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Abstract: Salt mines are a special type of hypersaline environment. Current research mainly focuses
on prokaryotes, and the understanding of viruses in salt mines remains limited. Understanding
viruses in hypersaline environments is of great significance for revealing the formation and main-
tenance of microbial communities, energy flow and element cycling, and host ecological functions.
A phage infecting Halomonas titanicae was isolated from Yipinglang Salt Mine in China, designated
Halomonas titanicae phage vB_HtiS_YPHTV-1 (YPHTV-1). Transmission electron microscopy revealed
that YPHTV-1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long noncon-
tractile tail with a length of 141.7 ± 0.58 nm (n = 5), indicating that it was a siphovirus. The one-step
growth curve showed that the burst size of YPHTV-1 was 69 plaque forming units (PFUs) cell−1. The
genome of YPHTV-1 was 37,980 bp with a GC content of 36.2%. The phylogenetic analysis of the six
conserved proteins indicated that YPHTV-1 formed a cluster with Bacillus phages and was separated
from phages infecting Halomonas. The average nucleotide identity (ANI), phylogenetic, and network
analyses indicated that the phage YPHTV-1 represented a new genus under Caudoviricetes. In total,
57 open reading frames (ORFs) were predicted in the YPHTV-1 genome, 30 of which could be anno-
tated in the database. Notably, several auxiliary metabolic genes were encoded by YPHTV-1, such as
ImmA/IrrE family metalloendopeptidase, mannose-binding lectin (MBL) folding metallohydrolase,
M15 family of metal peptidases, MazG-like family protein, O antigen ligase, and acyltransferase.
These genes potentially enabled the host bacterium to resist ionizing radiation, ultraviolet light (UV),
mitomycin C, β-lactam antibiotic, high osmotic pressure, and nutritional deficiencies. These findings
highlight the role of haloviruses in the life cycle of halobacteria.

Keywords: Halomonas; bacteriophage; genome; new genus; auxiliary metabolic genes

1. Introduction

Hypersaline environments are distributed worldwide in different forms, such as salt
lakes, sun-dried salt pans, and salt mines; archaea dominate hypersaline areas, but bacteria
and some eukaryotes are also present [1]. The number of viruses in hypersaline environ-
ments can be 10–100 times more than that of the host [2,3], reaching 109 virus-like particles
(VLPs)/mL in some hypersaline water [4]. Viruses occupying hypersaline environments are
known as haloviruses [5]. Compared with aquatic systems such as the ocean, there is less
research on viruses in extreme environments such as hypersaline environments. Virus-like
particles with various morphotypes have been described in hypersaline environments,
ranging from 40 to 100 nm in diameter [6,7]. There are six main forms, comprising viruses
with head-tailed (contractile) ΦCh1 [8], head-tailed (noncontractile) BJ1 [9], head-tailed
(short) HSTV-1 [10], pleomorphic HRPV-1 [11], spherical SH1 [12], and spindle-shaped
His1 [13]. Over 100 haloviruses have been isolated to date, most of which infect extreme

Viruses 2023, 15, 1392. https://doi.org/10.3390/v15061392 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15061392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-4796-1725
https://doi.org/10.3390/v15061392
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15061392?type=check_update&version=2


Viruses 2023, 15, 1392 2 of 14

halophilic archaea. Among these 100 haloviruses, only ~30 phages infect halophilic bac-
teria [14–27]. Currently, the research on culturable bacterial haloviruses mainly focuses
on their morphological, physiological, and biochemical characteristics; research on the
viral genome is still relatively scarce. Due to the small number of isolates, the genomes
of only 16 bacterial haloviruses have been analyzed in detail [17,21,22,24–27], hindering
our understanding of virus–host interactions. Four Marseille viruses and one Mimivirus
isolated from a hypersaline environment in Tunisia using the halophilic amoeba as the host
are the only known eukaryotic haloviruses [28].

