
Citation: Nissly, R.H.; Lim, L.; Keller,

M.R.; Bird, I.M.; Bhushan, G.; Misra,

S.; Chothe, S.K.; Sill, M.C.; Kumar,

N.V.; Sivakumar, A.V.N.; et al. The

Susceptibility of Chickens to Zika

Virus: A Comprehensive Study on

Age-Dependent Infection Dynamics

and Host Responses. Viruses 2024, 16,

569. https://doi.org/10.3390/

v16040569

Academic Editor: Subir Sarker

Received: 3 March 2024

Revised: 22 March 2024

Accepted: 2 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

The Susceptibility of Chickens to Zika Virus: A Comprehensive
Study on Age-Dependent Infection Dynamics and Host Responses
Ruth H. Nissly 1 , Levina Lim 1,2 , Margo R. Keller 1, Ian M. Bird 1,3, Gitanjali Bhushan 1,4, Sougat Misra 5,
Shubhada K. Chothe 5 , Miranda C. Sill 6, Nagaram Vinod Kumar 7, A. V. N. Sivakumar 7, B. Rambabu Naik 7,
Bhushan M. Jayarao 1 and Suresh V. Kuchipudi 5,8,*

1 Department of Veterinary and Biomedical Sciences, Pennsylvania State University,
University Park, PA 16802, USA; ruthn@psu.edu (R.H.N.); levinalimhs@gmail.com (L.L.);
mrk5415@psu.edu (M.R.K.); ian.bird@jhuapl.edu (I.M.B.); glb5150@psu.edu (G.B.); bmj3@psu.edu (B.M.J.)

2 DermBiont, Inc., 451 D Street, Suite 908, Boston, MA 02210, USA
3 Applied Biological Sciences Group, The Johns Hopkins University Applied Physics Laboratory,

Laurel, MD 20723, USA
4 College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
5 Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;

sougat.misra@pitt.edu (S.M.); shc319@pitt.edu (S.K.C.)
6 Department of Biology, Pennsylvania State University, University Park, PA 16802, USA;

miranda.sill@jefferson.edu
7 College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517 602, Andhra Pradesh, India;

nagaram_vinod@yahoo.com (N.V.K.); priyamshiva@gmail.com (A.V.N.S.); dr.babyrambabu@gmail.com (B.R.N.)
8 Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
* Correspondence: skuchipudi@pitt.edu ; Tel.: +1-412-383-1653

Abstract: Zika virus (ZIKV) remains a public health concern, with epidemics in endemic regions and
sporadic outbreaks in new areas posing significant threats. Several mosquito-borne flaviviruses that
can cause human illness, including West Nile, Usutu, and St. Louis encephalitis, have associations
with birds. However, the susceptibility of chickens to ZIKV and their role in viral epidemiology is
not currently known. We investigated the susceptibility of chickens to experimental ZIKV infection
using chickens ranging from 1-day-old chicks to 6-week-old birds. ZIKV caused no clinical signs
in chickens of all age groups tested. Viral RNA was detected in the blood and tissues during
the first 5 days post-inoculation in 1-day and 4-day-old chicks inoculated with a high viral dose,
but ZIKV was undetectable in 6-week-old birds at all timepoints. Minimal antibody responses
were observed in 6-week-old birds, and while present in younger chicks, they waned by 28 days
post-infection. Innate immune responses varied significantly between age groups. Robust type
I interferon and inflammasome responses were measured in older chickens, while limited innate
immune activation was observed in younger chicks. Signal transducer and activator of transcription
2 (STAT2) is a major driver of host restriction to ZIKV, and chicken STAT2 is distinct from human
STAT2, potentially contributing to the observed resistance to ZIKV infection. The rapid clearance
of the virus in older chickens coincided with an effective innate immune response, highlighting
age-dependent susceptibility. Our study indicates that chickens are not susceptible to productive
ZIKV infection and are unlikely to play a role in the ZIKV epidemiology.

