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Abstract: The CRISPR/Cas9 system is widely used to manipulate viral genomes. Although Alpha-
herpesvirinae genomes are large and complicated to edit, in recent years several Pseudorabies virus
(PRV) mutants have been successfully generated using the CRISPR/Cas9 system. However, the
application of CRISPR/Cas9 editing on another member of alpha herpesviruses, bovine herpesvirus-1
(BHV-1), is rarely reported. This paper reports a rapid and straightforward approach to manipulating
herpesviruses genome using CRISPR/Cas9. The recombinant plasmids contained the left and right
arm of the thymidine kinase (TK) gene of PRV or of the glycoprotein I (gI) and glycoprotein E (gE) of
BHV-1. Upon the cleavage of the TK or gIgE gene by Cas9 protein, this was replaced by the enhanced
green fluorescence protein (eGFP) by homologous recombination. With this approach, we generated
recombinant TK-/eGFP+ PRV and gIgE-/eGFP+ BHV-1 mutants and then proceeded to characterize
their biological activities in vitro and in vivo. In conclusion, we showed that alpha herpesvirus,
including PRV and BHV-1, can be rapidly edited using the CRISPR/Cas9 approach paving the way
to the development of animal herpesvirus vaccines.
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1. Introduction

The alphaherpesvirinae subfamily contains human herpes simplex viruses (HSV) types
1 and 2, simian agent 8 (SA8) virus, monkey B virus [1], bovine herpesviruses (BHV),
pseudorabies virus (PRV), equine herpesvirus (EHV), varicella-zoster virus (VZV) and
Marek’s disease viruses (MDV). The members of this subfamily can infect various animal
species, have a short replication cycle, spread quickly and can establish lifelong latent
infections [2]. Among them, animal herpes viruses cause substantial economic losses
to husbandry [3]. In recent years, new virulent strains have emerged [4–6], and it is
crucial to design novel vaccines to control them. In addition, owing to the genetic stability
of their large double-stranded DNA (dsDNA) genome, and the presence of many non-
essential genes that can be replaced by gene insertions [7], alphaherpesvirinae can serve as
the backbone of multivalent vectored vaccines.

Gene editing is widely used to obtain attenuated and/or recombinant vaccine can-
didates through a variety of technologies: homologous recombination [8], zinc-finger
nucleases (ZFNs) [9], transcription activator-like effector nucleases (TALENs) [10] and
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9) [11]. Due to its ease of use, CRISPR/Cas9 has become the first choice
for gene editing. CRISPR is a family of repetitive DNA sequences found in the genomes
of prokaryotes such as bacteria and archaea [12]. These sequences are the remnants of
previous viral infections and can be used by the bacterium to detect DNA from similar
viruses during subsequent infections. A CRISPR sequence can guide the Cas9 enzyme
to recognize and cut specific DNA strands complementary to the CRISPR sequence. The
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CRISPR/Cas9 editing process has a wide range of applications, including fundamental
research, the development of biotechnological products, and the treatment of diseases [13].
CRISPR/Cas9 can also be used to knock out virulence genes of a virus of interest and
cooperate with the homologous recombination machinery to achieve site-directed insertion
of a foreign gene.

Currently, mammalian herpesvirus-based attenuated vaccines most commonly use
the backbone of two viruses: PRV and bovine herpesvirus-1 (BHV-1). PRV, also known as
Aujeszky’s disease virus (ADV) or porcine herpesvirus-1 (SuHV-1), can infect not only its
natural host, pigs, but also cattle, sheep, rabbits and mice [14]. A small number of human
infections with PRV have also been reported in recent years [15]. In pigs, the PRV Bartha
K61 strain can trigger a wide range of humoral and cellular immune responses as well as
be a safe and effective multivalent vaccine backbone [16]. Bartha K61 recombining the GP5
gene of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has been proved to
reduce pathogenic lesions caused by PRRSV infection in vaccinated pigs [17]. BHV-1, also
known as infectious bovine rhinotracheitis virus (IBRV), can cause infectious pustular bursi-
tis (IPB) in bulls and infectious pustular vulvovaginitis (IPV) in cows. Recombinant BHV-1
expressing the E2 protein of bovine viral diarrhea virus (BVDV) could effectively prevent
the infection of two viruses [18]. And the study of bighorn sheep against Mannheimia
haemolytica with a BHV-1-vectored vaccine indicated that BHV-1 is an essential vector for
the immunization of wild animals [19]. Although herpesvirus genomes are complicated
to edit, several PRV mutants have been successfully generated using the CRISPR/Cas9
system in recent years [20–22]. However, the application of CRISPR/Cas9 editing to BHV-1
has not been extensively investigated. Due to the low transfection efficiency of cell lines
that allow BHV-1 to replicate, it is cumbersome [23,24] and slow to construct a recombinant
BHV-1 mutant.