The genus Halomonas is classified within the family Halomonadaceae and the order
Oceanospirillales in the class Gammaproteobacteria. The cells are Gram-negative and non-
endospore-forming rods and are halophilic or halotolerant. Some species in Halomonas are
haloalkaliphilic or psychrotolerant [29]. The genus Halomonas is a common bacterial group
found in hypersaline samples using culture-dependent methods. The genus Halomonas
currently contains 121 species with validly published and correct names isolated from saline
environments worldwide, including solar salt facilities, intertidal estuaries, the Dead Sea,
and hypersaline lakes (https://lpsn.dsmz.de/genus/halomonas, accessed on 17 June 2023).
In addition to being widely distributed in various hypersaline environments, Halomonas has
substantial development potential due to its versatile properties, such as good emulsifying
activities against the petroleum hydrocarbons and ability to produce polyhydroxybutyrate
(PHB) and polyhydroxyalkanoate (PHA) [30,31].

The phage–host interactions of five myoviruses infecting H. venusta or H. salina
from the Great Salt Plains in Oklahoma [32] and three temperate siphoviruses infecting
H. halophila isolated from hypersaline soil have been characterized [33]. Moreover, a
myovirus-like temperate phage has been successfully induced from ocean-isolated H. aqua-
marina using mitomycin C, and its genome has been sequenced [20]. However, to the best
of our knowledge, there are no detailed characterizations to date of any virulent Halomonas
titanicae viruses.

The hypersaline environment has a high similarity with the early Earth environment
and the Martian environment [34]. Thus, viruses in hypersaline environments may com-
prise remnants of ancestral viruses [4], and excavating and studying the physiological
and ecological functions of uncultured haloviruses in hypersaline environments may help
elucidate the origin and evolution of life on Earth and provide a theoretical reference for
the exploration and discovery of life on Mars.

This study isolated the first phage, YPHTV-1, infecting H. titanicae from a salt mine. The
biological characterization and genomic analysis suggested that YPHTV-1 was distinct from
currently known viruses. Interestingly, several auxiliary metabolic genes were encoded
by YPHTV-1, suggesting potential phage–Halomonas interactions and a role for viruses in
Halomonas metabolism and evolution. These results help elucidate the ecological functions
of phages in hypersaline environments and lay the foundation for screening phage-resistant
Halomonas strains for industrial applications.

2. Materials and Methods Sterile
2.1. Isolation of Host H. titanicae H5 and Phage YPHTV-1

Fifty-liter brine samples were collected from the brine sedimentation tank of Yip-
inglang Salt Mine (101◦90′ E, 25◦28′ N) in Yunnan Province in China in April 2010, which
was brought back to the laboratory for storage at room temperature. H. titanicae H5 and its
phage YPCBV-1 were isolated from these brine samples in 2019. Marine agar 2216 (MA,
Difco) was used for the isolation of the host, while the strains were cultured in modified
Luria-Bertani (MLB, NaCl 100 g/L, tryptone 8.0 g/L, yeast extract 4.0 g/L, [pH 7.2–7.6]).
Strain genomic DNA extraction and PCR amplification of the 16S rRNA gene were per-
formed as described previously [35], and sequencing was performed in Sangon, China.
For phages isolation, 5 mL of brine was inoculated into 100 mL MLB broth, incubated
at 30 ◦C, 120 rpm. After 7 days, enrichments were passed through a 0.22 µm pore size
filter. One hundred microliters of the filtrate were mixed with 300 µL of the H5 bacterial
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suspension cultured to the logarithmic phase (OD600 = 0.5) and adsorbed at 25 ◦C for
20 min. Then, 4 mL of MLB semi-solid medium was added, and the mixture was poured
onto a solid medium plate and incubated at 30 ◦C. A double-layer plate with the host
bacterial medium without filtrate was prepared as a control [36]. After 24 h, the plaques
appeared, and a large and clear single plaque was picked and transferred to 100 µL of
MLB. The double-layer plate experiment was repeated five times to purify the phage. The
purified phage was stored in 15% glycerol at −80 ◦C. The phage lysate can also be stored at
4 ◦C. For prepared fresh phage suspension, an appropriate amount of phages was mixed
with the host, shaking at 30 ◦C and 120 rpm for 24 h and filtering at 0.22 µm pore size filter.

2.2. Transmission Electron Microscopy

The phage lysate was stained with 2% (w/v) sodium phosphotungstate (Sangon,
China) for 3 min, air dried, and placed under transmission electron microscopy (TEM,
JEM-2100, 200 kV) to determine the morphologies of the phage virions. Digital images
were captured with a bottom mounted Quemesa camera and analyzed using the iTEM
software (v5.2).

