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Abstract: Respiratory viral infections are a leading global cause of disease with multiple viruses
detected in 20–30% of cases, and several viruses simultaneously circulating. Some infections with
unique viral copathogens result in reduced pathogenicity, while other viral pairings can worsen
disease. The mechanisms driving these dichotomous outcomes are likely variable and have only
begun to be examined in the laboratory and clinic. To better understand viral–viral coinfections
and predict potential mechanisms that result in distinct disease outcomes, we first systematically fit
mathematical models to viral load data from ferrets infected with respiratory syncytial virus (RSV),
followed by influenza A virus (IAV) after 3 days. The results suggest that IAV reduced the rate of RSV
production, while RSV reduced the rate of IAV infected cell clearance. We then explored the realm of
possible dynamics for scenarios that had not been examined experimentally, including a different
infection order, coinfection timing, interaction mechanisms, and viral pairings. IAV coinfection with
rhinovirus (RV) or SARS-CoV-2 (CoV2) was examined by using human viral load data from single
infections together with murine weight-loss data from IAV-RV, RV-IAV, and IAV-CoV2 coinfections to
guide the interpretation of the model results. Similar to the results with RSV-IAV coinfection, this
analysis shows that the increased disease severity observed during murine IAV-RV or IAV-CoV2
coinfection was likely due to the slower clearance of IAV-infected cells by the other viruses. The
improved outcome when IAV followed RV, on the other hand, could be replicated when the rate of RV
infected cell clearance was reduced by IAV. Simulating viral–viral coinfections in this way provides
new insights about how viral–viral interactions can regulate disease severity during coinfection and
yields testable hypotheses ripe for experimental evaluation.

Keywords: viral coinfection; influenza; RSV; rhinovirus; SARS-CoV-2; viral dynamics; mathematical
modeling

1. Introduction

During a respiratory infection, multiple viruses may be present and working in concert
to cause disease [1–5]. Several respiratory viruses, including rhinovirus (RV), respiratory
syncytial virus (RSV), influenza A and B viruses (IAV and IBV), human metapneumovirus
(HMPV), human parainfluenza viruses (PIV), adenoviruses (ADV), and coronaviruses
(CoVs), have been found concurrently within hosts with pneumonia [6–20]. Children
are more likely to be concurrently infected with multiple respiratory viruses, where up
to 30% have more than one respiratory virus present when admitted to the hospital for
severe clinical disease [16,19,21–25]. Patients with coinfection have shown diverse disease
outcomes that ranged from mild to severe, with severity increasing compared to that of
patients who were infected with a single virus.

Data on viral–viral coinfections are somewhat limited, but some studies have begun
evaluating the outcomes of coinfection with commonly observed viral pairs (e.g., IAV
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and RSV [26–31], IAV and PIV [32], IAV and RV [28,33–35], RSV and RV [28], RSV and
HMPV [36], IAV and severe acute respiratory syndrome (SARS)-CoV-2 [37–43], RSV and
SARS-CoV-2 [43], and RV and SARS-CoV-2 [44]). Collectively, these studies observed
diverse outcomes of viral–viral coinfections with some interactions resulting in enhanced
spread of one or both viruses within the respiratory tract, while other mechanisms seem
to work in an inhibitory manner. For example, PIV-2 enhanced cell-to-cell fusion through
the expression of its surface glycoproteins, which boosted viral spread between cells, and
increased IAV titers but not PIV titers [32]. On the other hand, infection with IAV limited
a concurrent RSV infection by promoting intracellular competition for proteins or amino
acids needed for the successful replication of both viruses within cell cultures [11,26]. In
vivo infections in animal models support the exclusion of RSV by IAV and suggest that
RSV prior to IAV decreases disease severity [27,29,30]. A similar competitive exclusion
was observed in 3D tissue cultures during coinfection with RSV and HMPV, where HMPV
was inhibited without any effect on RSV [36]. The reduction was accompanied by higher
Type I and III interferon (IFN) responses [36]. IFN-mediated effects were also implicated
in RV–IAV coinfection where RV-induced IFN protected against subsequent IAV infection
within differentiated airway cell cultures [34].

The relative timing between viruses and the order in which the viruses infect the
host seem to contribute to differing disease outcomes [27,29,33,37,39,40,42]. Interestingly,
the exclusion effect during RSV–HMPV coinfection was more robust during a concurrent
infection compared to that in an infection where HMPV followed RSV after 2 days. This is
in contrast to other viral–viral coinfections where infections separated by 2 to 5 days had
more robust effects [33,37,42]. For example, RV attenuated IAV-mediated disease severity
and reduced IAV titers when RV infection had occurred 2 days before IAV, but the effect
was reduced during simultaneous infection [33]. Conversely, animals coinfected with IAV
2 days before RV experienced greater disease severity [33]. Similar outcomes occurred in
animals coinfected with IAV 3 days before SARS-CoV-2 [37].

These empirical studies illuminate the breadth of interactions that lead to diverse
outcomes of respiratory viral–viral coinfections and the need for mathematical methods
that could dissect complex, time-dependent, and potentially nonlinear mechanisms, as they
do for viral–bacterial coinfection [45]. One study on viral–viral coinfections suggested that
a faster-replicating virus would outcompete other viruses in a scenario where two viruses
were competing for epithelial cells [46]. However, it is possible that viruses infect different
cells or infect different areas of the respiratory tract. In addition, as noted above, they
may inhibit or enhance other processes (e.g., replication rates and/or immune responses)
and ultimately modulate disease. Thus, expanded modeling infrastructures are needed
and are a focus of this study. Unfortunately, most studies on viral–viral coinfections lack
quantitative information on viral loads and/or host immune responses that are needed
to effectively use mathematical approaches, which typically include fitting a mechanistic
model to data. However, weight loss, which is a measure of disease severity, is tracked in
most murine studies, and our recent work showed that mathematical models can accurately
connect animal weight loss to infection kinetics during monoinfections and viral–bacterial
coinfections [47,48]. These links allow for us to better interpret weight-loss data, and afford
the ability to assess mechanisms with limited data to modeling studies such as this one.

To address gaps in understanding viral–viral coinfections, we assessed RSV, RV, and
SARS-CoV-2 coinfections with IAV using two mathematical models. We predicted potential
underlying mechanisms of viral interference and cooperation and assessed how different
viral orders, timings, and pairings affected the infection dynamics and disease severity. The
results provide important insights into divergent outcomes, in addition to generating novel
hypotheses regarding why certain viral orders enhance or reduce disease severity.
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2. Materials and Methods
2.1. Data for RSV-IAV Coinfection in Ferrets

Viral-load data were digitized from a study where ferrets were monoinfected or coin-
fected with a long strain of RSV and/or influenza A/Tasmania/2004/2009 (A[H1N1]pdm09;
IAV) [27]. Briefly, groups of 4 ferrets were intranasally infected with 3.5 log10 50% tissue
culture infectious dose (TCID50) of IAV, 5.0 log10 plaque-forming units (PFU) of RSV, or
IAV followed 3 days later by RSV. Viral RNA copy number per 100 µL of nasal wash was
measured daily for 14 days post infection (pi).