In this study, we used specific approaches to edit different herpes virus (PRV and
BHV-1) genomes via CRISPR/Cas9 and homologous recombination. The enhanced green
fluorescence protein (eGFP) gene was used to replace the thymidine kinase (TK) gene of PRV
or the glycoprotein I (gI) and glycoprotein E (gE) genes of BHV-1. The TK gene, also called
unique long region (UL) 23, was targeted because TK-deficient mutants proved to be highly
attenuated in mice and pigs [25,26]. And the gI and gE genes, also called unique short region
(US) 7 and US8, were targeted since they are complexed with each other and contribute to
virulence [27,28]. The biological characteristics of the obtained candidate vaccine strains
were also evaluated in vitro and in vivo. We have established a technology platform for
alphaherpesvirus gene editing that can be used to rapidly construct genetically engineered
anti-viral vaccines.

2. Materials and Methods
2.1. Cell Lines and Viruses

Human embryonic kidney (HEK293T) cells, baby hamster kidney fibroblast (BHK-21)
cells and Madin–Darby bovine kidney (MDBK) cells were purchased from American Type
Culture Collection (ATCC, Gaithersburg, MD, USA ). All cell lines were maintained in
Dulbecco’s modified medium (DMEM, Gibco, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), 0.1 mg/mL streptomycin
and 100 IU/mL penicillin (Gibco, Grand Island, NY, USA). The PRV Bartha K61 strain was
purchased from Weike Biotech Co., Harbin, China. The BHV-1 Bartha Nu67 strain was
purchased from China Veterinary Culture Collection Center (CVCC, Beijing, China).

2.2. Construction of Recombinant Plasmid and Guide RNAs

The recombinant plasmid pUC-TKLR-eGFP was constructed as illustrated in Figure 1A.
The left and right arms (termed TK-L arm and TK-R arm) were amplified using polymerase
chain reaction (PCR) using Phanta Max Super-Fidelity DNA Polymerase (Vazyme, Nanjing,
China) and 2× GC Buffer (Takara, Beijing, China) from PRV (GenBank accession number:
JF797217.1) genomic DNA. It should be noted that the TK-L arm contains a previously



Viruses 2024, 16, 311 3 of 12

reported TK promotor (TKp) [29]. The eGFP was amplified using PCR from the pEGFP-C1
plasmid. The TK-L arm, eGFP and TK-R arm were then ligated by using overlapping PCR
and cloned into pUC19 plasmid through EcoR I (NEB, Ipswich, MA, USA) and Hind III
(NEB, Ipswich, MA, USA) restriction sites.
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Figure 1. Construction of recombinant plasmids for the generation of PRV and BHV-1 recombinant
mutants. (A,B) Schematic illustration of the donor plasmid sequence used to edit PRV and BHV-1
genome. Red arrows represent the sgRNA cleavage site on the viral genome; the numbers indicate
the genomic regions flanking the target genes; regions between dashed lines indicate the left and
right homology arms that were used to replace the gene of interest with the eGFP reporter. (A) For
PRV, the left arm of the plasmid, upstream of the eGFP gene, contains the predicted endogenous
TK promoter. (B) for BHV-1, since the endogenous promotor for the gI and gE gene is unknown, a
constitutive CMV promotor was inserted directly upstream of the eGFP gene.

