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Abstract: The ability of a cell to combat an intracellular pathogen requires a mechanism to 

recognize the threat and elicit a transcriptional response against it. In the context of virus 

infection, the cell must take measures to inhibit viral replication, meanwhile, convey 

warning signals to neighboring cells of the imminent threat. This immune response is 

predominantly mediated by the production of cytokines, notably, interferon beta (IFN). 

IFN signaling results in the transcriptional induction of over one hundred antiviral gene 

products whose timely expression renders infected cells more capable of inhibiting virus 

replication, while providing the uninfected cells with the reinforcements to generate a less 

permissive cellular environment. Induction of IFN and many aspects of the antiviral 

response pivot on the function of the IKK and IKK-related kinases. Despite sharing high 

levels of homology and some degree of functional redundancy, the classic IKK kinases: 

IKK and IKK, and the IKK-related kinases: TBK1 and IKK, perform distinct roles in 

regulating the host antiviral defense. These kinases serve as molecular operators in their 

cooperative ability to integrate incoming cellular cues and act on a range of essential 

antiviral transcription factors to reshape the cellular transcriptome during infection. 
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1. Introduction 

The production of interferon beta (IFN) is a fundamental cellular response to combating 

pathogenic microorganisms. As such, the transcriptional induction of this gene has become a paradigm 

for virus-induced transcription. The signal transduction pathway responsible for IFN initiates with 

pathogen detection through both extra- and intra-cellular host pattern recognition receptors (PRRs) [1]. 

PRRs detect pathogen-associated molecular patterns (PAMPs) produced during replication. Binding of 

PRRs to their cognate ligands results in activation of downstream signaling molecules and the 

coordinated assembly of the enhanceosome, a multi-transcriptional complex responsible for recruiting 

RNA polymerase II to the transcriptional start site (TSS) of the IFN promoter [2].  

The enhanceosome is composed of transcription factors (TFs) belonging to three distinct families: 

the interferon regulatory factors (IRFs), nuclear factor-kappa B (NF-B) and specific members of the 

ATF and Jun families. Autocrine or paracrine signaling by IFN triggers the JAK/STAT pathway and 

the timely up-regulation of many IFN stimulated genes (ISGs) through the phosphorylation of signal 

transducers and activators of transcription 1 (STAT1) and STAT2, and the assembly of the Interferon 

Stimulated Gene Factor 3 (ISGF3) complex composed of STAT1, STAT2, and IRF9. These ISGs 

launch the cell, infected or uninfected, into an antiviral state, limiting virus replication while releasing 

chemokines to recruit immune cell reinforcements (For review see [3]).  

Recognition of viral infection is mediated through three major pathways, Toll-like Receptors 

(TLRs), RIG-I-like Helicases (RLHs), or through intracellular DNA receptors [1,4,5]. While each 

sensory pathway utilizes distinct adaptor proteins to relay downstream signals, many of these events 

converge at the level of the IB (IKK) and IKK-related kinases [6]. The IKK kinases, referred to as the 

classical IKKs, include IKK and IKK and are responsible for the activation of NF-B [7]. The IKK-

related kinases, which include TBK1 (also called NAK and T2K) and IKK (also called IKK-i), were 

recently identified as the bone fide kinases for IRF3 and IRF7 [8,9].  

As evident by the high sequence similarity and in vitro substrate specificities of IKKα and IKK, as 

well as that of TBK1 and IKK, there is a significant amount of functional redundancy between the 

kinases. Despite their commonalities, knock-out studies of each kinase member has also demonstrated 

additional diverse functions that shape the cellular response to a wide range of environmental cues [7]. 

In general, the functional relationship of IKK and TBK1 is akin to that of IKK and IKK. Whereas 

TBK1 and IKK are necessary for IRF3/7 and NF-B activation, respectively, IKK and IKK are 

sufficient to induce these pathways, but their absence does not disrupt transcriptional induction. 

Moreover, each of the kinases has also been associated with unique non-canonical antiviral signaling 

pathways. This review focuses strictly on the roles these kinases play in the cell-autonomous innate 

immune signaling, and seeks to clarify what is currently understood concerning the upstream 

activation of the individual kinases and their substrates following virus recognition.  