2.2. Data for IAV, RV, and SARS-CoV-2 Infections in Humans

Viral-load data were digitized from studies where humans were experimentally or
naturally monoinfected with IAV [49], RV [50], or SARS-CoV-2 [51]. For each, we chose one
patient for ease of investigating potential coinfection dynamics. For IAV, human volunteers
were experimentally infected intranasally with 4.2 log10 TCID50 of influenza A/Hong
Kong/123/77. Nasal washes were collected daily for 7 days, and infectious viral titers
were determined via TCID50. The used data here were from Patient 4 due to this individual
having clear viral growth, peak, and decay phases. For RV [50], 14 human volunteers were
intranasally infected with 2.4 log10 TCID50 of RV, which was reported as the geometric
mean. Nasal washes were collected daily for 5 days. For SARS-CoV-2 [51], the data were
from naturally infected patients. Viral loads were sampled from throat swabs and measured
in RNA copies/mL. All samples were taken approximately 2–4 days after the symptoms.
We used Patient 8 due to their clear viral-load dynamics, and assumed that the infection
had initiated 5 days before the onset of symptoms.

2.3. Data for IAV Coinfection with RV or SARS-CoV-2 in Mice

Weight-loss data were digitized from a study where BALB/c mice had been in-
tranasally infected with 7.6× 106 TCID50 of RV1B and/or 100 TCID50 of influenza A/Puerto
Rico/8/1934 (PR8) [33]. Coinfections were initiated simultaneously or sequentially at a
2 day intervals (IAV-RV or RV–IAV) [33]. Weight loss was measured daily for 14 days.

Weight-loss data were digitized from a study where K18-hACE2 mice had been
intranasally infected with 1× 102 PFU of influenza A/HKx31 (H3N2) and/or 1× 104 PFU
of hCoV-2/human/Liverpool/REMRQ0001/2020 (SARS-CoV-2) [37]. Coinfections were
examined where IAV was given first followed by SARS-CoV-2 after 3 days. Weight loss
was measured daily for 10 days.

2.4. Mathematical Model of Viral Monoinfection

To describe the dynamic interactions between epithelial cells and the virus during
monoinfection, we used the viral kinetic model in Equations (1)–(4) (reviewed in [45,52]).
Briefly, in the model, target (epithelial) cells (T) are infected by the virus (V) at a rate βV
per day. Once virus is internalized, the cell undergoes an eclipse phase (E) during which
infected cells do not yet produce the virus. The cells then transition to the infectious phase
(I) at a k rate per day. Productively infected cells are cleared at a δ rate per day. The virus is
produced at a p rate per cell per day and cleared at a c rate per day.

dT
dt

= −βTV (1)

dE
dt

= βTV − kE (2)

dI
dt

= kE− δI (3)

dV
dt

= pI − cV (4)
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2.5. Mathematical Model of Viral–Viral Coinfection
2.5.1. Target Cell Competition

To model viral–viral coinfections, we expanded the model in Equations (1)–(4) using
two hypotheses (Figure 1). The first hypothesis assumed that two viruses (V1 and V2)
competed for target cells (T) (‘target cell competition model’; Equations (5)–(8)) [46]. In this
model, a single equation for target cells (T) was used where each virus could infect these
cells at rates β1V1 per day and β2V2 per day. All other equations were equivalent to those
in the monoinfection model. Subscripts i = 1, 2 denote each virus.

dT
dt

= −β1TV1 − β2TV2 (5)

dEi
dt

= βiTVi − kiEi (6)

dIi
dt

= kiEi − δi Ii (7)

dVi
dt

= pi Ii − ciVi (8)

Figure 1. Coinfection model schematic. Schematic of the coinfection models in Equations (5)–(8)
and Equations (9)–(12). In the ‘target cell competition’ model, two viruses (V1,2) interact indirectly by
competing for target cells (T) [46]. In the ‘target cell partitioning’ model, two viruses do not interact,
and each has their own pool of target cells (T1,2). In each model, target cells become infected by
the virus at rates βiVi, where subscript i = 1, 2 denotes the specific rates to V1 and V2, respectively.
Infected cells enter an eclipse phase (Ei) and transition to producing the virus at rate ki. Productively
infected cells (Ii) produce the virus at rate pi and are cleared at rate δi. The virus is cleared at rate ci.
Direct interactions were implemented by increasing and/or decreasing one or more of the rates using
functions α(Vi) and/or ζ(Vi), respectively, due to the other virus.

2.5.2. Target Cell Partitioning

The second hypothesis assumed that each virus had its own pool of epithelial cells
to infect (T1 and T2) because viruses may preferentially infect certain cell types [53–57]
or be present in a different areas of the respiratory tract (‘target cell partitioning model’;
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Equations (9)–(12)). All other equations remained the same but were distinct for each virus,
resulting a total of 8 equations. Subscripts i = 1, 2 denote each virus.

dTi
dt

= −βiTiVi (9)

dEi
dt

= βiTiVi − kiEi (10)

dIi
dt

= kiEi − δi Ii (11)

dVi
dt

= pi Ii − ciVi (12)

2.5.3. Modeling Viral–Viral Interactions

To assess the effect of one virus on another, we used functions that enhanced (α(Vi)
(Equation (13)) or inhibited (ζ(Vi); Equation (14)) a particular infection process (i.e., rates of
viral infection (βi), viral production (pi), infected cell clearance (δi), or viral clearance (ci)).

α(Vi) = 1 + κVi (13)

ζ(Vi) =
1

1 + κVi
(14)

Parameter κ (per RNA/mL or TCID50/mL) is the strength of the interaction.

2.6. Quantifying the Relative Change in Total Virus

To quantify changes in the viral loads and the total viral burden as a consequence of
an interaction during coinfection, we calculated the relative change in total virus (i.e., the
area under the curve (AUC)) of viral load using Equation (15),

∆VAUC =
Vcoinf

AUC −Vsingle
AUC

Vsingle
AUC

, (15)

where Vcoinf
AUC is the AUC for the coinfection and Vsingle

AUC is the AUC for the monoinfection.
The AUC was calculated using the Python function scipy.integrate.trapz.

2.7. Quantifying Disease Severity

To quantify the percentage of the lung infected by the virus that related to animal
weight loss [47], we calculated the cumulative area under the curve (CAUC) of the infected
cell dynamics [47] using the Python function scipy.integrate.cumtrapz.

2.8. Parameter Estimation

For model fits to the ferret data, parameters were estimated using a nonlinear mixed-
effect modeling (NLME) and stochastic approximation expectation minimization (SAEM)
algorithm implemented in Monolix 2019R1 [58]. In the NLME approach, each individual
parameter is drawn from a log-normal distribution and written as θi = θeηi , ηi = N (0, ω2

i ),
where θ denotes the median value of the parameter in the population, and ηi denotes the
random effect that accounts for the interindividual variability of the parameter within
the population. Interindividual variability was allowed for all the estimated parameters
with the assumption of no correlation and applying an additive residual error model for
log10 viral loads. For model fits to the human data, parameters were estimated using
scipy.optimize.minimize in Python. Here, only a single patient monoinfected with a virus
was used.

The initial number of target cells (T0) was set to 5× 107 cells for ferrets and 2× 108 cells
for humans. Similar to our previous studies [47,59,60], we fixed the initial number of
infected cells (E0) to 3.1× 103 cells for IAV infection and 1.0× 105 cells for RSV infection in
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ferrets [27] and 1× 102 cells for all infections in humans. We considered other values of E0
and found no significant differences in estimated parameters, which is consistent with our
prior studies [47,59,60]. The initial number of productively infected cells (I0) and the initial
free virus (V0) were set to 0.