The recombinant plasmid pUC-gIELR-eGFP was constructed as illustrated in Figure 1B.
The left and right arms (termed gIE-L arm and gIE-R arm) were amplified using PCR from
BHV-1 (GenBank accession number: KU198480.2) genomic DNA. The CMV promoter
(CMVp)-eGFP box was amplified from the pEGFP-C1 plasmid. The gIE-L arm, CMVp-
eGFP and gIE-R arm were then ligated using overlapping PCR. This PCR product was
cloned into the EcoR I and Hind III -linearized pUC19 plasmid by using the ClonExpressII
One Step enzyme (Vazyme, Nanjing, China).

The guide RNAs (sgRNAs) targeting the TK gene, and gI or gE genes were designed
using the CRISPR Design Tool (https://zlab.bio/guide-design-resources, accessed on
25 October 2017). Two guide RNA sequences were chosen upstream and downstream of
the target region (Figure 1A,B). All guide RNAs were separately synthesized and cloned
into a Bbs I (NEB, Ipswich, MA, USA)-digested pX335 plasmid (Addgene plasmid catalog:
42335). All used primers are listed in Table 1.

Table 1. Primers and sgRNAs used in this study.

Primers and sgRNAs Sequences (5′ to 3′)

TK-L-F AAAACGACGGCCAGTGAATTCAGCACGCTGTGGCCCTCCAG
TK-L-R CGCCCTTGCTCACCATATCCGCTGCCACAACCGCTTCTAC
TK-R-F GACGAGCTGTACAAGTAAATGGAGACCGCGACGGAGGCAAC
TK-R-R GACCATGATTACGCCAAGCTTAGGTTGGCCAGGGTGGCGTC
eGFP-F CGCCCTTGCTCACCATCCCGGCGCGCTTCCGGGCGG
eGFP-R GTTGCCTCCGTCGCGGTCTCCATTTACTTGTACAGCTCGTC

sgRNA-TK1-F CACCGATCTACCTCGACGGCGCCTA

https://zlab.bio/guide-design-resources
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Table 1. Cont.

Primers and sgRNAs Sequences (5′ to 3′)

sgRNA-TK1-R AAACTAGGCGCCGTCGAGGTAGATC
sgRNA-TK2-F CACCGCGCGTCTCCACCGTCGACCT
sgRNA-TK2-R AAACAGGTCGACGGTGGAGACGCGC

TK-check-F TGGCCGGTATTTACGATGCG
TK-check-R GCGCTGATGTCCCCGACGATG

eGFP-check-F CAGTGCTTCAGCCGCTACCC
eGFP-check-R TTCACCTTGATGCCGTTCTTC

gIE-L-F AAAACGACGGCCAGTGAATTCGCGTTTACAATAAACAG
gIE-L-R GATTACTATTAATAACTAGCTAGGAGCAAAGGGG

CMVp-eGFP-F CCCCTTTGCTCCTAGCTAGTTATTAATAGTAATC
CMVp-eGFP-R GATTACTATTAATAACTAGCTAGGAGCAAAGGGG

gIE-R-F CCCCTTTGCTCCTAGCTAGTTATTAATAGTAATC
gIE-R-R GACCATGATTACGCCAAGCTTACGGCGACGACGACGTGTTC

sgRNA-gIE1-F CACCGATCTCCCGCCCCGCGCGGCT
sgRNA-gIE1-R AAACAGCCGCGCGGGGCGGGAGATC
sgRNA-gIE2-F CACCGCGCGCTTGGACTCGCGGGAC
sgRNA-gIE2-R AAACGTCCCGCGAGTCCAAGCGCGC

gI-check-F GTCGAGCTGCTGCGCTACCAC
gI-check-R AAACGCGGCCAAGGGAAAGAC
gE-check-F ACCTGCGTCCCGCCAATAAC
gE-check-R ACCAGTCCCGCGAGTCCAAG

2.3. Cell Transfection

HEK293T cells were seeded in a 6-well plate with 5 × 105 cells per well and the
next day transfected with 2 µg recombinant pUC19-TKLR-eGFP plasmid using TransIT-
LT1 Transfection Reagent (Mirusbio, Madison, WI, USA) following the manufacturer’s
instruction (with a plasmid: reagent ratio of 1:2.5). The activity of the TK promoter was
evaluated by eGFP expression 24 h after transfection.