2. Transcriptional regulation of the IFN promoter 

The expression of IFN is a metabolically expensive process, resulting in broad transcriptional 

effects that inhibit many vital cellular processes. Evidently, the production of IFN is a tightly 

regulated event, involving the activation and cooperation of multiple enzymes and adaptors following 

virus recognition. Extensive research has been done on its structural composition and its mode of 
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activation [2]. The IFN promoter is made up of four positive regulatory domains (PRDIV, III, I and II 

with respect to the TSS), which are bound by ATF2/c-Jun, two heterodimers of IRF3/7, and NF-B 

respectively, forming a multi-subunit complex called the enhanceosome [10,11]. Assembly of the 

enhanceosome requires the coordinated activation of all three TF families, as it is largely mediated by 

cooperative binding [2]. As each of the PRD elements deviate from the TF core consensus sites, 

assembly of the enhanceosome is believed to begin with ATF2/c-Jun followed by an IRF3/7 

heterodimer on PRDIV and PRDIII, respectively. Although PRDIII is an imperfect IRF binding 

element, the interaction between ATF2/c-Jun and the IRFs provide the additional stability necessary to 

maintain DNA contacts [11,12]. Cooperative binding of PRDIV and III, in turn, support occupancy on 

PRDI with another IRF3/7 heterodimeric complex, as well as the binding of a p50/p65 heterodimer of 

NF-B on PRDII [10]. As ATF2 and c-Jun are activated in response to a wide variety of stress-related 

stimuli that occur following virus infection, assembly of the enhanceosome is largely dependent on 

NF-B and IRF3/7, and therefore, the catalytic activity of the IKK and IKK-related kinases.  

The NF-B family of TFs regulates a wide array of genes involved in immunity, inflammation, and 

cell growth [13]. The NF-B family consists of five members: RelA(p65), RelB, c-Rel, p105, and 

p100, whose subunits form homodimers or heterodimers that, upon activation, enter the nucleus to 

bind upstream of target genes [14]. Under unstimulated conditions, latent p50 and p65 dimers, the 

most studied TFs in the NF-B pathway, are maintained in the cytoplasm by a family of IB proteins, 

most notably IB. Upon PRR stimulation, a large multi-subunit complex containing IKK, IKK, 

and NEMO (also called IKK), phosphorylates the IB proteins on serine 32 (S32) and S36, resulting 

in subsequent polyubiquitination of lysines 21 and 22, targeting them for degradation [15]. Loss of IB 

liberates NF-B dimers, exposing their nuclear localization sequence and allowing them to translocate 

into the nucleus [15].  

While NF-B is activated by a variety of stimuli, the IRFs are primarily known for their roles in 

anti-microbial defense. They were first identified based on their ability to bind elements upstream of 

the IFN promoter [16]. The IRF family is comprised of nine members whose functions are implicated 

in various cell processes including cell growth, cytokine signaling, and most notably, pathogen 

response [17]. In the cellular response to virus infection, IRF3 and IRF7 play a predominant role in the 

transcriptional induction of the type I IFN (IFN-I) family, comprised of a single IFN gene and a 

cluster of IFN genes [18]. While IRF3 is expressed ubiquitously, basal expression of IRF7 is kept at 

low levels in most cells and is induced after the initial phase of IFNβ expression. This is followed by 

the induction of the IFN subtypes, which are induced solely by IRF7 homodimers [18]. The low basal 

expression of IRF7 is thought to account for the stochastic expression of IFN following virus 

infection, a phenomenon that does not occur in cells primed with IFN-I [19]. Plasmacytoid dendritic 

cells, however, maintain high levels of basal IRF7 and are capable of producing abundant amounts of 

IFN-I in response to infection. IRF3 and IRF7 activation is mediated by a wide range of 

phosphorylation events, many of which are directly induced by the IKK-related kinases to coordinate 

protein dimerization, nuclear translocation, DNA binding, and the induction of IFN [8,20-24].  
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3. The IKK complex 