The duration of the eclipse phase (1/k) for each virus was kept within a biologically
feasible value, and set to 4.8 h for IAV and to 8.0 h for RSV, RV, and SARS-CoV-2. For
the monoinfection model (Equations (1)–(4)), estimated parameters included the rates
of viral infection (β), viral production (p), viral clearance (c), and infected cell clearance
(δ). The rate of viral infection (β) was allowed to vary between 1× 10−9 and 1.0 RNA−1

d−1 or TCID−1
50 d−1, and the rate of viral production (p) was allowed to vary between

1× 10−3 and 1× 103 RNA/cell/d or TCID50/cell/d. The rate of infected cell clearance
(δ) was given a lower limit of 1× 10−2 d−1 and an upper limit of 1× 103 d−1. For the
coinfection models, we first simulated the monoinfection until the day of coinfection
and then employed the coinfection models (Equations (5)–(8) or Equations (9)–(12)) while
incorporating the enhancement or inhibition functions (Equations (13) and/or (14)). The
strength of interaction (κ) was estimated for each scenario.

Fit quality was assessed using the Akaike information criterion with small sample size
correction (AICc). The model with the lowest AICc was considered the best, and ∆AICc ≤ 2
was considered statistically equivalent [61].

3. Results
3.1. Model-Predicted Mechanisms of RSV–IAV Coinfection

We used data from ferrets infected with a long strain of RSV and/or influenza
A/Tasmania/2004/2009 (A[H1N1]pdm09; IAV) that had their viral loads measured un-
til 14 days post infection (pi) [27]. When ferrets were inoculated with RSV followed by
IAV 3 days later, morbidity was reduced, and IAV titers were slightly lower. To begin
examining the interactions between RSV and IAV during coinfection that resulted in these
dynamics, and establish the baseline parameter values for use in our mathematical models,
we first fit the monoinfection model (Equations (1)–(4)) to the data from IAV- or RSV-
infected ferrets (Table 1, Figure 2A). This showed a robust fit to each data set and yielded a
faster rate of infection (βRSV = 1.0 × 10−5 (RNA/100 µL)−1 d−1 vs. βIAV = 3.3 × 10−6

(RNA/100 µL)−1 d−1 [IAV]) and slower rate of viral production for RSV (pRSV = 3.0 × 10−2

RNA/100 µL/cell/d vs. pIAV = 2.5 × 101 RNA/100 µL/cell/d).

Table 1. Best-fit parameters for the monoinfection model. Best-fit parameters obtained from fitting
the monoinfection model (Equations (1)–(4)) to viral titers from ferrets intranasally infected with IAV
at 3.5 log10 TCID50 or with RSV at 5.0 log10 PFU [27]. Parameters are reported as the population
median and the standard deviation of the associated random effect (ω). The initial numbers of
target cells (T0) and infected cells (E0) were fixed to the indicated values, and the initial number of
productively infected cells (I(0)) and the initial viral amount (V(0)) were set to 0.

Parameter Description Units IAV (ω) RSV (ω)

β Viral infectivity (RNA/100 µL)−1 d−1 3.3× 10−6 (0.6) 1.0× 10−5 (0.04)
k Eclipse phase d−1 5.0 3.0
δ Infected cell clearance d−1 0.9 (0.02) 1.1 (1.8)
p Viral production (RNA/100 µL) cell−1 d−1 2.5× 101 (0.2) 3.0× 10−2 (0.03)
c Viral clearance d−1 2.0 (0.06) 1.7 (0.5)
T0 Initial target cells cells 5× 107 5× 107

E0 Initial eclipse cells cells 3.2× 103 1× 105

I0 Initial infected cells cells 0 0
V0 Initial virus (RNA/100 µL) 0 0

Using the single infection parameters, we simulated the ‘target cell competition’ model
(Equations (5)–(8)) and the ‘target cell partitioning’ model (Equations (9)–(12)) (Figure 1)
by first assuming that there were no direct interactions (κ = 0). Under this assumption,
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the target cell partitioning hypothesis performed better than the target cell competition
hypothesis (i.e., lower AICc; 185.3 (‘partitioning’) vs. 189.0 (‘competition’); Table 2), but the
data were not precisely replicated.

Thus, to examine whether increases or decreases in the rates of viral infection, produc-
tion, clearance, or infected cell clearance could better explain the data, we refit the models
together with Equations (13) and/or (14). In total, we evaluated 16 scenarios for a single
interaction and, on the basis of those results, up to 18 scenarios for dual interactions where
each virus affected the other (Tables A1 and A2). When assuming that the two viruses
competed for target cells (Equations (5)–(8)), single interactions that resulted in improved
fits (i.e., lower AICc) included an RSV-induced reduction in the rate of IAV infected cell
clearance (ffi−IAV) or in the rate of IAV clearance (c−IAV) (Table 2; Figure A1A,B). Compara-
tively, some interactions within the target cell partitioning model (Equations (9)–(12)) led to
a rebound of RSV (Figure A2), which were excluded from consideration. The best suggested
mechanisms under this hypothesis were either a decrease in the IAV infection rate (β−IAV) by
RSV together with a decrease in the RSV production rate (p−RSV) by IAV (Table 2, Figure 1C)
or an increase in the rate of RSV infected cell clearance by IAV (δ+RSV; Table A2, Figure A1C).

When allowing for dual interactions, the target cell competition model suggested that
there were two sets of mechanisms that provided fits with similar AICc values as the case
when a single interaction was considered (Table 2). Similar to the single interaction results,
both sets of mechanisms included a RSV-induced reduction in the rate of IAV infected cell
clearance (ffi−IAV). This was paired with either an IAV-induced reduction in the rate of RSV
production (p−RSV; AICc value of 175.7 (lowest); Figure 2B) or an IAV-induced increase in the
rate of RSV clearance (c+RSV; AICc value of 175.8; Figure A1B). Allowing for dual interactions
in the target cell partitioning model suggested an RSV-mediated reduction in the rate of IAV
infectivity (fi−IAV) coupled with an IAV-mediated reduction in rate of RSV production (p−RSV;
AICc value of 139.3; Table 2, Figure 2C). The remaining single and double interactions for
both models provided fits that were not statistically justifiable (Tables A1 and A2).

Table 2. Best-fit parameters of the predicted mechanisms of RSV–IAV coinfection. Best-fit param-
eters from simulating the coinfection models with no interactions (‘no interaction’) or fitting the
target cell competition model (‘competition’; Equations (5)–(8)) or the target cell partitioning model
(‘partitioning’; Equations (9)–(12)) with the Equations (13) and/or (14) to viral loads from animals
infected with RSV followed by IAV after 3 days. An NLME modeling approach was used and only
the strength of interaction (κ) was estimated. Parameters are reported as the population median (κ)
with standard deviation of the associated random effect (ωκ). Fit quality is reported as log-likelihood
(-2LL), AICc, and standard deviation of the residual error (σ). The resulting relative change in total
virus (∆VAUC) is provided for each scenario.

Interaction

Effect on IAV Effect on RSV

-2LL AICc σRSV σIAV ∆VAUC ∆VAUC
Strength of Strength of Strength of Strength of

Enhancement, Inhibition, Enhancement, Inhibition,
κ(ωκ) κ(ωκ) κ(ωκ) κ(ωκ) IAV RSV

RNA−1 RNA−1 RNA−1 RNA−1

C
om

pe
ti

ti
on No interaction 0 0 0 0 185.0 189.0 0.79 0.81 −0.54 −0.48

δ−IAV – 7.1× 10−6 (0.1) – – 166.2 174.2 0.79 0.65 −0.20 −0.48
c−IAV – 6.0× 10−5 (0.1) – – 167.8 175.8 0.79 0.66 0.74 −0.49

δ−IAV and p−RSV – 1.2× 10−5 (0.1) – 8.7× 10−9 (0.2) 163.7 175.7 0.76 0.65 −0.18 −0.66
δ−IAV and c+RSV – 1.1× 10−5 (0.1) 4.2× 10−9 (0.2) – 163.8 175.8 0.76 0.65 −0.19 −0.63