2.3. Host Range

The host range of YPHTV-1 was assessed using nine different bacteria: Chromohalobac-
ter japonicus (CGMCC 1.7474), C. canadensis (CGMCC 1.7979), C. marismortui (CGMCC
1.2321), and C. beijerinckii (CGMCC 1.9020) purchased from China General Microbiological
Culture Collection Center (CGMCC). C. beijerinckii F3, C. canadensis F7, H. titanicae H5,
H. ventosae QH52-2, and H. titanicae H5G were isolated from salt mine samples in our labo-
ratory. The phage specificity was determined by dropping 10 µL of YPHTV-1 lysate onto
lawns of the aforementioned nine strains. Plaque formation was observed after incubating
at 30 ◦C for 24 h.

2.4. One-Step Growth Curve

A one-step growth assay was performed as previously described [36]. Briefly, 1 mL
of the host culture (7.2 × 107 CFU/mL) was mixed with the phage lysate at the optimal
MOI (=1) and adsorbed at 30 ◦C for 20 min. The sample was centrifuged at 10,000× g for
5 min, the supernatant was discarded, and the pellet was resuspended in 1 mL MLB
medium. This step was repeated twice to remove unabsorbed phage particles. The precipi-
tate was transferred to 50 mL of MLB medium and incubated at 30 ◦C, 120 rpm for 2 h. The
phage titer in the culture was measured using the double-layer agar technique at 10 min
intervals. The burst size was calculated as follows: ( phage titer at the end of the burst

initial host cell concentration ) ×100%.
All experiments were performed in triplicate.

2.5. pH and Thermal Stability

The pH and thermal stability analyses were performed as previously described [36].
To study the effect of pH on phage survival, Tris-HCl buffer (0.1 M) and NaOH solution
(0.1 M) were used to adjust the pH of the liquid MLB medium to pH 3, 4, 5, 6, 7, 8, 9,
10, 11, and 12. Phage lysate was added to different pH solutions and inoculated at room
temperature for 1 h. One milliliter of phage lysate was inoculated and incubated for 1 h
at 22 ◦C, 30 ◦C, 37 ◦C, 50 ◦C, and 60 ◦C to study the thermal stability of the phage. The
phage titers were measured by the double-layer agar plate method at the indicated times.
The phage titer measured at 0 min was used as a control to calculate the survival rate. All
experiments were performed in triplicate.

2.6. Phage Adsorption Rate to Different Cells

H. titanicae H5, H. titanicae H5G, H. ventosae QH52-2, C. beijerinckii F3, and C. canaden-
sis F7 were cultured to the logarithmic phase (OD600 = 0.5). One hundred microliters
of the phage lysate were mixed with 300 µL of different bacterial cultures, adsorbed
at room temperature for 20 min, and then centrifuged at 10,000× g for 5 min. The
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phage titers in the supernatant were tested using the titer of the initial phage lysate
as a control. The adsorption rate of the phage to different cells was calculated as fol-
lows: ( titer of initial phage lysate−titer of unadsorbed phage lysate

titer of initial phage lysate ) × 100%. All experiments were
performed in triplicate. ANOVA analysis was used to test the difference in the adsorp-
tion rate.

2.7. Preparation of High-Titer Phage Lysate

A sterile bamboo stick was used to pick and purify a single plaque and place it in
100 µL of SW buffer with an NaCl concentration of 5% (w/v), and 1 mL of the host bacteria
H5 suspension cultured to the logarithmic phase was added and incubated at 120 rpm,
30 ◦C for 12 h. After the culture solution was centrifuged at 11,000× g at 4 ◦C for
25 min, the supernatant was passed through a 0.22 µm pore size filter to obtain a phage
suspension. The double-layer agar plate method was used to spread the phage suspension
onto 10 plates. When the plaque formed, the upper agar with the plaque was scraped and
inoculated into 100 mL of the host bacterial suspension and incubated at 120 rpm, 30 ◦C, for
12 h. The phage-enriched liquid was collected and centrifuged at 11,000× g for 20 min at
4 ◦C, and the supernatant was passed through a 0.22 µm pore size filter to obtain a high-titer
phage lysate.