The classical IKK kinases, IKK and IKK, are essential for the activation of NF-B TFs in 

response to diverse stimuli [25]. Together with NEMO, they form a multi-subunit IKK complex that 

collectively function to phosphorylate IB and release NF-B, resulting in its nuclear translocation 

[26,27]. The IKK kinases share 52% amino acid identity [28], each having molecular weights of 

approximately 80-90 kDa (Figure 1). As structurally similar proteins, they share a protein kinase 

domain in the N-terminus followed by leucine zipper (LZ) and helix-loop-helix (HLH) motifs at the C-

terminus [25]. NEMO is approximately 50 kDa in size, containing two coiled-coil domains along with 

LZ and zinc finger motifs. Whereas IKK and IKK are responsible for the catalytic activity of the 

complex, NEMO does not perform any enzymatic functions, but serves as a regulatory hub [29]. While 

the three individual subunits together form a complex of 210 kDa, the purified IKK complex is 

estimated to be 700-900 kDa in size. Hence, it is believed that the IKK complex is comprised of 

multiple oligomeric forms of each protein, which may confer aspects of substrate specificity [30,31].  

Figure 1. Amino acid sequence homology of the classical IKK and IKK-related kinases. 

Amino acid sequence comparisons between human IKKα, IKKβ, TBK1, and IKKε. 

 
 

The exact role of IKK and IKK as they pertain to inducing IB degradation, and their 

responsibilities within the IKK complex during virus infection, still remains somewhat unclear. To 

assess the relative contributions of each protein, studies have focused on using inactive forms of each 

kinase or through traditional knock-out murine fibroblast cell lines. Results from such studies have 

suggested that there are, in fact, distinctions between the two kinases. While IKK plays a 

predominate role in catalyzing IB degradation in response to pro-inflammatory stimuli [32], more 

recent studies have suggested a number of alternative IKK -dependent pathways that do not involve 

IKK or the degradation of IκB proteins [33-35]. IKK has been found to mediate the processing of 

the NF-B p100 subunit from its latent form into an active conformation [33,34]. In addition, IKK 
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has also been described to be a bona fide kinase of IRF7 following TLR7 stimulation in conjunction 

with IL-I receptor-associated kinase-1 (IRAK1) and IRAK4 [35]. Alternative roles for IKK have also 

been described, including a recent study that highlights a role for IKKβ in the expression of certain 

IFN-dependent genes outside of NF-B activation [36]. In addition, research in knock-out fibroblasts 

have demonstrated that a complete loss of known NF-B TFs does not significantly impair virus-

induced IFN, suggesting other compensatory factors can be activated by the IKK kinases [37]. These 

alternative pathways demonstrate both the redundancy and unique signaling functions these kinases 

perform in tuning the cellular antiviral transcriptome.  

Despite IKK’s role in the non-canonical NF-B pathway, its function in the IKK complex is still 

essential for the induction of many pro-inflammatory cytokines. Studies with IKK-deficient cells 

display defects in the expression of a subset of NF-B-dependent genes [38]. This defect was fully 

rescued when wild type IKK was reconstituted in Ikbka-/- cells. Furthermore, rescue experiments 

were also performed using a kinase-inactive form that was able to rescue the expression of 28% of the 

genes whose expression was lost. Interestingly, this data imparts a role for IKK in maintaining basal 

expression of certain NF-B-dependent genes as well as those that are expressed in response to 

stimuli.  

4. The IKK-related kinases 

Like the classical IKK kinases, the IKK-related kinases appear to demonstrate both redundant and 

unique functions aimed at shaping the cellular response to virus infection. Although it was initially 

thought that the functional redundancy in activating NF-B may extend to all four members of the 

IKK family, the groups of Hiscott and Maniatis demonstrated that the IKK-related kinases were 

responsible for the phosphorylation and activation of IRF3/7 in response to virus infection [8,9].  