Pa
rt

it
io

ni
ng No interaction 0 0 0 0 181.3 185.3 0.88 0.72 0 0

δ+RSV – – 1.9× 10−8 (0.04) – 131.0 139.0 0.40 0.72 0 −0.51

β−IAV and p−RSV – 9.6× 10−5 (0.04) – 8.8× 10−8 (0.1) 127.3 139.3 0.45 0.63 0 −0.53
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Figure 2. Fit of the RSV–IAV coinfection models. (A) Fit of the single virus model (Equations (1)–(4))
to viral titers from ferrets infected with IAV (black squares) or RSV (black circles). (B,C) Compar-
ison of the single infection model fit (dashed lines) and fit of the coinfection models (solid lines;
(B) Equations (5)–(8) or (C) Equations (9)–(12) with the interaction functions (Equations (13) and (14))
to viral titers from ferrets infected with RSV followed by IAV after 3 days (IAV, white squares; RSV,
white circles). Dynamics of the (B) target cell competition model (δ−IAV and p−RSV) or (C) target cell
partitioning model (β−IAV and p−RSV) are shown along with the model schematic. Heatmaps are the
relative change in total viral burden (i.e., ∆VAUC; Equation (15)) evaluated for a range of interaction
strengths (κ = 1× 10−9 to 1× 102 (RNA/100 µL)−1) and infection intervals (0 to 11 days). The best-fit
κ for a coinfection at 3 days is denoted by a white star.

3.2. Effect of Infection Timing and Interaction Strength in RSV-IAV Coinfection

Because the order, infection interval, and strength of interaction can influence coin-
fection dynamics and result in diverse disease phenotypes, we sought to better under-
stand how these metrics alter RSV–IAV coinfection. To achieve this, we evaluated the
relative change in total viral burden for each virus (i.e., ∆VAUC; Equation (15)) across a
wide range of infection intervals (0 to 11 days) and interaction strengths (κ; 1× 10−9 to
1× 102 (RNA/100 µL)−1) in each model. Here, we focused on the best-fit models with the
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lowest log-likelihood (Table 2; i.e., δ−IAV and p−RSV in the target cell competition model and
β−IAV and p−RSV in the target cell partitioning model). For the predicted interactions from the
earlier analyses, differing the interaction strength (κ) had the strongest effect when the two
infections were separated by shorter intervals (i.e., <3 days; Figure 2). When the interval
was <3 days in the target cell competition model, a reduction in the RSV burden (up to
∆VAUC = −1) and prolonged IAV infection (up to ∆VAUC = 15) were observed for a higher
interaction strength than the best fit δ−IAV value (white stars in Figure 2B). In the target
cell partitioning model, the RSV burden was again reduced but the range of interaction
strengths was narrower (Figure 2C). Consistent with the data when the IAV infection was
initiated 5 or 7 days after RSV [27], the simulations showed that intervals >3 to 4 days after
RSV infection resulted in minimal changes in both models (Figure 2B,C). However, only the
target cell partitioning led to uninterrupted IAV infection or unchanged IAV viral burden
for longer intervals between IAV and RSV infection (Figure 2C).

3.3. IAV Coinfection with RV

Animals infected with IAV and RV at the same time, or RV two days before IAV, yielded
lower weight loss and milder disease severity compared to animals infected with IAV alone
(Figure 3). On the other hand, animals infected with IAV 2 days before RV underwent signifi-
cantly higher weight loss that led to death of all animals by 7 days pi (Figure 3; [33]). To assess
the potential mechanisms during IAV coinfection with RV that could lead these empirical
observations and provide potential translation to human infection, we first fit the monoinfec-
tion model (Equations (1)–(4)) to viral loads from human volunteers infected with IAV [49]
or RV [50] (Table 3, Figure 3A). The model fit resulted in different infection kinetic rates
for each virus where rate of IAV infection was lower (βIAV = 2.5 × 10−6 (TCID50)−1 d−1

vs. βRV = 1.6 × 10−3(TCID50)−1 d−1) and the rate of IAV production was higher
(pIAV = 3.0 × 10−1/TCID50/cell/day vs. pRV = 2.9 × 10−3/TCID50/cell/day (RV)).

We next used these parameters in the coinfection models (Equations (5)–(8) or
Equations (9)–(12)) with or without interaction (Equation (13) or/and Equation (14)) to
predict which mechanisms could lead to the distinct disease outcomes observed in the
experimental study. Because viral loads were not measured, but weight loss in the infected
animals was measured for IAV-RV and RV–IAV coinfections, we compared the estimated cu-
mulative area under the curve (CAUC) of the infected cell dynamics to the weight loss [47],
qualitatively matching the magnitude and timing of change. The CAUC of the combined
infected cells dynamics of each virus from the coinfection models without any interactions
could not recapitulate the weight-loss dynamics for any interval or order, confirming that
interactions were occurring.

Table 3. Parameter estimates for human infection with IAV, RV, or SARS-CoV-2. Parameter es-
timates from fitting the single virus model in Equations (1)–(4) to viral load data from humans
experimentally infected with 4.2 log10 TCID50 IAV [49] or 2.4 log10 TCID50 RV [50], or naturally
infected with SARS-CoV-2 [51]. The initial numbers of target cells (T0) and infected cells (E0) were
fixed to the indicated values, and the initial numbers of productively infected cells (I0) and the initial
virus (V0) were set to 0.

Parameter Description Units IAV RV SARS-CoV-2

β Viral infectivity [V]−1 d−1 2.5× 10−6 1.6× 10−3 1.4× 10−7

k Eclipse phase d−1 5.0 3.0 3.0
δ Infected cell clearance d−1 3.9 5.7 4.5
p Viral production [V] cell−1 d−1 3.0× 10−1 2.9× 10−3 18.8
c Viral clearance d−1 3.9 5.6 1.8
T0 Initial target cells cells 2× 108 2× 108 2× 108

E0 Initial eclipse cells cells 100 100 100
I0 Initial infected cells cells 0 0 0
V0 Initial virus [V] 0 0 0
κ Strength of interaction [V]−1 See text See text See text

[V] indicates TCID50/mL for IAV and RV, and RNA/mL for SARS-CoV-2.
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Figure 3. Model predictions coinfection with IAV and RV or SARS-CoV-2 using the target cell
competition model. (A) Fit of the monoinfection model (Equations (1)–(4)) to viral titers from humans
infected with IAV (red; solid line) [49], RV (green; solid line) [50], or SARS-CoV-2 (orange; solid
line) [51]. (B–E) Model simulations of the dynamics for monoinfection (solid line) or IAV coinfection
with RV or SARS-CoV-2 using the target cell competition model (Equations (5)–(8)) without interaction
(dotted line) or with interaction (dashed line). The predicted viral loads and CAUC of the infected
cells are shown alongside the weight-loss percentage from infected animals [33,37]. (B,C) Dynamics
of simultaneous coinfection with IAV and RV or RV–IAV with an IAV-mediated decrease in the
rate of RV-infected cell clearance (δ−RV). (D) Dynamics of IAV-RV coinfection with an RV-mediated
decrease in the rate of IAV infected cell clearance (δ−IAV). (E) Dynamics of IAV-CoV2 coinfection with
a CoV2-mediated decrease in the rate of IAV-infected cell clearance (δ−IAV).