Keywords: Zika virus; chicken; innate immune response; STAT2; antibody; host restriction

1. Introduction

Orthoflavivirus zikaense, commonly known as Zika virus (ZIKV), is an arthropod-borne
small enveloped positive-stranded RNA virus belonging to the Flaviviridae family [1]. Ini-
tially identified in 1947, intensified scrutiny of the virus followed a surge in microcephaly
cases associated with a 2015 ZIKV outbreak in Brazil [2]. The significant outbreak and the
severity of linked long-term health consequences, including congenital Zika syndrome
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(CZS), led the World Health Organization (WHO) to declare a Public Health Emergency
of International Concern on 1 February 2016 [3–6]. While reported cases of ZIKV virus
disease globally declined starting in 2017, it is crucial to note that Zika virus transmission
persistently continues at lower levels in various countries across the Americas and other
endemic regions [7]. Alarmingly, in 2019, the first instances of Zika virus disease locally
transmitted by mosquitoes were reported in Europe, signifying an ongoing threat. Further-
more, in 2021, ZIKV outbreaks were identified in India [8], emphasizing the persistent and
global nature of this health concern [9–11].

ZIKV is primarily transmitted through the bite of a mosquito. Several flaviviruses
that are transmitted by various species of Culex mosquitoes and can cause human illness
are associated with birds, including West Nile virus (WNV), Usutu virus, and St. Louis
encephalitis virus [12–14]. To date, no Culex species has been unequivocally confirmed
as a competent vector for ZIKV transmission [15–21]. The two major vectors of ZIKV
for humans, Aedes aegypti and Aedes albopictus, have a wide and expanding geographical
range across all continents except Antarctica [22–24]. Although they have feeding pref-
erences for mammals, these mosquitos are known to forage on avian species, including
chickens [25–29]. Chicken-originated bloodmeals have been identified sporadically in
Ae. aegypti captured in urban settings in Africa and Asia, appearing in 0.7 to 1.4% of tested
mosquitoes [29,30]. Ae. albopictus captured in urban and suburban locations in North
and South American had similar rates (1.5 to 1.7%) [26,31]. In one study, Ae. aegypti held
bloodmeals with mixed human and chicken origins [29]. Domestic chickens are kept by
humans throughout the world, ranging from small backyard flocks to large farms. Close
contact with humans and exposure to potential and known vectors of ZIKV have raised
the question about susceptibility of chickens to ZIKV. If chickens are susceptible to ZIKV,
the possibility for ZIKV transmission from chickens to humans could also exist, albeit with
very low risk.

A high proportion of ZIKV infections are asymptomatic in humans, as suggested by
a high seroprevalence in communities despite low case numbers [32]. Since 2007, ZIKV
outbreaks have been more commonly reported, aided in part by improved specificity of
serological assays and molecular diagnostics [33–35]. Most symptomatic patients exhibit
mild symptoms, such as general malaise, low fever, and myalgia. Starting in 2013, ZIKV
infections became increasingly associated with neurological symptoms and fetal develop-
ment disruptions [2,36–39]. Patients reported experiencing Guillan Barre’ syndrome, which
is characterized by progressive weakness caused by damage to peripheral nerves [39,40].
CZS is the most concerning condition associated with Zika virus infection. When mothers
are infected during pregnancy, vertical transmission of ZIKV to the fetus can cause direct
neurological damage and loss of intracranial volume [38,41,42]. Clinical features of CZS can
include microcephaly, ocular and aural abnormalities, and musculoskeletal dysfunction.
CZS is associated with delayed neurodevelopment and reduced life expectancy in affected
children [43–48].

ZIKV is maintained via a sylvatic cycle and re-emerges periodically in endemic regions
when the mosquito-transmitted virus is acquired by a human [49]. Human–mosquito–
human transmission subsequently drives local sustained transmission, although very rare
direct human-to-human sexual transmission is also possible [50]. Several non-human
primates likely serve as reservoirs or amplifying host species [49,51,52]. Non-human
primates shown to be susceptible to experimental infection include native species of Africa,
Asia, and the Americas [53–59]. Other immunocompetent animals shown to support
ZIKV infection include some guinea pigs and Syrian golden hamsters [60,61]. Fetuses
and newborn pups of immunocompetent mice are also susceptible [62,63]. In susceptible
animal models, acute irritability, lethargy, and fever are common, but often infection is
not accompanied by clinical signs [56–58]. Viremia is typically observed for 2 to 10 days
on average after inoculation [53–59]. In some animal models, viral RNA persists in saliva,
urine, feces, and other body fluids for weeks or months [53–59]. ZIKV is detectable by RT-
PCR in the spleen, the brain, and several other tissues [53–63]. In contrast, non-susceptible
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species have little or no virus detectable in their blood during the first three days after
inoculation, and ZIKV is not detectable in their tissues [64–66].