2.8. Extraction, Sequencing, and Bioinformatic Analysis of Phage DNA

The high-titer phage lysate was added to a 100 KD ultrafiltration tube (Millipore,
Burlington, MA, USA) and centrifuged at 4500× g and 4 ◦C to obtain the phage concentrate.
DNase I and RNase A (Solarbio, Beijing, China) were added to 200 µL phage concentrate
to a final concentration of 50 U/mL and 250 µg/mL, respectively, treated at 37 ◦C for
1 h, and inactivated at 80 ◦C for 15 min. The phage DNA was extracted using a TIANamp
Virus DNA/RNA Kit (TIANGEN, Beijing, China) according to the manufacturer’s instruc-
tions. The DNA library was constructed as previously described [27] and was sent to
Sangon Bioengineering Co., Ltd., for sequencing using Illumina HiSeq. After sequenc-
ing, the original data were evaluated and quality controlled. Clean data were assembled
into a single contig using SPAdes (v3.5.0) [37], and the gaps were filled using GapFiller
(v 1.11) [38]. The ORFs were predicted using GeneMarks (v.3.26) [39]. The BLAST pro-
gram on the NCBI website (http://www.ncbi.nlm.nih.gov/, accessed on 19 May 2023) was
used to find similar sequences to each of the ORFs in YPHTV-1. The genome network
of YPHTV-1 was analyzed using the Prokaryotic Viral RefSeq211 Merged (last updated
in June 2022) database of vConTACT (v.2.0) [40], and Cytoscape [41] software was used
to create a network map for visualization. The VIRIDIC [42] tool was used to calculate
the intergenomic similarities of viruses. The amino acid sequences of HNH endonuclease,
terminal enzyme large subunit (TerL), portal protein, major capsid protein, and MazG were
selected to construct a phylogenetic tree using the Mega 7.0 software package with the
neighbor-joining method. The phylogenetic tree of the phage genome was constructed
using ViPTree (v3.5) (https://www.genome.jp/viptree/, accessed on 19 May 2023) [43].
Ezbiocloud (https://www.ezbiocloud.net/tools/ani, accessed on 10 December 2022) was
used to perform the ANI pairwise comparison of 24 phage genome sequences, and ANI
heat maps were generated using R studio (v 1.3.1093). EasyFig (v2.2.3) [44] was used to
compare highly homologous genomes.

3. Results
3.1. Biological Characteristics of YPHTV-1

The 16S rRNA gene phylogenetic analysis of strain H5 isolated from Yipinglang
Salt Mine showed that it was clustered with H. titanicae BH1 (KY471040), with a simi-
larity of 98.33%. Moreover, H5 and H5G were clustered together with a similarity of
99.93% (Figure 1). Thus, it was preliminarily identified that the strain H5 belonged to
Halomonas titanicae.

http://www.ncbi.nlm.nih.gov/
https://www.genome.jp/viptree/
https://www.ezbiocloud.net/tools/ani
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Figure 1. Phylogenetic analysis of H5 based on the 16S rRNA gene sequence. Phylogenetic trees were
constructed using the neighbor-joining method by Mega 7.0. All parameters were default except
the Bootstrap value was 1000, the p-distance model was used to calculate the distance, and the
Gap/Missing Data Treatment cutoff was 50%.

The lytic phage YPHTV-1 was isolated from the brine collected from Yipinglang Salt
Mine using H. titanicae H5 as the host. After 24 h, clear circular plaques formed, 1.5–2.0 mm
in diameter, surrounded by a cloudy halo (Figure 2A). TEM showed that phage YPHTV-
1 had an icosahedral head with a diameter of 49.12 ± 0.15 nm (n = 5) and a long tail
141.7 ± 0.58 nm (n = 5) in length (Figure 2A), indicating that it was a siphovirus. The full
infection cycle of YPHTV-1 was 70 min, of which the latent period was 30 min and the
rapid growing period was 40 min; the burst size was 69 PFU/cell (Figure 2B).

Viruses 2023, 15, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 2. Biological features of phage YPHTV-1. (A) Transmission electron micrograph of YPHTV-

1. Scale bar, 100 nm. Inset shows plaques morphology of YPHTV-1; scale bar, 5 mm. (B) One-step 

growth curve of phage YPHTV-1. Error bars represent the standard deviation of three replicates. 

YPHTV-1 was most stable at pH 7.0. When the pH was lower than 5 or higher than 

9, the survival rate of the phage YPHTV-1 dropped to close to 0 (Figure 3A). After incu-

bation at 22 °C, 30 °C, and 37 °C for 20 min, the survival rate of the phage YPHTV-1 slightly 

decreased. After incubation at 50 °C and 60 °C for 20 min, the survival rate of the phage 

YPHTV-1 dropped to 0 (Figure 3B). These findings show that the phage YPHTV-1 is stable 

in a neutral environment and at 22–37 °C. 