3.3.1. Simultaneous or Sequential RV–IAV Coinfection

When testing different interaction mechanisms that enhanced or inhibited one virus
within the target cell competition model, the model predicted that the mechanism that
could lead to the reduced disease severity observed in RV–IAV coinfection (simultaneous or
separated by 2 d) was an IAV-mediated decrease in the rate of RV infected cell clearance (δ−RV;
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Figure 3B,C). An intermediate signal strength was required for the simultaneous infection
(κδ−RV

= 7× 10−5/(TCID50/mL); Figure 3B) and a larger signal strength was required for a
coinfection separated by 2 days (κδ−RV

= 1/(TCID50/mL); Figure 3C). In the two scenarios,
this could produce similar reductions in the CAUC of the infected cells as the weight-loss
patterns in coinfected animals (Figure 3B,C). In addition, when IAV and RV were initiated
simultaneously, the model-predicted kinetics showed significant reductions in IAV titers
compared to IAV monoinfection (Figure 3B). This was accompanied by a small increase
in RV titers around the peak that was due to the IAV-mediated decrease in the rate of
RV infected cell clearance. However, in contrast to the simultaneous infection, the model
indicated that RV significantly reduced IAV titers when RV was initiated two days before
IAV (Figure 3C).

The reduced rate of RV-infected cell clearance (δ−RV) was also identified by the target
cell partitioning model (Figure 4A,B). However, for a simultaneous infection, this needed
to be coupled with an RV-mediated increase in the rate of IAV infected cell clearance
(δ+IAV; κδ+IAV

= 1× 102/(TCID50/mL); Figure 4A), an increase in the rate of IAV clearance

(c−IAV; κc+IAV
= 1 × 10−3/(TCID50/mL);), a decrease in the rate of IAV production (p−IAV;

κp−IAV
= 6× 101/(TCID50/mL); Figure A3B), or a decrease in the rate of IAV infectivity

(β−IAV; κβ−IAV
= 6× 101/(TCID50/mL); Figure A3C) to achieve a consistent CAUC of the

infected cells with the reduced weight loss. In all cases, the combined CAUC of the infected
cells was reduced to a level below that of an IAV single infection and accompanied with a
complete suppression of IAV titers without affecting RV titers.

For RV–IAV coinfection, no single interaction could reproduce the reduced disease
severity. Thus, we did not consider dual interactions. However, because viral infections
could initiate and/or modify host responses (e.g., Type I interferon, macrophages, and
neutrophils) that were not included in our model, and this could translate into a reduced
number of susceptible cells that is not automatically created by the target cell partitioning
hypothesis, we examined the effect indirectly by reducing the initial number of target
cells that were available for the second virus, as in prior studies [47,60]. For RV–IAV
coinfection, reducing the initial number of target cells by 1 log10 (i.e., T0 = 2× 107 cells for
IAV compared to T0 = 2× 108 cells for RV; Table 3) was sufficient to reduce the combined
CAUC of the infected cells compared to IAV monoinfection (Figure 4B). However, the
estimated CAUC of the infected cells deviated from the experimental results at later time
points, where the model suggested similar but delayed IAV titers (Figure 4B).

3.3.2. IAV-RV Coinfection

The mechanism that could lead to the increased disease severity observed in IAV-
RV coinfection (separated by 2 days) within the target cell competition model was an
RV-mediated decrease in the rate of IAV-infected cell clearance (δ−IAV; Figure 3D). The
required signal strength was large (κδ−IAV

= 3/(TCID50/mL)). Despite the significant
model-predicted reduction in RV titers, the small increase in IAV titers was sufficient
to create an increase in the combined CAUC of the infected cells that aligned with the
increased weight loss observed in coinfected animals (Figure 3D).

In contrast, the target cell partitioning hypothesis alone (i.e., no interactions) led
to a higher combined CAUC of the infected cells and alignment with the observed in-
crease in disease severity (Figure 4C). This resulted in similar viral loads as those with
the monoinfection for both viruses. However, including an IAV-mediated increase in
the rate of RV production (κp+RV

= 1× 10−6/(TCID50/mL); Figure 4C) or the rate of RV

infectivity (κβ+RV
= 1× 10−6/(units/mL); Figure A3D) resulted in an earlier increase in

the CAUC of infected cells, which matched the timing of the deviation in weight loss
slightly better. In the two scenarios, the predicted IAV titer dynamics were similar and
unchanged from a monoinfection, and the predicted RV titer dynamics had a similar shape,
but were much higher when the production rate was increased (5.51 log 10 TCID50/mL vs.
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4.63 log 10 TCID50/mL). Other possible mechanisms identified by this model included a
reduction in the initial number of target cells (i.e., T0 = 2× 107 cells for RV compared to
2× 108 cells for IAV; Table 3) coupled with either a reduction in the rate of IAV infected cell
clearance by RV (c−IAV; κ = 10/(TCID50/mL); Figure A3E) or in the rate of RV infected cell
clearance by IAV (δ−RV; κ = 10/(TCID50/mL); Figure A3F). In the first scenario, the model
suggested that IAV titers would remain high for an extended period of time, which created
an extended, flat viral-load peak. In the latter case, the model indicated that there would
be no changes to IAV titers, and that RV had a slower increase with a lower peak.

Coinfection with interaction
Coinfection without interaction
Single infection

Target cell partitioning

A  Simultaneous coinfection with IAV and RV

D  Coinfection with IAV followed by SARS-CoV-2 at day 3 

C  Coinfection with IAV followed by RV at day 2 

B  Coinfection with RV followed by IAV at day 2  

IAV RV

0 21 3
Days post first infection

IAVRV

0 21 3
Days post first infection

IAV

0

SARS-CoV-2

21 3
Days post first infection

21 3

RVIAV

0
Days post first infection

and

CoV2 only
IAV only

coinfection

RV only
IAV only

coinfection

RV only
IAV only

coinfection

RV only
IAV only

coinfection

RV only
RV coinfection

IAV only
IAV coinfection

IAV only
IAV coinfection

RV only
RV coinfection

RV only
RV coinfection

IAV only
IAV coinfection

IAV only
IAV coinfection

CoV2 only
CoV2 coinfection

Figure 4. Model predictions for coinfection with IAV and RV or SARS-CoV-2 using the target
cell partitioning model. Model simulations of the dynamics for monoinfection (solid line) or IAV
coinfection with RV or SARS-CoV-2 using the target cell partitioning model (Equations (9)–(12)) with-
out interaction (dotted line) or with interaction (dashed line). The predicted viral loads and CAUC
of the infected cells are shown alongside the weight loss percentage from infected animals [33,37].
(A) Dynamics of simultaneous coinfection with IAV and RV with an RV-mediated increase in the
rate of IAV-infected cell clearance (δ+IAV) and an IAV-mediated decrease in the rate of RV infected cell
clearance (δ−RV). (B) Dynamics of RV-IAV coinfection with reducing the initial number of target cells
(T0) by 1 log10 for the second infection. (C) Dynamics of IAV-RV coinfection with an IAV-mediated
increase in the rate of RV production (p+RV). (D) Dynamics of IAV-CoV2 coinfection with IAV-mediated
increase in the rate of SARS-CoV-2 production (p+CoV2).
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3.4. IAV Coinfection with SARS-CoV-2

Animals infected with IAV followed 3 days later by SARS-CoV-2 resulted in increased
weight loss and more severe disease severity compared to animals infected with IAV or
SARS-CoV-2 alone (Figure 3) [37]. To examine the potential interactions between these
two viruses, we employed the same approach as above. The results suggested similar
mechanisms for enhanced disease severity for the two coinfection models, although the
quantitative dynamics was distinct between the models. That is, the target cell com-
petition model predicted a slightly higher combined CAUC of the infected cells when
SARS-CoV-2 reduced the rate of IAV infected cell clearance (δ−IAV) at the signal strength
κδ−IAV

= 2× 10−2/(RNA/mL) (Figure 3E) whereas the target cell partitioning without any
interaction led to a significantly higher combined CAUC of the infected cells (Figure 4E).
Reducing the initial number of target cells (i.e., a log10 reduction [T0 = 2× 107 cells])
available to SARS-CoV-2 coupled with a reduction in the rate of SARS-CoV-2-infected
cell clearance (δ−CoV2) by IAV (κδ−CoV2

= 10/(RNA/mL)) or a reduction in the rate of IAV

infected cell clearance (δ−IAV) by SARS-CoV-2 (κδ−IAV
= 1× 10−2/(RNA/mL)) led to a higher

combined CAUC of infected cells. The predicted viral-load dynamics was distinct between
the two models. In the target cell competition model, there was a significant reduction in
SARS-CoV-2 titers and a delay in the resolution of IAV titers. In contrast, the target cell
partitioning model suggested that the SARS-CoV-2 infection was simply delayed.