Exploration of ZIKV infection in birds is limited. A few historical studies reported
antibodies indicating previous natural infection of wild birds [67,68], and ZIKV-specific
antibodies were detected in a domestic chicken in 2017 [69]. Embryonated chicken eggs
have been known to support ZIKV growth since 1952 [70–73], and a chicken embryo fibrob-
last cell line is permissive to ZIKV [74,75]. Studies in developing chicken embryos have
found that experimental ZIKV infection results in productive infection and developmental
abnormalities. Two studies have examined small groups of juvenile and adult chickens for
viremia and seroconversion following ZIKV inoculation [65,66]. Limited tissue sampling
was conducted when the animals were euthanized 3 weeks after inoculation. Neonatal
mice succumb to ZIKV infection, while older mice are resistant to infection [62,76], and
similarly, 1-day-old chicks are more susceptible to WNV than 1-week-old chickens [77]. A
large-scale study of chicken susceptibility to ZIKV is still lacking, and the susceptibility of
neonatal chickens is unexplored. Through a series of experimental cohorts, we tested eight
cohorts of chickens of various ages to measure their susceptibility, identify clinical features
and pathology, better understand seroconversion, and observe factors that may affect their
vulnerability to ZIKV infection.

2. Materials and Methods
2.1. Animals

All animal studies were approved by the Pennsylvania State University Institu-
tional Animal Care and Use Committee, protocol 47484. Day-old straight-run chicks and
5–6-week-old pullets (white Leghorn) were purchased from a local approved egg-laying
poultry operation. For some experiments on day-old animals, chicks were hatched in the
University vivarium from fertilized eggs purchased from the same operation. Chickens
were housed in heated negative-pressure HEPA-filtered poultry isolators (PlasLabs) in an
ABSL-2 facility and were provided fresh water and commercial poultry feed (DuMor 20%
chick starter/grower) ad libitum.

2.2. Virus Propagation, Inactivation, and Quantification

ZIKV PRVABC59 (Human/2015/Puerto Rico) was obtained from BEI Resources and
was propagated in Vero cells (ATCC CCL-81). Virus-containing supernatants were collected
from inoculated cells after 5–7 days of culture, centrifuged for 10 min at 3200× g, and
aliquoted and stored at −80 ◦C until use. Infectivity was assessed by 50% tissue culture
infectious dose on Vero cells and quantified using the method of Reed and Muench [78].
Killed ZIKV was generated by exposing the virus to UV radiation for 1 h before aliquoting
and freezing. Inactivation was confirmed by three blind passages in Vero cells.

2.3. Infection Experiments

All animal infection studies were conducted in BSL-2 facilities and approved by the
Penn State University Institutional Animal Care and Use Committee (IACUC), protocol
47484. Chickens were inoculated with an injection of 50 µL in the lateral neck with a
25G needle using either subcutaneous or intravenous (jugular vein) inoculation. Virus was
diluted to the appropriate concentration in DMEM before inoculation, and mock-infected
birds received DMEM. Birds were monitored for the following clinical signs: lethargy,
decreased appetite, conjunctivitis, postural abnormalities suggestive of joint and/or muscle
pain, weight loss, and neurological signs. In some experiments, cloacal and tracheal swabs
were collected and placed in brain heart infusion broth before storing at −80 ◦C. In some
experiments, blood samples were collected from the jugular vein. At designated timepoints,
birds were euthanized, and blood and tissues were collected. Blood samples were collected
into uncoated (for serum) or K2 EDTA-coated (for plasma) Vacuette tubes (Greiner Bio-One,
Monroe, NC, USA). Serum (after clotting) or plasma were separated from blood samples
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by centrifugation at 1500× g at 4 ◦C for 20 min, then stored at −80 ◦C. Tissues were placed
in RNALater, stored for 24 h at 4 ◦C, removed from RNALater, and stored at −80 ◦C.

2.4. Viral RNA Extraction

Viral RNA was extracted from tissue homogenates, swabs, and plasma using Applied
Biosystems MagMAX Pathogen RNA/DNA kit. Tissues were combined with phosphate-
buffered saline (20% w/v) and homogenized in M tubes using the RNA 2.1 program on a
gentleMACS Dissociator. Tissue homogenates were then centrifuged at 1000× g for 5 min
at 4 ◦C, and the supernatants were used for RNA extraction following the kit’s whole-blood
protocol. The low-cell content protocol was followed for plasma, serum, vitreous humor,
and tracheal and cloacal swabs. Extracted viral RNA was stored at −80 ◦C.