 

Figure 3. The pH (A) and thermal (B) stability of YPHTV-1. Error bars represent the standard devi-

ation of three replicates. 

A cross-infectivity test was performed to examine the host range of YPHTV-1 within 

an extensive collection of nine strains of species of the family Halomonadaceae. The phage 

YPHTV-1 only infected its host strain, H5; even H5G, isolated from Qiaohou Salt Mine 

and sharing high 16S rRNA gene sequence similarity with H5, was not infected by 

YPHTV-1 (Figure 1). 

The first step of infection was identification and adsorption. Phage YPHTV-1 had the 

highest adsorption rate to strain H5 and H5G. The adsorption rate to H. ventosae QH52-2 

was significantly reduced, and this reduction was more pronounced in C. beijerinckii F3 

and C. canadensis F7 (Figure 4). These results suggested that the inability of the phage 

YPHTV-1 to infect the H5G was caused by the steps after adsorption. 

Figure 2. Biological features of phage YPHTV-1. (A) Transmission electron micrograph of YPHTV-1.
Scale bar, 100 nm. Inset shows plaques morphology of YPHTV-1; scale bar, 5 mm. (B) One-step
growth curve of phage YPHTV-1. Error bars represent the standard deviation of three replicates.
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YPHTV-1 was most stable at pH 7.0. When the pH was lower than 5 or higher than 9,
the survival rate of the phage YPHTV-1 dropped to close to 0 (Figure 3A). After incubation
at 22 ◦C, 30 ◦C, and 37 ◦C for 20 min, the survival rate of the phage YPHTV-1 slightly
decreased. After incubation at 50 ◦C and 60 ◦C for 20 min, the survival rate of the phage
YPHTV-1 dropped to 0 (Figure 3B). These findings show that the phage YPHTV-1 is stable
in a neutral environment and at 22–37 ◦C.
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Figure 3. The pH (A) and thermal (B) stability of YPHTV-1. Error bars represent the standard
deviation of three replicates.

A cross-infectivity test was performed to examine the host range of YPHTV-1 within
an extensive collection of nine strains of species of the family Halomonadaceae. The phage
YPHTV-1 only infected its host strain, H5; even H5G, isolated from Qiaohou Salt Mine and
sharing high 16S rRNA gene sequence similarity with H5, was not infected by YPHTV-1
(Figure 1).

The first step of infection was identification and adsorption. Phage YPHTV-1 had the
highest adsorption rate to strain H5 and H5G. The adsorption rate to H. ventosae QH52-2
was significantly reduced, and this reduction was more pronounced in C. beijerinckii F3 and
C. canadensis F7 (Figure 4). These results suggested that the inability of the phage YPHTV-1
to infect the H5G was caused by the steps after adsorption.
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Figure 4. The adsorption of phage YPHTV-1 to different cells. H5 and H5G belong to H. titanicae,
QH52-2 belongs to H. ventosae, F3 belongs to C. beijerinckii, and F7 belongs to C. canadensis. The
numerical value represents the adsorption rate of the virus on different cells. ANOVA analysis was
used to test the difference in the viral adsorption rate between the host bacterium H5 and other cells
(* 0.01 < p < 0.05, ** p < 0.01).
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3.2. Genomic Property of Phage YPHTV-1

Ninety-nine bp direct repeats were identified at both ends of the genome, indicating
that YPHTV-1 was linear double-stranded DNA. The sequence was found to be 37,980 bp in
length with a GC content of 36.2%. GeneMark predicted 57 ORFs in the YPHTV-1 genome,
51 in the positive strand, and six in the negative strand (Figure 5). Among them, 30 were
assigned a putative function based on significant sequence similarity to genes of known
functionality in the NR database. Furthermore, 27 ORFs showed no similarity to genes in
the NR database, and their products were classified as hypothetical proteins with unknown
functions (Table S1). Potential tRNAs were not detected in the phage genome.
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The YPHTV-1 genome exhibited an overall modular organization (Figure 5). The
functional gene modules annotated in the YPHTV-1 genome and their proportions of the
total number of genes were as follows: lytic/lysogenic proteins (14%), structural protein
(14%), DNA replication/regulation and nucleotide metabolism proteins (19%), packaging
proteins and transcription-related proteins (12%), and other functional genes (10%).