4. Discussion

Respiratory coinfections with multiple viruses are becoming more recognized clinically,
particularly in light of the SARS-CoV-2 pandemic. Experimental studies have begun
illuminating the outcome heterogeneity, which seems to rely on numerous factors such
as the viral pairing, order, and timing of each infection, and specific immune factors.
Although viral and immune dynamics during viral–viral coinfections is only beginning to
be defined, mathematical models are useful to predict and narrow the spectrum of potential
mechanisms, guide new experiments, and help in interpreting clinical, experimental, and
epidemiological observations. Our analysis of different viral coinfection scenarios suggests
that only a small subset of mechanisms could lead to the alterations in viral loads and/or
disease severity observed in animal models (summarized in Table 4).

When a new virus invades within a few days before or after influenza, innate immune
responses may be disrupted. The early regulation of Type I IFNs, macrophages, and/or
neutrophils, among other innate immune responses, by a virus could impact the dynamics
of subsequent infections. Although we did not assess these immune responses directly, we
modeled them indirectly in various ways. The target cell competition model automatically
assumes that fewer cells are available for infection by the second virus, which could emulate
a protective mechanism that reduces the possible infection size for the coinfecting virus. In
the target cell partitioning model, we decreased the number of target cells available for the
second virus, which was used to mimic lower doses [47,60]. Both approaches assume that
some cells are protected or otherwise unavailable for infection, which can be interpreted
as the IFN-mediated protection of susceptible cells or an immediate clearance of the virus
upon infection due to the activation of macrophages and/or neutrophils by the first virus.
We observed the latter phenomenon in an experiment where CD8 T cells were depleted
before infection [47]. In that case, innate responses were activated by the CD8 T cell death,
which resulted in the partial clearance of the inoculum that emulated a reduced dose, and
led to fewer infected cells and thus less virus. This automatically reduced inflammation
and weight loss [47], which was similar to the reduced weight loss observed during RV–IAV
coinfection [33]. Allowing for fewer susceptible cells within the target cell partitioning model
was sufficient to explain the reduced weight loss in RV-IAV coinfected animals, potentially
indicating a similar mechanism. While neither our model nor the data were sophisticated
enough to specify the exact mechanism, higher IFN-β was detected at 2 days post coinfection,
and IAV titers trended slightly lower compared to in the monoinfection [33]. A follow-up
study suggested that the protection of IAV-mediated disease by RV was dependent on IFN and
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that this contributed to the control of neutrophilic inflammation [35]. These data align nicely
with our predictions, which may help in connecting the underlying reasoning (i.e., fewer
cells becoming infected) with downstream consequences (i.e., reduced immune activation
and inflammation).

Table 4. Summary of model-predicted mechanisms resulting in increased or decreased disease
severity during viral–viral coinfection. Summary of model-predicted mechanisms that resulted in
altered viral loads (RSV–IAV [27]) or disease severity as quantified by the CAUC of the infected
cells [47,48] and measured by animal weight loss (IAV-RV and RV–IAV [33], and IAV-CoV2 [37]).

Model First Virus Second Virus Infection
Interval (Days)

Observed Disease
Severity (Ref.) Potential Mechanisms Figure

C
om

pe
ti

ti
on

RSV IAV 3 Decreased [27]

IAV-infected cell clearance reduced by RSV
and RSV production reduced by IAV Figure 2B

IAV infected cell clearance reduced by RSV Figure A1A

IAV clearance reduced by RSV Figure A1A

IAV infected cell clearance reduced by RSV
and RSV clearance increased by IAV Figure A1B

IAV RV 0 Decreased [33] RV infected cell clearance reduced by IAV Figure 3B

RV IAV 2 Decreased [33] RV infected cell clearance reduced by IAV Figure 3C

IAV RV 2 Increased [33] IAV infected cell clearance reduced by RV Figure 3D

IAV SARS-CoV-2 3 Increased [37] IAV infected cell clearance reduced by
SARS-CoV-2 Figure 3E

Pa
rt

it
io

ni
ng

RSV IAV 3 Decreased [27]

IAV infectivity reduced by RSV and RSV
production reduced by IAV Figure 2C

RSV-infected cell clearance increased by IAV Figure A1C

IAV RV 0 Decreased [33]

RV infected cell clearance reduced by IAV and
IAV infected cell clearance increased by RV Figure 4A

RV infected cell clearance reduced by IAV and
IAV clearance reduced by RV Figure A3A

RV infected cell clearance reduced by IAV and
IAV production reduced by RV Figure A3B

RV infected cell clearance reduced by IAV and
IAV infectivity reduced by RV Figure A3C

RV IAV 2 Decreased [33] Reduced number of target cells for IAV Figure 4B

IAV RV 2 Increased [33]

RV production increased by IAV Figure 4C

No interaction Figure 4C

RV infectivity increased by IAV Figure A3D

Reduced number of target cells for RV and
IAV infected cell clearance reduced by RV Figure A3E

Reduced number of target cells for RV and RV
infected cell clearance reduced by IAV Figure A3F

IAV SARS-CoV-2 3 Increased [37]

SARS-CoV-2 production increased by IAV Figure 4D

No interaction Figure 4D

SARS-CoV-2 infectivity increased by IAV Figure A4A

Reduced number of target cells for
SARS-CoV-2 and IAV infected cell clearance
reduced by SARS-CoV-2

Figure A4B

Reduced number of target cells for
SARS-CoV-2 and SARS-CoV-2-infected cell
clearance reduced by IAV

Figure A4C
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In addition to potential effects on early host responses, one of the most common
mechanisms defined by our analysis was altered rates of infected cell clearance, which may
indicate an effect on virus-specific CD8 T-cell responses [47]. In some cases, there was a
negative effect, while in others, there was a positive effect (Table 4). Further, there were
some scenarios where each virus affected the other virus’ infected cell clearance rate. This
may indicate variation in the number, composition, and/or function of epitope-specific T
cells, which was observed for other viral pairs (e.g., lymphocytic choriomeningitis (LCMV)
and Pichinde (PICV) viruses) [62]. For scenarios where the rates are reduced, it could also
indicate that having fewer available target cells from preinfection would have automatically
reduced the number of T cells needed to clear the infection. Data defining host responses
are important to in helping to distinguish between these possibilities, particularly because
CD8 T cells have to be significantly reduced to have a robust impact on viral loads, and
their efficacy is dependent on the number of infected cells [47].