2.5. Total RNA Extraction from Spleen

To extract total RNA, tissue homogenates from spleens (100 µL) were combined
with 600 µL Buffer RLT Plus (Qiagen, Germantown, MD, USA) and passed through a
QIAshredder spin column according to the manufacturer’s instructions. The flow through
was processed with the RNeasy Plus mini kit (Qiagen). Recovered total RNA was quantified
with a NanoDrop Lite (Thermo Fisher Scientific, Waltham, MA, USA) and stored at −80 ◦C
until use.

2.6. Host Gene qPCR

The qScript cDNA Synthesis Kit (Quantabio, Gaithersburg, MD, USA) was used to pro-
duce cDNA from 500 ng of total RNA per sample according to the manufacturer’s instruc-
tions. Quantitative PCR for host gene amplification was performed with the Power SYBR
Green Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) using a 1:10 dilution of
cDNA and previously described primer sets [79–82], as shown in Supplementary Table S1.
The PCR reaction was run at 95 ◦C for 10 min followed by 40 cycles of 95 ◦C for 15 s and
60 ◦C for 60 s. Melt curve analysis was performed for each PCR run to ensure a single peak
indicating a single amplicon resulting from the reaction. Using BestKeeper [83], 18S was
selected as the house-keeping gene for relative quantification of gene expression using the
method of Pflaffl [84]. Differential expression of genes was determined by calculating the
relative expression value ratio of each ZIKV-infected animal to the mean of mock-infected
animals at the corresponding timepoint. Welch’s two-tailed t-test was conducted on data
from the two age groups at each timepoint for each gene to determine p-values.

2.7. Viral qRT-PCR

Detection of ZIKV RNA was performed using SuperScript III Platinum One-Step
qRT-PCR Kit on an Applied Biosystems 7500 Fast Real-Time PCR machine on extracted
viral RNA from plasma, tissue samples, and swabs using the primers and probe listed in
Supplementary Table S2 [85]. The RT-PCR reaction was run at 50 ◦C for 30 min, 95 ◦C for
2 min, and 45 cycles of 95 ◦C for 15 s and 55 ◦C for 30 s. For relative quantification of ZIKV
viral RNA, 100 µL of virus at 4.22 × 107 TCID50/mL was extracted following the procedure
for tissue homogenates. This standard RNA was serially diluted 10-fold in nuclease-free
water and used in the qRT-PCR reactions with unknown samples.

2.8. Serological Assays

An in-house enzyme-linked immunosorbent assay (ELISA) was used to detect anti-
ZIKV chicken antibodies in serum. Approximately 5275 TCID50 units of ZIKV PRV-
ABC59 diluted in bicarbonate/carbonate buffer (pH 9.4) were coated on a Nunc MaxiSorp
96-well plate and incubated overnight at 4 ◦C. After washing with wash buffer (Dulbecco’s
phosphate-buffered saline (DPBS) with 0.05% TWEEN 20) and overnight incubation with
blocking buffer (wash solution with 2% bovine serum albumin (BSA)), serum samples
diluted 1:50 in blocking buffer were tested in triplicate and incubated for 1 h at room
temperature. Plates were washed, incubated with alkaline phosphatase (AP)-labeled rabbit
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anti-chicken IgY (Invitrogen, 1:20,000 dilution) for 1 h at room temperature, washed, and
developed using the Pierce pNPP Substrate Kit for 30 min before reading absorbance at
405 nm on a Synergy HTX plate reader (BioTek). Using a subset of samples, the performance
of the in-house ELISA was compared with the previously-described ZIKV-specific ELISA
and plaque reduction neutralization assay (PRNT) [86]. Although results were consistent
between the two ELISA assays, no neutralizing antibodies were detected by PRNT.