3.3. DNA Replication and Virion Assembly

ORF40 encoded the phage tail tape measure protein (TMP), a protein that played a key
role in phage DNA injection and was related to the host super-infection immunity. ORF16
encoded the phage replication protein. The replication protein has been shown to increase
the rate of viral DNA replication [45]. The protein encoded by ORF25 belonged to the
HNH endonuclease superfamily. Most HNH endonucleases contained a conserved HNH
catalytic center and a zinc ion binding site [CXXC]2, which, in the presence of divalent
metal ions, could cut 3–5 bp double-stranded DNA [46]. Therefore, HNH endonuclease
was a critical assembly machine in the phage life cycle and was of great significance
to phage reproduction and infection [47,48]. The packaging module of phage YPHTV-1
included a terminase and a portal protein. ORF26 and ORF27 encoded the terminase small
and large subunits, respectively, and were involved in packaging the phage genome into
the capsid [48]. ORF30 encoded the phage YPHTV-1 prohead protease. This gene was
usually located near the capsid protein gene (ORF31). In some cases, these two genes were
fused [49].

3.4. Auxiliary Metabolic Genes

ORF2 encoded the ImmA/IrrE family metalloendopeptidase. ImmA-dependent prote-
olysis of ImmR repressors may be a conserved mechanism for regulating horizontal gene
transfer [50] and radiation resistance [51,52]. ORF14 putatively encoded the MBL folding
metallohydrolase belonging to the metalloenzyme superfamily I, potentially improving
antibiotic resistance [53]. ORF18 encoded the MazG-like family protein. MazG poten-
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tially optimized the progeny phage production by reactivating macromolecule synthesis
pathways [54]. ORF43 encoded the O antigen ligase. O antigen ligase participated in the
synthesis of lipopolysaccharide (LSP), protected the host from other bacteria or viruses,
changed the permeability of cell membrane, tolerated high osmotic pressure, adapted to
high-salt environments, increased the resistance of the host, and improved the adaptability
of the host to extreme environments [55].

3.5. Phage YPHTV-1 Represents a New Cluster

BLAST showed that the genome sequence of YPHTV-1 was not significantly similar
to other viruses, and only a few viruses had partial sequence similarity. The similarity
between YPHTV-1 and the Virgibacillus phage Mimir 87 (MK560763) was 70.08% (coverage
is 22%). The phage Mimir 87 was isolated from worker bees and infected salt-tolerant
Bacillus sp. The similar regions of YPHTV-1 and Mimir 87 were genes encoding DNA
replication/regulation and nucleotide metabolism and transcription (DNA replication,
recombinase protein RecT, and AAA family ATPase) (Figure 6). In addition, the similarity
between YPHTV-1 and the Bacillus phage vB_BtS_BMBtp15 (KX190835.1) was 72.80%
(coverage was 19%). The similar regions of YPHTV-1 and vB_BtS_BMBtp15 were genes
encoding packaging and morphological structure (portal protein, terminase, and capsid
family protein) (Figure 6).
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Twenty-three viral genome sequences in GenBank (six with established taxonomic
status in ICTV) were compared with the YPHTV-1 to further clarify its evolutionary status.
A total of 24 phages were used to construct a phylogenetic tree with amino acid sequences
and a heat map with genome-wide ANI. The phylogenetic analysis showed that the phage
YPHTV-1 was clustered with an unclassified Bacillus phage (Figure 7). The ANI values of
YPHTV-1 in comparison with 23 other viral genomes were 0–70.85% (Figure S1), among
which the ANI values of the Bacillus phages were higher (Bacillus phage vB_BtS_BMBtp15
was 70.23%; Bacillus phage vB_BtS_BMBtp1 was 70.85%).