Effects on other infection processes such as the rates of viral infectivity or production
were detected for some coinfection scenarios, although this was rarely the sole mechanism
(Table 4). Only in IAV-RV and IAV-CoV2 coinfections within the target cell partitioning model
were these potential single interactions, and they each resulted in similar viral load dynamics
(Figures 4C,D, A3D and A4A). This is because the type of model used here cannot typically
distinguish between the effects of these two processes [63]. There is some evidence that the
infectivity of SARS-CoV-2 is increased by IAV but not RSV within cell cultures [41,43]. The
underlying mechanism driving this remains unknown, but other studies with IAV and PIV
have shown enhanced infection rates where PIV increased cell-to-cell fusion and, thus, spread
of IAV [32]. However, another study found that IAV titers were increased while SARS-CoV-2
titers were decreased during IAV-CoV2 coinfection in mice [42]. The discrepancy between
these studies, in which one found there was an increase in the number of infected cells, while
the other found reduced viral loads, may have been due to the results being obtained in vitro
vs. in vivo or to another interaction (e.g., IFN suppression of SARS-CoV-2 or clearance by
macrophages). Our analyses suggest that SARS-CoV-2 titers would be reduced within the
target cell competition model (Figure A3E,F) or when the number of susceptible cells was
reduced within the target cell partitioning model (Figure A4B,C). This may indicate a role for
the IAV-activated innate immune response and/or a lower effective dose of SARS-CoV-2.

A limitation of this work is that we used minimal data that were of different types (i.e.,
viral loads or weight loss) to predict potential mechanisms during viral coinfection. The
quantity and type of data used are important because altered viral loads (e.g., as in RSV–
IAV coinfection), immune cells, or cytokines do not always directly equate to differences in
disease severity. We previously showed this phenomenon where we found that the number
of infected cells and inflammation were nonlinearly correlated to disease severity [47]. This
was particularly evident in one experiment where CD8 T cells were depleted, which resulted
in only small reductions in viral loads, yet large reductions in weight loss. However, as
mentioned above, the early immune activation led to a predicted lower effective dose (i.e.,
fewer cells becoming infected) and, thus, reduced disease severity. Similarly, in RSV–IAV
coinfection, IAV titers were slightly increased, yet less weight loss occurred [27]. Thus,
the higher viral loads later in infection may be insignificant with respect to severity. This
highlights that, while some mechanisms may occur and alter viral loads, they could be
distinct from those that yield disease outcomes. Our results from matching the qualitative
differences in weight-loss data, which is a measure of disease severity, for IAV coinfection
with RV or SARS-CoV-2 may better represent potential mechanisms with measurable
differences in outcome. However, many of these also led to predicted differences in viral
loads. Some information about mechanism may be able to be deduced from the timing
of when weight loss begins to deviate from the monoinfection. In several scenarios, this
occurred directly after the initiation of the secondary infection, which suggests that the
environment created by the first virus had immediate effects.

The mechanisms suggested by our analysis occasionally differed depending on the
underlying model hypothesis (i.e., whether viruses competed for epithelial cells) and, in
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some cases, resulted in different predicted viral load kinetics. Because most respiratory
viruses can infect various types of airway epithelial cells, and replicate in the upper and
lower respiratory tracts, it is conceivable that each virus would have ample cells to infect.
However, by chance or due to the airway structure, they may enter the same region and
interact on a local level. This may lead to cells being coinfected with both viruses, which
we did not model explicitly. We indirectly modeled the potential effects of coinfected cells
by assuming that the rates of infection and/or production could be different. Interestingly,
cellular coinfection was detected during simultaneous infection with RSV and HMPV,
where coinfected cells were possible but in small numbers and less likely in the presence of
IFN [36]. The same may be true during other coinfections with viruses that are sensitive
to IFN antiviral responses. To model the impact of coinfected cells and potential hetero-
geneity in their prevalence, agent-based models may be better suited than those used here.
However, it is important to determine whether and for how long these local effects have a
measurable impact during an in vivo infection.

Examining data from viral–viral coinfections using mathematical models allowed for
us to reduce the number of possible underlying mechanisms that could result in altered
viral load kinetics and/or disease severity. Although the models were relatively simple
and lacked investigation into specific host immune responses, the analysis provides the
infrastructure to integrate immunological models of higher complexity once data becomes
available. Models for some immune responses during respiratory virus infections are
already being developed and validated with experimental data (reviewed in [45,64]). Some
of the insight from those studies was integrated here and aided our ability to interpret
the small amount of experimental data currently available. However, establishing better
methods that could predict disease severity (e.g., as in [47]) is critical. Our ability to
assess the contribution and timescales of different mechanisms to infection kinetics and
outcome should increase as more temporal viral load, immunologic, and pathologic data
become available. In addition, the generated hypotheses should aid in experimental design,
ultimately leading to a more complete understanding of respiratory virus coinfection.
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Appendix A

Appendix A.1. Complete Results from Fitting the Coinfection Models to Data from RSV-IAV
Coinfection in Ferrets

The complete set of best-fit parameters obtained from fitting the coinfection models
(‘competition’, Equations (5)–(8); ‘partitioning’, Equations (9)–(12)) with the Equations (13)
and/or (14) to viral loads from animals infected with RSV followed by IAV after 3 days
is in Tables A1 and A2. The top models are highlighted in gray and the dynamics are in
Figures 2 and A1. Models with a predicted RSV rebound (Figure A2) were excluded.
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Table A1. Full parameter results from fitting the target cell competition model to RSV-IAV coin-
fection in ferrets. Parameters from simulating (‘no interaction’) or fitting the target cell competition
model (‘competition’; Equations (5)–(8)) with the Equations (13) and/or (14) to viral loads from
animals infected with RSV followed by IAV after 3 days. An NLME modeling approach was used
and only the strength of interaction (κ) was estimated. Parameters are reported as the population
median (κ) with standard deviation of the associated random effect (ωκ). Fit quality is reported as
log-likelihood (-2LL), AICc, and standard deviation of the residual error (σ). The best models and
predicted mechanisms are highlighted in gray and summarized in Table 1.

Interaction

IAV RSV

-2LL AICc σRSV σIAV
Strength of Strength of Strength of Strength of

Enhancement, Inhibition, Enhancement, Inhibition,
κ(ωκ) κ(ωκ) κ(ωκ) κ(ωκ)

RNA−1 RNA−1 RNA−1 RNA−1

No interaction 0 0 0 0 185.0 189.0 0.79 0.81

Single interaction

β+IAV 1.9× 10−18 (6.5) – – – 185.0 193.0 0.79 0.81
p+IAV 3.4× 10−12 (2.5) – – – 185.0 193.0 0.79 0.81
δ+IAV 6.7× 10−11 (8.5) – – – 185.0 193.0 0.79 0.81
c+IAV 2.2× 10−10 (3.5) – – – 185.0 193.0 0.79 0.81

β−IAV – 4.3× 10−18 (6.9) – – 185.0 193.0 0.79 0.81
p−IAV – 8.5× 10−17 (5.3) – – 185.0 193.0 0.79 0.81

δ−IAV – 7.1× 10−6 (0.1) – – 166.2 174.2 0.79 0.65
c−IAV – 6.0× 10−5 (0.1) – – 167.8 175.8 0.79 0.66

β+RSV – – 1.6× 10−16 (4.5) – 185.0 193.0 0.79 0.81
p+RSV – – 1.2× 10−13 (2.0) – 185.0 193.0 0.79 0.81
δ+RSV – – 3.3× 10−14 (2.0) – 185.0 193.0 0.79 0.81
c+RSV – – 8.6× 10−9 (0.2) – 182.5 190.5 0.76 0.81

β−RSV – – – 1.4× 10−5 (2.3) 182.0 190.0 0.81 0.76
p−RSV – – – 1.6× 10−8 (0.4) 182.5 190.5 0.76 0.80
δ−RSV – – – 1.1× 10−9 (0.9) 183.7 191.7 0.77 0.81
c−RSV – – – 2.2× 10−13 (2.2) 185.0 193.0 0.79 0.81