3. Results
3.1. ZIKV Does Not Create a Productive Infection in Juvenile Chickens

To investigate if chickens could be susceptible to ZIKV, we performed experimental
inoculation of commercial layer chicks (4 days old) and pullets (6 weeks old). Animals
were inoculated with 105 TCID50 of ZIKV PRVABC59 (Asian lineage) subcutaneously (SQ)
in the lateral neck. At 5 and 10 days following inoculation, no plasma viremia was detected
in the chickens (Figure 1A,D,G). Throughout the study period, no virus was detected in
samples from oropharyngeal swabs and cloacal swabs that were collected daily. Chickens
did not exhibit any clinical signs associated with ZIKV infection. No ZIKV was detected by
RT-PCR in the brain, spleen, liver, kidney, pancreas, lung, eye, or duodenum.
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Figure 1. Plasma viremia of chickens inoculated with Zika virus. Chickens of varying ages (6 weeks
old (w.o.), 4 days old (d.o.) and 1 (d.o.) were experimentally inoculated subcutaneously (SQ) or intra-
venously (IV) with varying TCID50 doses of Zika virus (ZIKV) or vehicle (mock). (A–C) Experimental
design of three separate infection experiments. (D–H) ZIKV viral RNA in plasma from animals
euthanized at selected timepoints was quantified by real-time RT-PCR. Relative equivalent units
(REUs) from a TCID50 standard are shown for individual animals from Experiment (Exp) 1 (D,G),
Exp2 (E,H), and Exp3 (F). Dashed lines indicate the limit of detection, horizontal lines represent mean,
and vertical error bars indicate standard error of the mean.
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In a second experiment, 4-day-old chicks and 1-day-old chicks were inoculated intra-
venously in the external jugular vein with 107 TCID50 ZIKV PRVABC59, and viral RNA
in plasma was measured from animals sacrificed daily from days 1–5 post-inoculation
(Figure 1B). This high dose of ZIKV corresponds to the maximum level which has been
shown to be transmitted in experimental mosquito feeding studies [15]. On each of the
5 days after inoculation into 1-day-old chicks, ZIKV RNA was detectable in the plasma
of 50% or more of tested chicks (Figure 1E). At 3 days post-inoculation (dpi), ZIKV RNA
was detected in the plasma of only 50% of 4-day-old chicks and in 25% of chicks at 5 dpi
(Figure 1H). This result in 4-day-old chicks with 107 TCID50 was very similar to that from
the previous cohort of 4-day-old chicks inoculated with 105 TCID50, in which no ZIKV
was detected in the plasma at 5 dpi. Overall, these results suggest a dose-dependent and
age-dependent susceptibility to ZIKV in chickens, with differences observed between 1-day-
and 4-day-old chicks. However, in both age groups, no clinical signs were observed. The
finding for 1-day-old chicks was confirmed in a third experiment with a larger number
of individuals (Figure 1C); viral RNA was detectable in the plasma of a majority of these
chicks at both 3 and 5 dpi (Figure 1F).

Since clinical signs of ZIKV infection in humans can take up to two weeks to manifest,
additional cohorts of chickens were observed for a longer period following SQ inoculation
with 105, 106, or 107 TCID50 of ZIKV PRVABC59 (Figure 2). Animals of 1 day old, 4 days
old, and 6 weeks old were followed for up to 16–23 days post-inoculation. Throughout
this longer period, no clinical signs or gross pathologies were observed in any age group.
In the 6-week-old chickens, no virus was detected in the plasma (Figure 2D) or tissues
at early (day 1–3 post-inoculation) or late (days 7 and 16 post-inoculation) timepoints.
Chicks inoculated at 4 days old with up to 107 TCID50 ZIKV had no detectable virus in the
plasma (Figure 2E) or tissues at 14 or 21 days post-inoculation. Similar results were found
in chicks inoculated at 1 day old at days 16 and 23 post-inoculation, despite verification
that inoculation with 107 TCID50 resulted in plasma viremia at 2 dpi (Figure 2F). At 2 dpi,
ZIKV RNA was detected in crop, liver, brain, kidney, and spleen of 1-day-old chicks, but
not in the duodenum, heart, lung, or eye tissue of the same individuals (Table 1).

Table 1. Viral RNA detection in tissues at 2 days post-inoculation of 1-day-old chicks inoculated with
107 TCID50 units of Zika virus.

Tissue Chick A Chick B

crop a 7.38 × 105 1.72 × 105

liver 5.20 × 104 3.16 × 104

brain 1.45 × 104 -
kidney 8.42 × 103 -
spleen 4.71 × 103 -
lung - b -
heart - -

duodenum - -
eye - -

a Limit of detection in relative equivalent TCID50 units/gram: brain, crop, eye, and duodenum: 1.53 × 103; liver,
lung, and heart: 3.07 × 103; kidney: 1.39 × 103; spleen: 2.55 × 103. b indicates no viral RNA detected.

