparison of ST-246 exposure (area under the concentration time curve, 

AUC) in monkeys and humans. Monkey doses were converted to human equivalent doses 

by multiplying first by 0.32 in accordance with FDA Guidance for Industry (entitled 

Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in 

Adult Healthy Volunteers, published July 2005) and then multiplying by the average weight 

of human (78.6 kg) from the clinical study. The maximum, minimum and mean AUC for 

monkeys is shown in the green triangles, brown squares, and blue diamonds, respectively. 

The range in AUC values in humans is indicated by the symbols. The red dashed line 

indicates the dose of ST-246 that protects non-human primates from lethal infection. 
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9. Summary 

Development of a self-administered orthopoxvirus-specific antiviral drug with superior safety 

profile and improved pharmacological properties will serve as both a deterrent against a possible 

biological attack, provide immediate protection to unvaccinated persons in the event of an attack and 
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protect individuals from emerging orthopoxvirus infections. A self-administered antiviral drug would 

supplement, rather than replace vaccination, since data from a variety of animal experiments indicate 

that systemic therapy does not interfere significantly with a vaccination reaction or prevent the 

development of adaptive immune responses to vaccine antigens. Drug treatment would be especially 

important for individuals who were vaccinated too late in the incubation period and have not  

yet acquired protective immunity. Moreover, antiviral therapy in combination with a live virus  

vaccine could be used to prevent or treat complications arising during the course of a mass  

vaccination campaign. 

Antiviral drugs would be of critical importance as the only effective means of protecting severely 

immunocompromised individuals exposed to smallpox. Such persons could safely receive highly 

attenuated vaccines such as MVA, but recent studies in nonhuman primates indicate that they will fail 

to develop a protective immune response. Antiviral therapies would therefore be the only means of 

preventing severe or fatal infection. A self-administered drug with broad anti-pox viral activity could 

also be used to increase the safety of vaccination for the 9–30% of the population with atopic 

dermatitis/eczema who may be at risk for disseminated vaccinia virus infection (eczema vaccinatum) 

following administration of the current live-virus vaccine. 
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