TBK1 and IKK were identified earlier in separate screens searching for IKK/IKK-homologous 

genes and lipopolysaccharide (LPS)-inducible genes, respectively [39,40]. The kinase domains of 

TBK1 and IKK share greater than 70% amino acid sequence identity but are widely divergent at their 

C-terminus, resulting in an overall homology of less than 50% (Figure 1). Comparable to IKK and 

IKK, TBK1 and IKK also share an N-terminal kinase domain followed by C-terminal LZ and HLH 

motifs which results in an overall homology of approximately 30% between the IKK and IKK-related 

kinases (Figure 1). This structural and sequence similarity also confers limited substrate overlap as 

each of these kinases can phosphorylate S36 of IB, one of the two critical serines involved in its 

degradation [41]. 

Despite their limited involvement in the NF-B pathway, continued studies on the IKK-related 

kinases strongly suggest that TBK1 and IKK serve primary roles in antiviral signaling as activators of 

IRF3/7 [42,43]. The finding that both TBK1 and IKK reconstitute complete C-terminal 

phosphorylation of the critical residues in IRF3/7, both ex vivo and in vitro, has further supported this 

notion. However, despite the apparent redundancy between the IKK-related kinases, knock-out 

experiments suggest that TBK1, like IKK and its role in NF-B activation, serves as the primary 

inducer of IRF3/7. Although Tbk1-/- mice are embryonic lethal, cells derived in utero demonstrate a 

complete loss in IRF3 phosphorylation and induction of IFN-I [9,44]. Conversely, genetic disruption 

of Ikbke (the gene which encodes IKK) does not demonstrate any defects in IFN induction, either in 
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vivo or ex vivo [45]. However, as IKK expression in most cell types requires virus-induction, IKK 
likely plays a redundant role to TBK1 during the late stages of virus infection [46]. This idea is 

supported by the fact that expression of IKK can rescue IFN inducibility in response to virus 

infection in Tbk1-/- fibroblasts and bone marrow-derived macrophages [43]. In contrast to IFN-I 

induction, mice lacking IKK demonstrated a deficiency in an IFN-related function that is distinct 

from IRF3/7 activation. Similar to the unique and complementing functions of IKK, IKK was found 

to influence the binding specificity of ISGF3 in an IFN-dependent manner [45]. In addition, IKK has 

been reported to decrease the activity of CYLD, a deubiquitinating enzyme that negatively regulates 

IRF3/7 activation, thereby indirectly increasing IRF-mediated signaling [47,48]. Furthermore, IKK 
has been found to be important for direct phosphorylation of specific NF-B subunits and in the 

induction of a specific subset of pro-inflammatory cytokines through the CCAAT/enhancer-binding 

protein TFs [49-51]. Altogether, these studies reveal distinct roles for IKK in innate immunity, and 

are examples of how multiple signal transduction pathways can be integrated to customize an immune 

response. 

5. Detection of virus infection 

Recognition of virus infection warrants an effective immune response to clear the host of invading 

pathogens. Detection of microbial invasion can derive from both extra- and intra-cellular PAMP 

sources. The viral PRRs responsible for extracellular ligand binding encompass members of the TLR 

family. Intracellular viral PRRs represent a broad range of sensors that include: retinoic acid inducible 

gene (RIG-I) and melanoma differentiation associated gene 5 (mda5) which recognize foreign RNA 

[1]. In addition to RNA sensors, the cell is also equipped with a number of cytoplasmic DNA sensors 

[4,5]. Upon encountering their cognate ligand, each pathway employs different adaptor molecules to 

signal downstream and prompt IFN-I production. All three pathogen recognition pathways require the 

catalytic activity of the IKK and IKK-related kinases in order to activate NF-B and IRF3/7 TFs 

(Figure 2).  

5.1. IKK activation via the TLR pathway 

Extracellular or endosomal recognition of virus infection requires detection by the TLR family of 

membrane proteins. Of the 12 members of the TLR family (TLRs 1-12), TLR3, 7, 8, and 9 are 

predominantly responsible for viral recognition [52]. While TLR3 detects double-stranded RNA 

(dsRNA), a common by-product of virus replication or defective interfering particles, TLRs 7 and 8 

detect single-stranded RNA found in the genomes of certain viruses and from necrotic cells [1]. TLR9, 

on the other hand, recognizes un-methylated CpG motifs that are characteristic of microbial nucleic 

acids [52]. Unlike the cytosolic PRRs, TLRs are expressed primarily by immune cells, such as 

macrophages and dendritic cells (DCs), but can also be transcriptionally up-regulated in non-myeloid 

cells following virus infection. Upon activation, TLRs relay downstream signals via their intracellular 