BHK-21 cells were seeded in a 6-well plate with 5 × 105 cells per well and transfected
with 1 µg PRV genomic DNA using TransIT-LT1 Transfection Reagent (with a plasmid:
reagent ratio of 1:2.5). Cytopathic effects (CPE) were recorded 48 h after transfection.

2.4. Generation of Virus Mutants

BHK-21 cells were seeded in a 6-well plate with 5 × 105 cells per well and co-
transfected with 2 µg PRV Bartha K61 genomic DNA, 1 µg pUC19-TKLR-eGFP plasmid,
1 µg pX335-TK1 plasmid and 1 µg pX335-sgRNA-TK2 plasmid. The cells were monitored
every 12 h post-transfection. When CPE occurred, the cell culture was collected and sub-
jected to three freeze–thaw cycles. The supernatant containing recombinant PRV mutant
was harvested after centrifugation at 13,400× g for 5 min.

HEK293T cells were seeded in a 6-well plate with 5 × 105 cells per well and co-
transfected with 1 µg pUC-gIELR-eGFP plasmid, 1 µg pX335-gIE1 plasmid and 1 µg
pX335-gIE2 plasmid. Simultaneously, the cells were infected with 20 µL of BHV-1 Bartha
Nu67 virus (TCID50 = 5 × 107). After 48 h, the cells were transferred to a 100 mm
dish already containing a confluent monolayer of MDBK cells. When CPE occurred in
MDBK cells, the supernatant containing recombinant BHV-1 mutant was collected as
described above.

2.5. Plaque Purification

The procedure for plaque isolation is summarized in Figure 2. BHK-21 and MDBK cells
were grown to confluency in 100 mm dishes and infected with a 10 times serial dilution of
PRV or BHV-1 mutant for 2 h at 37 ◦C, respectively. The cells were overlaid with a mixture
of 2% low melting point agarose and 2 × DMEM (Procell, Wuhan, China) containing 2%
FBS at 1:1 ratio and incubated at 37 ◦C under 5% CO2. The plates were observed every
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12 h, until green fluorescence was visible. Single plaques of eGFP positive (eGFP+) cells
were then transferred to the 96-well plate on BHK-21 or MDBK monolayers. When eGFP
expression was detected, cells and supernatant were collected for the next round of plaque
purification. This procedure was repeated twice. The obtained recombinant viruses were
termed PRV TK-/eGFP+(PRVmu) and BHV-1 gIE-/eGFP+(BHVmu).
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Figure 2. PRV and BHV-1 recombinant mutant rescue and flowchart of plaque purification. The su-
pernatants containing wild-type and mutant viruses were serially diluted and used to infect BHK-21
or MDBK monolayers in 100 mm dishes. eGFP+ plaques were picked up upon visual identifica-
tion under the microscope and transferred to 96-well plates with BHK-21 or MDBK monolayers
for amplification.

2.6. Identification of Recombinant Viruses by PCR

The PRVmu and BHVmu genomic DNA was extracted using a TIANamp Genomic
DNA kit (TIANGEN, Beijing, China) according to the manufacturer’s instructions, and
used for the PCR amplification of the inserted fragments using primers listed in Table 1 (TK-
check, eGFP-check, gI-check and gE-check primers). The PCR products were sequenced
using Sanger sequencing (GENEWIZ, Suzhou, China).

2.7. Growth Kinetics of Recombinant Viruses

BHK-21 and MDBK cells were used to determine the growth kinetics of the recom-
binant PRVmu and BHVmu viruses, respectively. The BHK-21 cells were infected with
PRV Bartha K61 or PRVmu virus at 0.01 multiplicity of infection (moi). The MDBK cells
were infected with BHV-1 Bartha Nu67 or BHVmu virus at 0.01 moi. At 8, 16, 24, 32, 40, 48,
56 and 64 h post-inoculation, the infected cell cultures were frozen and thawed three times.
Then, the supernatant was collected for virus titration. The viral titers were measured as
the median tissue culture infective dose (TCID50) according to the Reed–Muench method.