Long-term shedding of ZIKV in body fluids, including urine, stool, tears, and saliva,
is common in ZIKV infections in humans and monkeys. Tracheal and cloacal swabs
collected at 23–34 dpi from chickens inoculated at 1 day old tested negative for ZIKV RNA.
Equivalent samples collected at 16 dpi in chickens inoculated at 6 weeks old also tested
negative for ZIKV RNA, as did eye tissue and vitreous humor. These results suggest that
ZIKV is not perpetuated in the reservoir tissues of chickens.

ZIKV-specific serum IgY levels from ZIKV-infected animals were indistinguishable
from those of mock-infected chickens, except in 4-day-old and 1-day-old chicks at 21–23 dpi,
where a slight increase in antibodies was observed (Figure 2G–I).
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Taken together, these results indicate that juvenile chickens quickly clear ZIKV so that
no productive infection is produced. The results also indicate that chicks are potentially
susceptible to transient productive infections which are rapidly cleared.
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Figure 2. Viremia and antibody response in chickens following inoculation with Zika virus. Chickens
aged 6 weeks (6 w.o.), 4 days (4 d.o.), or 1 day (1 d.o.) were inoculated subcutaneously with
vehicle (mock) or varying TCID50 doses of Zika virus (ZIKV) and euthanized at selected timepoints.
(A–C) Experimental design of three separate infection experiments. (D–F) ZIKV viral RNA in plasma,
quantified by real-time PCR, are shown for individuals in Experiment (Exp) 4 (D), Exp5 (E), and
Exp6 (F) as relative equivalent units (REUs) against a TCID50 standard. Dashed lines indicate the limit
of detection. (G–I) ZIKV-specific IgY antibody levels quantified as fold-change in optical densities at
405 nm (OD405) over mean mock-infected values (dashed line) for Exp4 (G), Exp5 (H), and Exp6 (I)
are shown for individuals. Horizontal lines represent mean, and vertical whiskers indicate standard
error of the mean.

3.2. ZIKV Characterization in 1-Day-Old Chickens

A peak in ZIKV RNA was observed at day 1 after inoculation, followed by a subse-
quent decline, so it was unclear from grouped data whether this observation represented
true infection with ZIKV or simply a decay of input virus following the large inoculum
dose. To explore this further, a cohort of six chicks was inoculated IV with ZIKV at one day
old, and plasma was collected every two days (Figure 3A). Several chicks had peak viremia
at 2 days post-inoculation (Figure 3B). The volume of plasma obtained and tested from
chick Ha-22 on 2 dpi was 67–88% less than from other chicks, which may explain why
this chick had undetectable virus at 2 dpi but detectable virus at 4 dpi (Figure 3B). On
one or more days, the serum ZIKV-specific IgY from all ZIKV-inoculated chicks in this
tracked cohort was at least 20% higher than that in all mock-inoculated chicks at the same
timepoint. The average fold-change in anti-ZIKV serum IgY from ZIKV-infected chicks
was significantly higher than from mock-infected controls through 21 dpi (Figure 3).
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Figure 3. Longitudinal viremia and antibody response in 1-day-old (1 d.o.) chickens inoculated
with Zika virus. Chickens were inoculated with 107 TCID50 units of Zika virus (ZIKV), and blood
was collected for quantification of plasma viremia (B) and/or serum anti-ZIKV IgY antibodies at
specified timepoints. (A) the experimental design of this experiment (Exp7). (B) ZIKV viral RNA
in plasma quantified by real-time PCR relative equivalent units (REU) against a TCID50 standard
are shown for ZIKV-inoculated animals Ha22-27 individually and mock-infected animals as mean.
(C) ZIKV-specific IgY antibody levels quantified as fold-change in optical densities at 405 nm (OD405)
over mean mock-infected values (dashed line). Fold-change values are shown for all individuals
in ZIKV- and mock-inoculated groups. Dashed line represents mean fold-change value of ZIKV-
inoculated individuals.

Further indication of a transient low-level productive infection of ZIKV in young
chicks came from analyzing the ZIKV RNA levels in tissues from another cohort of chicks
inoculated with 107 TCID50 ZIKV PRVABC59 at 1 day old. ZIKV RNA was detected in
the brain, spleen, crop, kidney, duodenum, and liver at 1 dpi (Figure 4, Supplementary
Figure S1). Productive viral replication in tissues was indicated by an increase in viral
RNA in the duodenum, liver, brain, spleen, and crop between days 2 and 3. Furthermore,
animals inoculated with an equivalent amount of inactivated ZIKV showed no detectable
ZIKV RNA in any tissues or plasma at any timepoint. No viral RNA was detected at any
timepoint in the pancreas tissue. ZIKV RNA was detected in the plasma up to 5 dpi but was
undetectable (<58 TCID50/mL) by 7 dpi. ZIKV RNA could be detected in the spleen, brain,
and crop of at least one chick up to 10 dpi but was undetectable (<53–319 TCID50/spleen,
<1755–2792 TCID50/brain, and <approx. 771–1409 TCID50/crop) by 14–16 dpi.