Toll/Interleukin-1 receptor (TIR) domains, which bind either myeloid differentiation factor 88 

(MyD88) or TIR-domain-containing adaptor-inducing IFN (TRIF) to recruit additional intracellular 

adaptors. All TLRs except for TLR3, which signals through TRIF, utilize MyD88 [52]. 
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Figure 2. Induction of type I IFN by intracellular and extracellular virus recognition pathways. A. 
Recognition of intracellular PAMPs is mediated by the RNA helicases, RIG-I and mda5, and DNA 
sensor, DAI. RIG-I and mda5 both detect distinct forms of dsRNA. RIG-I preferentially binds dsRNA 
containing 5’-triphosphates, whereas mda5 binds longer blunt-end dsRNA molecules. Downstream 
signaling via RIG-I/mda5 requires interactions with the mitochondrial-associated adaptor, MAVS, 
mediated by the CARD domains found on each molecule. Following ubiquitination by TRIM25 and 
possible association with an ER-associated factor called STING, RIG-I transmits signals downstream 
to distinct TRADD-containing complexes for TBK1/IKKε and IKKα/IKKβ activation. Activation of 
the IKK and IKK-related kinases results in IRF and NF-κB phosphorylation, resulting in their nuclear 
translocation. DAI is a recently identified PRR that detects B-form DNA found in the cytosol and 
induces IFN-I production through IRF3 and NF-κB activation. This mode of activation requires further 
investigation. However, DAI-mediated activation of IRF3 is known to require TBK1, whereas RIP1 
and RIP3 are necessary for NF-κB activation. B. TLRs are expressed primarily in macrophages and 
DCs, and sense PAMPs found in the extracellular environment. TLR3 detects dsRNA and coordinates 
IRF and NF-κB activation through adaptor, TRIF. TLR7 and TLR9 sense ssRNA and CpG motifs of 
microbial DNA, respectively, and unlike TLR3, they utilize MyD88 to signal downstream. C. 
Induction of IFN-I requires the activity of the IKK and IKK-related kinases for the activation and 
nuclear translocation of important IRF and NF-κB TFs. The IFN promoter contains four PRD 
domains that are occupied by ATF2/c-JUN, two IRF3/IRF7 heterodimers, and p50/p65. Cooperative 
binding of these TFs with histone remodeling factors, CBP and p300, together form an enhanceosome 
that drives IFN production. 
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MyD88-dependent activation of NF-B involves signaling via TRAF6, which upon TLR activation, 

is recruited by members of the IRAK family: IRAK1, 2, and 4 [53,54]. Phosphorylation events 

between the IRAKs, lead to their activation and subsequent recruitment of TAK1/TAB1/TAB2 [53]. 

Activated TAK1 phosphorylates the IKK complex containing IKK, IKK, and NEMO. As a result, 

IB proteins are targeted for phosphorylation and degradation, allowing NF-B activation and nuclear  

translocation [7].  

MyD88-mediated activation of the IRFs appears to be selective for IRF7 activation and occur 

independently of the IKK-related kinases [55]. Upon TLR7 activation, a complex containing MyD88, 

IRAK1 and IKK is recruited to mediate the phosphorylation and subsequent activation of IRF7 [34]. 

TLRs that utilize MyD88 display defects in IFN-I production in cells lacking IRF7 [56]. As 

macrophages and DCs express high basal levels of this critical transcription factor, this distinct 

signaling pathway contributes to their ability to be potent producers of IFN-I. Separate studies suggest 

NF-B-inducing kinase (NIK) may also be a member of this complex [57].  

TRIF-dependent activation of NF-B via TLR3 occurs distinctly from the MyD88 pathway. 