2.8. Virus Infectivity in Mice

Five-week-old BALB/c mice (purchased from SPF-Biotech, Beijing, China) were ran-
domly divided into six groups (Groups I-VI). Groups I-III (n = 9 per group) were inoculated
intranasally with 50 µL 5 × 104 TCID50/mL PRV Bartha K61, 50 µL 5 × 104 TCID50/mL
PRVmu or 50 µL DMEM as the negative control, respectively. Groups IV-VI (n = 8 per
group) were inoculated with BHV-1 Bartha Nu67, BHVmu and DMEM using a similar
approach as for Groups I-III. Mice in groups IV-VI were boosted with the same dose and
route 7 days after the first immunization. The weight of the mice was recorded daily. At
14 days post-inoculation, all surviving mice were euthanized and the serum samples were
collected for further analysis.

2.9. Detection of Virus-Specific Antibodies

The production of anti-BHV-1 glycoprotein B (gB) and anti-gE antibodies was evaluated
using enzyme-linked immunosorbent assay (ELISA) (INgezim IBR Compac or gE Compac,
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Ingenasa, Madrid, Spain) according to the manufacturer’s instructions. Briefly, 50 µL/well
diluent and 50 µL/well serum samples were added to the ELISA plates and incubated for
1 h at 37 ◦C. After several washes, the plates were incubated with peroxidase-conjugated
anti-gB or anti-gE monoclonal antibodies (100 µL per well) for 30 min at 37 ◦C. After several
washes, 100 µL/well substrate solution was added and incubated for 15 min at room
temperature in the dark. Then, 100 µL/well stop solution was added and the absorbance
was determined within 5 min using a microplate reader (BioTek, Irving, TX, USA) at
450 nm.

2.10. Statistical Analysis

Data were analyzed with GraphPad prism 7.0 (GraphPad software, USA). The ELISA
results were valid when OD450 of the negative control >0.750 and OD450 of the positive
control/OD450 of the negative control <0.250. The blocking percentage of anti-gB antibodies
was calculated as (OD450 of the negative control—OD450 of the sample)/(OD450 of the
negative control—OD450 of the positive control) × 100%. The blocking percentage of
anti-gE antibodies was calculated as (1—(OD450 of the sample/OD450 of the negative
control)) ×100%. The sample was determined as negative when the blocking rate was <25%
and positive when the blocking rate was >30%. The body weight results were analyzed
through two-way ANOVA followed by a Tukey post hoc test; p < 0.05 was considered
statistically significant.

3. Results
3.1. Identification and Validation of TK Promotor and PRV Rescue from Genomic DNA

To investigate whether the TK promotor (TKp) that was cloned immediately upstream
of eGFP was functional, we monitored eGFP expression (Figure 3A). The green fluorescence
suggested that the inserted TKp was functional and could drive protein expression. Next,
to investigate whether the PRV genome itself could be used to rescue the recombinant
virus, we transfected PRV Bartha K61 genomic DNA into BHK21 cells. CPE were observed
(Figure 3B) suggesting that infectious viruses can be rescued upon transfection of PRV
genomic DNA alone. A similar approach using purified BHV-1 genome did not lead to
virus rescue.
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Figure 3. Identification and validation of TK promoter and PRV rescue from genomic DNA.
(A) Recombinant pUC19-TKLR-EGFP plasmid (Figure 1A) was transfected into HEK293T cells
and eGFP expression driven by the TK promotor was detected after 24 h. (B) PRV Bartha K61 genomic
DNA was transfected into BHK21 cells. The red arrows indicate PRV plaques.