YPHTV-1 ORF25 (HNH endonuclease), ORF27 (terminase large subunit), ORF29
(portal protein), ORF31 (major capsid protein), ORF1 (integrase), and ORF18 (MazG-like
family protein) were selected for the phylogenetic analysis. The phylogenetic tree of
the five proteins showed that YPHTV-1 clustered with the Bacillus phages (Figure S2),
consistent with the genome-wide analysis. It was demonstrated that YPHTV-1 shared
homology with the Bacillus phages in integrase, packaging, and structural proteins and
shared homology with the Paenibacillus phages in the MazG-like family protein. Bacillus
was also a predominant microbe in hypersaline environments and has been found in
220-million-year-old salt crystals [56]. The genome network analysis showed that 37 viruses
were related with phage YPHTV-1, but phage YPHTV-1 did not cluster with any viruses
(Figure 8). Thirty-three out of the 37 viruses were divided into three clusters, 27 phages
in VC217, five phages in VC173, and one phage in VC211. The four independent phages,
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VC173 and VC211, had no definite classification status in ICTV, while almost all viruses
in VC217 infected Paenibacillus and belonged to the Fernvirus genus under Caudoviricetes
(Figure 8, shown in the green box). The VIRIDIC analysis showed that among the three
virus clusters, VC173 had the highest average similarity with YPHTV-1 (13.66%); similarity
was also found with the Bacillus phage vB_BtS_BMBtp15 (14.54%) and vB_BthS-HD29phi
(14.13%) in VC173, while that with VC217 was only 3.90%. This finding was consistent
with the results of ANI analysis, indicating that YPHTV-1 clustered with viruses infecting
Bacillus and Paenibacillus. Notably, except for the Bacillus cereus phage phBC6A52, YPHTV-1
and the other four viruses in VC173 were siphoviruses [57,58]. However, the affinity was
insufficient to support that the phage YPHTV-1 belonged to this currently known virus
genus; YPHTV-1 may represent a new virus genus.
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(last updated in June 2022), and virus clusters are shown as differently colored boxes. VC217 (orange
box): most of the phages were infected with Paenibacillus and belonged to the Fernvirus genus of
Caudoviricetes (green box in VC 217); VC173 (blue box): infected with Bacillus with no classification
status determined; VC211 (purple box): belonged to Halcyonevirus genus of Caudoviricetes. The
classification status of viruses was derived from the ICTV.

The phylogenetic, ANI comparison, and genome network analyses all suggested that
the phage YPHTV-1 was related to Bacillus phages. The morphology of the phage showed
that it was a siphovirus. We suggest the phage YPHTV-1 represents a new genus under the
class Caudoviricetes.

4. Discussion

Viruses are thought to be the most abundant biological entities on Earth; however, very
few have been cultivated. There remain numerous viruses that have yet to be recognized.
In this study, we isolated a new siphovirus, YPHTV-1, infecting H. titanicae H5, from salt
mine samples stored at room temperature for 10 years. YPHTV-1 was very stable at room
temperature and in a hypersaline environment, and its genome contained genes that may
promote the host’s resistance to stress.

YPHTV-1 had a high specificity for the host, which has also been observed in the
halovirus CGΦ29 [22]. The first step of phage infection is recognition and adsorption.
Bacteria can prevent phage attachment by lacking or hiding surface receptors. Even if
phages attach to appropriate surface receptors successfully, a superinfection rejection
system and other mechanisms can prevent phage DNA from being injected into host
cells [59]. After a phage has injected its DNA into bacterial cells, the natural defense
system in the host cells can also prevent phage proliferation, such as abortive infection
and restriction modification systems that can cause the host to cut or degrade phage DNA
before releasing the progeny virus, preventing phage replication and release [60]. These
influencing factors also determine the host range of phages. The inability of the phage
YPHTV-1 to infect the H5G was caused by the steps after adsorption.

To date, genome sequencing has been completed for two viruses infecting Halomonas
sp., i.e., the myoviral phage ΦHAP-1 induced by mitomycin C from the surface water of the
Gulf of Mexico [20] and the siphoviral phage QHHSV-1 isolated from Qiaohou Salt Mine in
China [25]. These three Halomonas phages have similar genome sizes (37,270–39,245 bp).
The phage YPHTV-1 has the lowest GC content among the three Halomonas phages (36.2%
(YPHTV-1) vs. 59% (ΦHAP-1) and 66.8% (QHHSV-1)).