Activation of NF-B is dictated by IRAK4 and receptor interacting protein 1 (RIP1), which then relay 

signals to the TAK1 complex, resulting in IKK/IKK activation [58]. Unlike the MyD88 pathway, 

TRIF signaling does not seem to require TRAF6 [59], although IRAK-independent NF-B activation 

has been observed [60]. Similar to the MyD88 pathway, TLR3-mediated activation of IRF3 stems 

from the TRAF3 adaptor, which forms a multimeric complex with TBK1 and IKK [61], and possibly 

other recently identified adaptors, SINTBAD and NAP1, which are discussed below [62]. 

5.2. IKK activation via the RLH pathway 

In addition to extracellular PAMP recognition, cells have TLR-independent mechanisms of 

detecting viral nucleic acids generated in the cytoplasm. The RNA helicases, RIG-I and mda5, are 

similar in structure, both having a caspase recruitment (CARD) domain at the N-terminus and a 

DEx(D/H) box RNA helicase domain at the C-terminus. Initial studies suggested that RIG-I and mda5 

performed redundant roles in sensing virus infection. However, ongoing studies continue to provide 

more insight into their specificity for certain motifs [63]. While both helicases respond to viral RNA in 

the cytoplasm, RIG-I preferentially binds short dsRNA molecules with exposed 5’ tri-phosphates, 

whereas mda5 binds longer blunt-end dsRNA [64,65]. Stimulation of RIG-I and mda5 causes a 

conformational change in their CARD domains, leading to the recruitment of a downstream CARD-

containing adaptor protein called mitochondrial antiviral signaling protein (MAVS) (also referred to as 

Cardif, IPS-1, and VISA) [66-69]. As the name suggests, MAVS is localized at the outer 

mitochondrial membrane via its transmembrane domain, and serves as a platform for additional factors 

to bind and transmit upstream signals. The interaction between RIG-I and MAVS requires 

ubiquitination of the first CARD domain of RIG-I by tripartite motif 25 (TRIM25) [70]. It remains 

unknown whether ubiquitination is also required for mda5 function.  

Downstream signaling via the RLH pathway is mediated by MAVS and its interaction with multiple 

effector complexes. Initial characterization of this signal transduction pathway implicated TRAF6 in 

the activation of NF-B and ATF2/cJun, while TRAF3 was found to recruit TBK1 for subsequent 

IRF3 phosphorylation [71]. Ongoing studies in this area continue to uncover novel components of this 
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cascade, and have suggested that TRAF6 may play a more significant role in TLR-mediated activation 

of the IKK kinases whereas TRAF3 remains crucial for TBK1 and IKK activation [72]. RLH-

dependent activation of the IKK kinases is now thought to occur through Fas-associated death domain-

containing (FADD) protein and TNFRSF1A-associated via death domain (TRADD), which are both 

required for RIG-I/mda5-mediated, but not TLR-mediated, antiviral signaling [72]. Experiments with 

Fadd-/- MEFs demonstrate impaired NF-B and IRF activation in response to dsRNA [72]. Similarly, 

defects in IFN-I responses were also observed for the adaptor, RIP1. While a direct interaction with 

MAVS has not been described for FADD, TRADD has been shown to directly bind MAVS [72]. 

Based on this current model, it can be envisaged, that upon RIG-I activation, MAVS recruits TRADD 

to orchestrate the formation of a multimeric complex containing FADD, RIP1, and TANK that can 

then dictate NF-B and IRF activation [73]. A role for caspase 8 and caspase 10 has also been 

implicated in FADD-dependent activation of the IKK kinases [74]. Furthermore, a separate study with 

Fadd-/- cells reported its involvement in the regulation of IRF7 homodimers for secondary IFN 

production. Fadd-/- MEFs displayed defects in production of IFN subsets that can be rescued by 

exogenous expression of IRF7 [75]. As described for the TLR pathway, TRAF3 also participates in the 

RLH pathway to trigger TBK1 and IKK activation. Similar to the classical IKK-NF-B activation, 

TBK1/IKK activation is also thought to involve a complex consisting of TRADD and RIP1 [73].  

Ongoing studies have recently implicated roles for cellular organelles in innate immunity [6,76]. 