3.2. Construction of Recombinant Viruses Using CRISPR/Cas9 System

To obtain recombinant PRV, we co-transfected the pUC19-TKLR-eGFP plasmid, PRV
Bartha K61 genomic DNA and CRISPR/Cas9 system components containing two sgRNAs,
targeting the genomic regions flanking the TK gene into BHK-21 cells (Figure 4A). To obtain
recombinant BHV-1, we co-transfected the recombinant pUC-gIELR-eGFP plasmid and
two sgRNAs targeting the genomic regions flanking the gIgE gene into HEK293T cells,
followed by infection with BHV-1 Bartha Nu67 virus. HEK293T cells treated in this way
were then transferred onto a MDBK monolayer for recombinant virus replication. When
CPE occurred (Figure 4B), BHK-21 cells or MDBK cells were collected for PCR verification
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with specific primers. The eGFP was inserted between 58,684 bp and 59,677 bp of PRV
Bartha K61 genome leading to the complete removal of TK gene. The CMV promoter-eGFP
box was inserted between 119,115 bp and 122,075 bp of BHV-1 Bartha Nu67 genome, which
lead to the removal of the entire gI gene and 83.2% of the gE gene. The remaining gE
sequence does not lead to the expression of a functional gE protein. After three rounds of
plaque purification (Figure 4C), confirmation via PCR (Figure 4D) and Sanger sequencing,
the purified recombinant PRV TK-/eGFP+ virus and the BHV-1 gIE−/eGFP+ virus were
successfully constructed.
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Figure 4. Construction and purification of recombinant PRV or BHV-1. (A) Schematic illustration
of the strategy used to rescue PRV and BHV-1 mutants. The viral genomic DNA was transferred
into cells via transfection or viral infection; the presence of CRISPR/Cas9 components, including the
two sgRNA flanking the target gene, leads to genome editing in which the reporter gene present
in the plasmid replaces the target gene in the viral genome by homologous recombination. (B) A
plaque of BHV-1 mutant on MDBK cells. The HEK293T cells which contained wild-type BHV-1 and
mutant BHV-1 were transferred onto MDBK monolayer, then CPE occurred. (C) Green fluorescence
on infected MDBK cells. All cells were infected by the purified virus mutant. (D) PCR detection
of PRV and BHV-1 mutant. The target genes were amplified in the wild-type viruses but not
in the mutants.

3.3. Growth Kinetics of the Recombinant Viruses

To determine whether TK deletion and gIgE deletion affect PRV and BHV-1 replication,
respectively, we compared the replication of the recombinant and wild-type viruses. We
found that the recombinant PRVmu virus replicated slower than the parental PRV in the
first 24 h but ultimately reached the same titers (Figure 5A). The recombinant BHVmu virus
displayed similar growth kinetics to the parental BHV-1 (Figure 5B).
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hoc test.

3.4. Evaluation of Virus Attenuation

To evaluate the infectivity and virulence of PRVmu and BHVmu viruses in vivo, mice
were infected with the recombinant viruses. To test whether the PRV TK-/eGFP+ was
attenuated, we monitored the mice’s weight and survival. The results showed that the
wild-type PRV Bartha K61 is lethal to mice (Figure 6A), causing notable weight loss in
surviving mice at 6 and 7 days post infection (Figure 6B). However, the PRVmu-infected
mice had a 78.75% survival rate (2 out of 9), with weight loss observed only in a few mice
from 7 days post infection onward. These suggested that PRV was effectively attenuated
by the deletion of the TK gene.

To test whether the BHV-1 gIE-/eGFP+ was attenuated, we measured the weight
and the serum antibodies production of infected mice. In this experiment, all infected
mice survived. Small differences in mouse body weight were observed only at 2 days
post infection between the wild-type and the non-infected or BHVmu-infected group
(Figure 6C).

Serological analysis showed that anti-gE antibodies were detected only in the serum
of mice infected with BHV-1 Bartha Nu67 (Table 2). The absence of anti-gE antibodies in
BHVmu-infected mice further confirmed that the gE gene successfully mutated leading to
a lack of antigen expression. It should be noted that anti-gB antibodies were detected in the
serum of mice infected with the wild-type BHV-1 and with the BHVmu virus. Since gB is the
most highly conserved glycoprotein and an important protective antigenic protein in BHV-
1 [30], this finding indicated that the recombinant BHVmu virus was still immunogenic
and could trigger an immune response similar to that triggered by the wild-type virus.

These results revealed that the PRV and BHV-1 genome was successfully edited using
CRISPR/Cas9 system, leading to recombinant mutants that can serve as safe potential
vaccine candidates.

Table 2. Block ELISA OD values of gB and gE antibodies.