One mechanism by which phages alter the metabolic state of the host is through the
activity of phage-encoded AMGs [61,62]. AMGs are typically obtained from host cells (i.e.,
recombined onto phage genomes) and can enhance or redirect specific metabolic processes
within host cells during infection [63,64]. These enhancements may play an important
role in maintaining, driving, or shortening the metabolic pathways and may provide
phages and their hosts with sufficient fitness advantages to retaining these genes over time
under specific metabolic or nutritional conditions [65]. Many AMGs were predicted in the
YPHTV-1 genome, and their functions involved radiation resistance (ImmA/IrrE family
metalloendopeptidase), antibiotic resistance (MBL folding metallohydrolase), regulation of
osmotic pressure (O antigen ligase), and response to starvation (MazG-like family protein).

Ludanyi et al. have found that ImmA/IrrE was required for Deinococcus resistance
to ionizing radiation, ultraviolet light, and mitomycin C as a global transcriptional regu-
lator [51]. The MBL folding metallohydrolase can be combined with cysteine, histidine,
aspartic acid, and other active sites of amino acids and zinc and then combined with water
molecules for activation, after which it becomes a nucleophile, with a wide range of hydrol-
ysis effects on β-lactam antibiotics, leading to resistance to cephalosporins, carbapenems,
and other antibiotics and playing an important role in the bacterial carbon-phosphorus lyase
(CP-Lyase) pathway [53]. The O antigen ligase connection of O antigen to the core region of
the lipid A core is an important step in the LPS biosynthetic pathway. O antigen ligase and



Viruses 2023, 15, 1392 11 of 14

acyltransferase participate in the synthesis of LSP to protect the host from other bacteria
or viruses, which can change the cell membrane permeability, increase tolerance to high
osmotic pressure, cause adaptation to hypersaline environments, and increase antibiotic
resistance, improving the ability of the host to adapt to extreme environments [66]. MazG
is considered a regulator of programmed cell death in E. coli. MazG prevents the normal
accumulation of guanosine 3′, 5′-dipyrophosphate (ppGpp) during the stringent response
to amino acid starvation, thereby enhancing host survival under nutrient-depleted envi-
ronments [67]. Therefore, it has long been held that mazG-carrying phages may modulate
the metabolism of host cells during infection to ensure a sufficient proliferation of progeny
virions [68]. The T5 phage encodes a specific product containing the M15 metallopeptidase
domain, which is related to phage endolysin [69]. Researchers have found that the D-alanyl-
D-alanine carboxypeptidase domain in the LysECD7 gene of Acinetobacter phage AM24
belongs to the M15 family of peptidases. LysECD7 contains two of these residues (Trp80
and Trp105) containing an 8-His tag sequence at the C terminus, and adjacent sequences
form a positively charged cluster that increases membrane permeability [70]. In conclusion,
M15 family peptidases are a very large gene family that is particularly important for both
the phage and the host. On one hand, the M15 family peptidases are related to endolysin
synthesis and can improve the lysis efficiency of lytic phages. On the other hand, certain
domains of M15 family peptidases maintain membrane permeability, which is beneficial
for host survival in hypersaline environments. These predictions need to be backed up by
more experimental results.

BLAST showed that the genome of YPHTV-1 was not significantly similar to that
of other known viruses. The ANI and phylogenetic analyses showed that YPHTV-1 had
lower genomic similarities and genetic relationships with phages infecting Virgibacillus,
Bacillus, and Paenibacillus. The genomic network analysis revealed that YPHTV-1 had no
evolutionary relationship with the two other sequenced Halomanas phages but clustered
with Bacillus and Paenibacillus phages with low similarity (13.54%). Therefore, YPHTV-1 is
a new genus under the class Caudoviricetes.

At present, there is insufficient research on haloviruses, and little is known about their
genomes. This study analyzed the biological characteristics and genome of the halovirus
YPHTV-1, providing a basis for the follow-up study of the phage–host interaction.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/v15061392/s1: Figure S1: Phage genome ANI heat map. The
horizontal and vertical coordinates are the phage names, and the color of the intersecting squares
represents the ANI value of the two phages; Figure S2: The amino acid sequence phylogenetic
trees based on HNH endonuclease (A), terminase large subunit (B), portal protein (C), major capsid
protein (D), site-specific integrase (E), and MazG-like family protein (F) of YPHTV-1 and other phages.
Phylogenetic trees were constructed using the neighbor-joining method by Mega 7.0. All parameters
were default except the bootstrap value was 1000, the p-distance model was used to calculate the
distance, and the Gap/Missing Data Treatment cutoff was 50%; Table S1: Gene annotation of phage
YPHTV-1 (E < 10−5).
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