Although MAVS, which is localized to the mitochondria, does not interact directly with TBK1 and 

IKK, a population of IKK has also been found to associate with this organelle [77]. In contrast, 

TBK1 localization is distributed throughout the cytoplasm [78]. Furthermore, NLRX1, a protein 

localized in the mitochondrial membrane, is known to interact with MAVs and to negatively regulate 

the RLH pathway [79]. An antiviral role has also been described for the endoplasmic reticulum (ER), 

in which a newly identified protein, STING, is known to bind and modulate antiviral responses (Its 

function will be discussed in the following section). Taken together, it appears the innate immune 

response to virus infection is a complex operation requiring the timely recruitment and activation of 

multiple components. Therefore, employing cellular organelles as platforms for signal transduction 

may ensure efficiency and specificity for the cell to react to various cues. 

5.3. IKK activation via the DNA sensory pathway 

Sensory mechanisms for detecting cytoplasmic DNA are just recently being characterized  

[4,5,80-83]. DNA-dependent activator of IFN regulatory factors (DAI) was the first identified sensor 

of cytoplasmic dsDNA [5]. Also known as ZBP1 and DLM-1, DAI is IFN-I-inducible and 

ubiquitously expressed in a variety of cell types. It shares DNA-binding domains similar to adenosine 

deaminase activating on RNA1 (ADAR1), a known ISG with antiviral activity [45]. Upon engagement 

with its ligand, DAI undergoes conformational changes to recruit and activate TBK1 and IRF3 for 

IFN production. To activate NF-B, DAI interacts with the kinases RIPI and RIP3, via its RIP 

homotypic interacting motif (RHIM) domain [80,84]. Furthermore, its been demonstrated that TBK1 

can target DAI for phosphorylation, an event thought to increase DAI’s affinity for TBK1 and IRF3, 

and thus amplify IRF3 activation and nuclear translocation. Details concerning the formation of this 

complex and whether other adaptor proteins are involved require further investigation. A recent study 
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sought to examine whether IKKε contributes to IRF3 activation in response to the DNA sensory 

pathway. Tbk1-/- and Ikbke-/- fibroblasts were reconstituted with equivalent amounts of TBK1 and IKK 
to examine the relative contributions of each kinase. Results showed TBK1 was better capable of 

rescuing IFN induction than IKK [85]. Thus, similar to RLH-mediated induction, IFN transcription 

is initiated primarily by TBK1 in response to intracellular DNA detection.  

Following the discovery of DAI, Ishikawa et al. uncovered a novel protein referred to as stimulator 

of interferon genes (STING) that was shown to induce activation of IFN and NF-B promoters in 

response to cytosolic DNA [4]. Sting-/- MEFs displayed defective induction of IFN in response to 

transfected B-form DNA, infection by DNA virus, herpes simplex virus 1, and vesicular stomatitis 

virus, implicating its role in IFN induction in response to both microbial DNA and RNA [4]. 

Interestingly, STING contains five transmembrane regions that associate with the ER, and this 

attachment is required for proper signaling [4]. Co-immunoprecipitation studies suggest STING 

interacts with both RIG-I and TBK1 to modulate innate immune signaling. However, STING does not 

appear to mediate signals downstream of mda5. Although STING is required for antiviral responses 

against foreign intracellular DNA, the mechanism and upstream components involved remain 

unidentified.  

Lastly, cytosplasmic DNA detection has also been found to induce activation of the 

“inflammasome”, an NF-B-dependent pathway that controls the catalytic cleavage of IL1 and IL18 

[86]. In this pathway, NF-B activation occurs in a caspase 1- and 3-dependent manner involving 

AIM2 (absent in melanoma 2), a member of the IFN-inducible HIN-200 family [81-83]. Although the 

exact molecular mechanisms leading to activation of the IKK-kinases remains unknown, the AIM2-

dependent activation is thought to involve its oligomerization following cytoplasmic DNA detection to 

induce the subsequent activation of PYD and CARD domain-containing protein PYCARD (also 

known as ASC). NALP3, also known as NLRP3, has also been implicated in this signaling pathway 

[86]. The roles, if any, of the IKK-related kinases in response to AIM2 signaling remain unknown. 