OD450 gB gE

Positive 0.1032 + 0.1028 + 0.0821 + 0.1091 +
Negative 1.4816 − 1.4900 − 1.0886 − 1.0786 −
DMEM 1.3086 − 1.3156 − 1.0434 − 0.9498 −
BHV-1 0.2086 + 0.1647 + 0.3496 + 0.1499 + 0.6639 + 0.6843 + 0.5320 + 0.6685 +

BHVmu 0.3511 + 0.2285 + 0.3885 + 0.3517 + 0.9930 − 1.0471 − 1.0420 − 1.0128 −
Positive was shown with + and negative was shown with −.
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Figure 6. Mice weight and survival rate. (A) The survival fraction of mice after PRV Bartha K61 or
PRVmu infection. The mice that lost more than 25% of their weight were considered dead. (B) The
body weight of mice after PRV Bartha K61 or PRVmu infection. Data were presented as median from
min to max with all the points. (C) The body weight of mice after BHV-1 Bartha Nu67 or BHVmu
infection. Data were presented as median from min to max with all the points. The significance was
analyzed via two-way ANOVA and shown with *.

4. Discussion

Genetic manipulation is widely used to study virus biology and develop new vac-
cines. However, alphaherpesviruses are difficult to manipulate due to their large and
complex genome. This study shows that the alphaherpesvirus genome can be rapidly
edited using a CRISPR/Cas9 system, through the co-transfection of specific sgRNAs and
recombinant plasmids.

Current methods for the construction of attenuated virus strains are based on the
knock-out of one or more genes in the viral genome by homologous recombination. To
increase the efficiency of traditional homologous recombination, we made use of the
CRISPR/Cas9 system. CRISPR/Cas9 technology has been widely used in biological sys-
tems, such as yeast [31], insects [32], and mammals [33].

Despite its size, the PRV genome has been previously edited using CRISPR/Cas9
technology to knock out genes, generate live attenuated vaccines, and develop useful tools
for virus biology studies [21,22,34,35]. Here, we have successfully deleted the TK gene of
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PRV by combining the CRISPR/Cas9 system with homologous recombination. Notably, we
used the viral TK promoter to drive the expression of downstream reporter genes. Using the
viral promoter instead of a foreign promoter not only shortens the length of the recombinant
plasmid, making the plasmid easier to construct, but it also makes the generated PRVmu
more suitable for subsequent applications as a recombinant vaccine vector. Despite the
clear attenuation of the PRV mutant virus, it was observed that a small number of PRVmu-
infected mice died. This could be due to the possibility that the PRVmu virus can use
the host thymidine kinase, suggesting that the knockout of only the viral TK gene may
not be sufficient to generate safe live recombinant PRV-based vaccines. Nevertheless, our
data show that the knockout of viral TK can effectively reduce the pathogenicity of PRV,
allowing most mice to survive and pave the way for the generation of subsequent live
recombinant vectors.

Although the CRISPR/Cas9 system has been widely used to edit the genome of a
wide range viruses, to our knowledge the present study is the first to report the generation
of recombinant BHVmu virus combining the use of MDBK cells that are highly susceptible
to BHV-1 with HEK293T cells that have a high transfection efficiency. By first transfecting
recombinant plasmids and sgRNAs into HEK293T cells followed by BHV-1 infection and,
when the CPE occurred, by transferring the HEK293T cells directly onto MDBK cells with-
out freeze–thaw cycles, we greatly improved the efficiency of homologous recombination
and expansion of recombinant virus in MDBK cells. This approach was described in a
recent study [36] in which Liu et al. screened several cell lines for plasmid transfection and
BHV-1 infection and found that HEK293T had the highest transfection efficiency (88.7%),
followed by BHK-21 (66%) and Vero E6 cells (44.7%). However, HEK293T cells are not
suitable for BHV-1 infection. Conversely, MDBK, Vero E6 and primary bovine testis cells
(BT) can be used for subculture. These findings led to the use of HEK293T to generate
a BHV-1 recombinant vector and the production of recombinant BHV-1 mutant, but the
expansion of the latter was obtained using MDBK cells. When used in vivo, we found that
the knockout of the gI and gE genes in our BHVmu virus retained the immunogenicity
of BHV-1.

In conclusion, we successfully constructed a PRV-TK-/eGFP+ mutant and a BHV-gIgE-/
eGFP+ mutant. The eGFP gene can be easily replaced with another target gene of interest
using the same method, and the novel recombinant mutants can be used as multivalent
vaccine candidates.
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