3.3. Differential Gene Expression

To characterize the innate immune response to ZIKV in chickens, we examined the
expression of a selected set of innate immune response genes and compared the gene
expression levels of ZIKV-inoculated chickens with those of uninfected controls. In the
spleens of chickens infected at 6 weeks of age, the initial response at 1 dpi was character-
ized by reduced expression of antiviral genes OAS-L and MDA5 and type-1 interferons
IFN-β and IFN-α (Figure 5), which could represent migration of immune cells from the
spleen to peripheral sites. By day 3, these genes, as well as proinflammatory IL1β, were
highly upregulated compared with mock-infected animals. Interferons, IL1β, and MDA5
remained highly upregulated through 14 dpi. In contrast, spleens from 1-day-old chicks
inoculated with ZIKV showed equivalent or slightly downregulated expression of these
genes throughout the study period. A much greater level of OAS-L expression was ob-
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served at 1 dpi, and OAS-L expression was strongly downregulated at 3 dpi compared
with mock-infected controls.
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Figure 4. Viral RNA detection in tissues of 1-day-old (1 d.o.) chickens inoculated with live or killed
Zika virus. Chickens were inoculated with 107 TCID50 units of infectious Zika virus (ZIKV; live)
or UV-inactivated ZIKV (killed) or vehicle (mock), and blood and tissues were collected following
euthanasia at selected timepoints. (A) The experimental design of this experiment (Exp8). (B–D) ZIKV
viral RNA quantified by real-time PCR relative equivalent units (REUs) against a TCID50 standard
are shown. The median of animals per timepoint is shown by height of bar graph. Symbols represent
measurements from individual animals in plasma (B), spleen (C), crop (D), and brain (E). Open
symbols represent individuals with undetectable viral RNA, at or below the limit of detection (LOD);
the position of the symbol indicates the LOD. In B and C, LOD was not uniform across all specimens
due to volume or mass variability. In D and E, LOD was equivalent across all specimens and is shown
as a dashed line. All specimens tested from the killed inoculum group had undetectable viral RNA.

Together, these results indicate an activated innate antiviral gene response in older
chickens, which led to rapid control of ZIKV. In contrast, young chickens did not mount a
strong antiviral response, thus allowing ZIKV to persist and replicate for multiple days
before adaptive immune responses enabled virus clearance.
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Figure 5. Gene expression of chickens inoculated with Zika virus. RNA of selected genes was
measured against RNA from 18S by real-time PCR using tissue homogenates of 6-week-old (6 w.o.)
and 1-day-old (1 d.o.) chickens inoculated with Zika virus (ZIKV) or mock-inoculated. Genes
evaluated were (A) interferon alpha (IFNα), (B) interferon beta (IFNβ), (C) interleukin 1 beta (IL1β),
(D) melanoma differentiation-associated protein 5 (MDA5), and (E) 2′-5′-oligoadenylate synthetase-
like protein (OASL). Relative expressions of ZIKV-inoculated compared to mock-inoculated chickens
are shown, with height of bar indicating mean of 2 to 4 animals per timepoint. The 6 w.o. specimens
were from Exp4 (Figure 2); 1 d.o. day 16 post-inoculation specimens were from Exp6 (Figure 2), and
day 1–7 specimens were from Exp8 (Figure 4).

4. Discussion

This study adds to body of evidence indicating that chickens are not susceptible to
ZIKV infection. The present study demonstrates that chicks between the ZIKV-susceptible
(unhatched) and resistant (post-natal) periods can experience a viremic but unproductive
infection when administered a high dose of ZIKV. Previous studies on chickens inoculated
with the ZIKV-related flavivirus WNV also demonstrated age-dependent susceptibility to
infection. While WNV typically does not cause clinical disease in poultry, they do serve as
a sentinel species for the virus [87]. Susceptibility to WNV was also found to vary between
different ages of young chickens, with distinct outcomes of inoculation with WNV observed
between 1-day- and 1-week-old chicks. In one study, older chicks demonstrated lower viral
loads and no clinical signs, whereas younger chicks displayed severe neurological signs
and died within as little as 5 dpi [77]. Similar results have been observed in mice with
ZIKV: following the neonatal period (defined as 7 days), the lethality and clinical signs
associated with ZIKV infection are dramatically reduced, as shown by Li et al. [62].