5.4. IKK activation via IFN signaling 

In addition to kinase activation in response to direct virus infection or PAMP stimulation, IKK and 

IKK can be activated directly in response to IFN and IFN, respectively [45,87]. Although the 

molecular details regarding kinase activation remain somewhat unclear for these pathways, loss of 

kinase expression, in each case, reduced an important subset of genes implicated in antiviral signaling. 

In addition, IFN-mediated activation of both IKK and IKK induced a transcriptional response that 

was independent of NF-B and IRF3/7, respectively. While known to be IKK-independent, the 

pathway implicated in IFN-mediated induction of IKK remains to be elucidated [35]. With regards 

to IKK, IFN signaling results in the direct phosphorylation of IKK at a PI3K consensus site. As 

IFN-mediated activation of PI3K has already been characterized [88], the upstream events leading to 

phosphorylation are likely to be shared. IKK activation by IFN induces the subsequent 

phosphorylation of STAT1, which changes the binding preferences of ISGF3, and is responsible for 

the transcriptional induction of a broader range of ISGs [45].  
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6. The IKK-related kinases and their adaptors 

Although many studies have confirmed the involvement of TBK1 and IKK in IRF3/7 

phosphorylation, details concerning upstream activation remain complicated and elusive. Ongoing 

studies on TBK1 and IKK continue to reveal novel interacting partners that are required for proper 

IFN induction in response to various stimuli. These include TRAF -associated NF-B activator 

(TANK), NAK-associated protein 1 (NAP1), and similar to NAP1 TBK1 adaptor (SINTBAD) [30]. 

Adaptors or scaffold proteins do not perform any catalytic activity, but are, nonetheless, critical to 

various biological functions. Similar to the IKK kinases that require the adaptor NEMO to mediate 

their catalytic activity, studies suggest there exists an analogous adaptor for TBK1 and IKK which 

may include NEMO itself [78]. The first to be characterized was TANK, which was initially identified 

as a TRAF2-binding protein involved in the activation of NF-B-dependent genes. It was later shown 

that TANK directly binds TBK1 and IKK constitutively at its N-terminus, and is perhaps involved in 

mediating the events leading to IRF3/7 activation [62,89]. Although TANK is required for TBK1/ 

IKK-mediated IRF3/7 activation in response to LPS (mediated by TLR4), it has been recently shown 

TANK is dispensable in the TLR3 pathway [90]. 

NAP1 is another TBK1/IKK-interacting protein that has also been implicated in NF-κB activation 

following TNF stimulation [91]. NAP1’s association with TBK1 and IKK suggests it may also 

mediate the assembly of a TBK1/IKK complex that could drive IRF3/7 activation. The most recently 

identified candidate, SINTBAD, shares a conserved TBK1/IKK binding domain with TANK and 

NAP1 [62]. RNA interference against SINTBAD was used to demonstrate impaired IRF activation in 

response to Sendai virus infection. Based on the current studies, it seems TANK, NAP1, and 

SINTBAD perform similar functions in terms of facilitating TBK1/IKK recruitment and activation. 

They all share similar structural properties that suggest they may perform redundant roles. However, 

knock-down studies have implicated the requirement of each of these proteins in producing a potent 

antiviral response. Furthermore, the requirement for NEMO in both IKK and IKK-related kinase 

mediated signaling suggests the presence of a massive signaling complex comprised of all four IKK 

kinases whose function is dictated by the specific adaptors recruited [78]. Further studies are of course 

needed to determine what kind of complexes are formed between TBK1/IKK and the adaptors 

mentioned above, whether all three adaptors are involved, or whether distinct complexes are formed in 

response to different stimuli.  

Conclusion  

Concerted efforts to study the cellular response to virus infection have dramatically advanced our 

understanding of viral detection, cell signaling, and the production and function of an array of 

cytokines. Coordinating these events are four very important kinases, which perform both general and 

refined functions to ensure that the resulting transcriptional response is perfectly tailored to inhibit 

virus replication. These events require integration of a wide range of signaling cues and the subsequent 

coordinated activation of select TFs making each of them molecular operators of antiviral signaling. 
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