In susceptible hosts, ZIKV NS5 protein causes NLRP3 inflammasome activation and
subsequent production of IL-1β, which can promote an antiviral immune state [88–90]. A
major driver of host restriction to ZIKV susceptibility is STAT2, which is targeted for degra-
dation by ZIKV NS5 [61,91–93]. Loss of STAT2 activity causes inhibition of type I interferon
and interferon-stimulated genes. The chicken STAT2 protein sequence is divergent from
human and non-human primate STAT2 (Supplementary Figure S2A). Only one-third of
the amino acid residues involved in human STAT2 binding to ZIKV NS5 are shared by
chicken STAT2 [94] (Supplementary Figure S2B). The majority of the mismatched amino
acids (14 residues) are located in the coiled-coil domain (CCD), which is indispensable for
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the NS5-directed targeting of human STAT2 for proteasomal degradation [95]. Replacement
of human STAT2 CCD with mouse CCD prevented targeting of the chimeric STAT2 for
degradation during ZIKV infection [95]. Chicken STAT2 CCD has low homology with
human CCD, which is reflective of the overall low homology between the two species’
STAT2 amino acids and overall structure, as predicted by AlphaFold [96] (Supplementary
Figure S2B,C). It is therefore likely that chicken STAT2 is not targeted by NS5. This may
explain the type I interferon response observed in 6-week-old chickens and the subsequent
resistance to ZIKV infection.

While the differential innate immune response of the two groups compared in this
study may be impacted by the differences in the magnitude of the ZIKV input, the innate
response of the neonatal chick immune system is underdeveloped compared with 4- to
6-week-old chickens [97] and is probably the greatest factor causing the lack of interferon
and IL1β gene activation in 1-day-old chicks following ZIKV exposure. The single upregu-
lated gene observed in 1-day-old chickens was OASL. OASL is induced by multiple viral
infections in chicken [98], and studies of WNV infection with recombinant chicken OASL
indicate flavivirus-targeted host-restriction activity [99,100]. Possibly, the young chicks
cleared the virus through interferon type 2 or 3 responses since OASL can be induced by
these mechanisms. These possibilities will require further exploration.

In the present study, the presence of infectious or replicating virus was not assessed
in the blood or tissue, so it is possible that the detected ZIKA RNA represents input virus.
However, we observed an increase in the maximum viral RNA copy number in the spleen
and crop between days 2 and 3 post-inoculation (Figure 4), and no viral RNA was detected
in birds that were administered an equivalent number of UV-inactivated ZIKV particles.
Another limitation of the present study was the lack of perfusion to remove blood before
tissue collection. Therefore, the ZIKV RNA detected in the tissues may represent virus
present in the blood. At later timepoints, this scenario is unlikely because ZIKV RNA
was not observed in the blood plasma beyond 5 dpi. In Experiment 6, no viral RNA was
detected in the heart tissue despite observing viral RNA in the plasma at the same timepoint
(Figure 2F and Table 1). Viral RNA in the heart tissue was not assessed in the subsequent
experiments 7 and 8. Additionally, several factors that are known to influence ZIKV
tropism, pathogenicity, and severity were not tested in this study. These include inoculation
using vector-generated virus (i.e., mosquito bite or virus propagated in mosquito cells) and
injection at other body sites [76,101–103].

In summary, our results strongly suggest that chickens do not have the potential
to play a role in the ZIKV transmission cycle, as either a reservoir or an accidental host.
Additionally, ZIKV does not appear to present a health threat to chickens or individu-
als closely interacting with poultry. Chickens would likely be poor sentinels for ZIKV
since ZIKV-specific antibody levels were only found in young animals who received high
amounts of input virus, and even these were quite low, which is consistent with previous
reports [65,66].

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/v16040569/s1: Table S1: Primers used for gene expression experiments;
Table S2: Primers and probe used for Zika virus RNA detection; Figure S1: Viral RNA detection in
additional tissues of 1-day-old (1 d.o.) chickens inoculated with live or killed Zika virus. Figure S2: STAT2
protein comparison between chicken, human and mouse.
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