Double interactions

δ−IAV and β−RSV – 6.5× 10−6 (0.1) – 7.5× 10−17 (11.1) 166.1 178.1 0.79 0.65
δ−IAV andp−RSV – 1.2× 10−5 (0.1) – 8.7× 10−9 (0.2) 163.7 175.7 0.76 0.65
δ−IAV and δ+RSV – 6.6× 10−6 (0.1) 3.6× 10−8 (5.3) – 166.1 178.1 0.79 0.65

δ−IAV and c+RSV – 1.1× 10−5 (0.1) 4.2× 10−9 (0.2) – 163.8 175.8 0.76 0.65

c−IAV and β−RSV – 5.6× 10−5 (0.1) – 8.6× 10−21 (16.6) 167.7 179.7 0.79 0.66
c−IAVand p−RSV – 1.0× 10−4 (0.1) – 3.8× 10−9 (0.3) 165.5 177.5 0.76 0.66
c−IAV and δ+RSV – 6.0× 10−5 (0.1) 1.4× 10−16 (5.1) – 167.7 179.7 0.79 0.66
c−IAV and c+RSV – 9.5× 10−5 (0.1) 1.9× 10−9 (0.3) – 165.7 177.7 0.77 0.66
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Table A2. Full parameter results from fitting the target cell partitioning model to RSV-IAV coin-
fection in ferrets. Parameters from simulating (‘no interaction’) or fitting the target cell partitioning
model (‘competition’; Equations (5)–(8)) with the Equations (13) and/or (14) to viral loads from
animals infected with RSV followed by IAV after 3 days. An NLME modeling approach was used
and only the strength of interaction (κ) was estimated. Parameters are reported as the population
median (κ) with standard deviation of the associated random effect (ωκ). Fit quality is reported as
log-likelihood (-2LL), AICc, and standard deviation of the residual error (σ). The best models and
predicted mechanisms are highlighted in gray and summarized in Table 1. Although some models
resulted in the lower AICc values, they were excluded because they produced a viral load rebound.

Interaction

IAV RSV

-2LL AICc σRSV σIAV
Strength of Strength of Strength of Strength of

Enhancement, Inhibition, Enhancement, Inhibition,
κ(ωκ) κ(ωκ) κ(ωκ) κ(ωκ)

RNA−1 RNA−1 RNA−1 RNA−1

No interaction 0 0 0 0 181.3 185.3 0.88 0.72

Single interaction

β+IAV 6.0× 10−12 (2.9) – – – 181.3 189.3 0.88 0.72
p+IAV 3.5× 10−11 (2.2) – – – 181.3 189.3 0.88 0.72
δ+IAV 2.3× 10−15 (2.3) – – – 181.3 189.3 0.88 0.72
c+IAV 7.1× 10−16 (2.2) – – – 181.3 189.3 0.88 0.72

β−IAV – 1.3× 10−6 (0.90) – – 180.5 188.5 0.88 0.71
p−IAV – 6.3× 10−5 (0.06) – – 168.6 176.6 0.88 0.62
δ−IAV – 7.0× 10−7 (0.2) – – 178.3 186.3 0.88 0.70
c−IAV – 4.9× 10−7 (1.9) – – 180.7 188.7 0.88 0.71

β+RSV – – 7.4× 10−7 (1.0) – 178.8 186.8 0.84 0.72
p+RSV – – 1.4× 10−34 (12.6) – 181.2 189.2 0.88 0.72
δ+RSV – – 1.9× 10−8 (0.04) – 131.0 139.0 0.40 0.72
c+RSV – – 7.1× 10−9 (0.10) – 169.2 177.2 0.72 0.72

β−RSV – – – 1.8× 10−5 (0.1) 128.6 136.6 0.38 0.72
p−RSV – – – 1.0× 10−8 (0.1) 169.7 177.7 0.73 0.72
δ−RSV – – – 6.8× 10−19 (4.1) 181.3 189.3 0.88 0.72
c−RSV – – – 8.8× 10−18 (6.5) 181.3 189.3 0.88 0.72

Double interactions

δ−IAV and β−RSV – 2.1× 10−6 (0.3) – 1.2× 10−5 (0.1) 125.9 137.9 0.38 0.70
δ−IAV and p−RSV – 2.5× 10−6 (0.2) – 1.0× 10−8 (0.08) 164.9 176.9 0.70 0.70
δ−IAV and δ+RSV – 2.8× 10−31 (10.9) 1.9× 10−8 (0.05) – 131.0 143.0 0.40 0.72
δ−IAV and c+RSV – 2.4× 10−6 (0.1) 6.3× 10−9 (0.1) – 164.0 176.0 0.70 0.70
c−IAV and β−RSV – 2.8× 10−16 (7.2) – 1.9× 10−5 (0.2) 128.5 140.5 0.38 0.72
c−IAV and p−RSV – 2.3× 10−5 (0.3) – 6.1× 10−9 (0.1) 163.9 175.9 0.66 0.72
c−IAV and δ+RSV – 6.0× 10−17 (3.0) 1.9× 10−8 (0.03) – 130.9 142.9 0.40 0.72
c−IAV and c+RSV – 2.6× 10−5 (0.2) 3.6× 10−9 (0.07) – 163.1 175.1 0.65 0.73
β−IAV and β−RSV – 5.5× 10−5 (0.4) – 1.2× 10−5 (0.1) 120.2 132.2 0.40 0.62
β−IAV and p−RSV – 9.6× 10−5 (0.04) – 8.8× 10−8 (0.1) 127.3 139.3 0.45 0.63
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IAV RSV
A  Coinfection with target cell competition and single interaction  

C  Coinfection with target cell competition and dual interactions  

IAV RSV

IAV

RSVIAV

RSV

D  Coinfection with target cell partitioning and single interaction  
IAV RSV

B  Coinfection with target cell competition and single interaction  

Figure A1. Model dynamics of alternate mechanisms of RSV-IAV coinfection. Comparison of the
monoinfection model fit (dashed lines; Equations (1)–(4)) and fit of the coinfection models (solid
lines; Equations (5)–(8) or Equations (9)–(12)) with the interaction functions (Equations (13) and (14))
to viral titers from ferrets infected with RSV followed by IAV after 3 days (RSV, white circles; IAV,
white squares). Heatmaps are the relative change in total viral burden (i.e., ∆VAUC; Equation (15))
evaluated for a range of interaction strengths (κ = 1× 10−9 to 1× 102 RNA/100 µL) and infection
intervals (0 to 11 d). The best-fit κ for a coinfection at 3 days is denoted by a white star. Model
dynamics of the target cell competition model with (A) δ−IAV, (B) c−IAV (bottom), (C) δ−IAV and c+RSV.
(D) Model dynamics of the target cell partitioning model with δ+RSV .

Figure A2. Model dynamics excluded due to a predicted rebound of RSV during RSV-IAV coin-
fection. Fit of the monoinfection model (dashed lines; Equations (1)–(4)) or the target cell partitioning
model with the indicated mechanism (solid lines; Equations (9)–(12)) to viral titers from ferrets
infected with RSV (circles) followed by IAV (squares) after 3 days. Each mechanism included a
reduction in the rate of RSV infectivity (β−RSV), which was paired with either decreased rates of
RSV infected cell clearance (δ−RSV), IAV infectivity (β−IAV), or IAV clearance (c−IAV). Because the RSV
dynamics rebounded, these were excluded as possible mechanisms.
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Appendix A.2. Alternate Interactions from Simulating the Target Cell Partitioning Model for IAV
Coinfection with RV or SARS-CoV-2

Dynamics of the target cell partitioning model (Equations (9)–(12)) with alternate
mechanisms for simultaneous IAV and RV coinfection (Figure A3A–C), IAV-RV coinfection
(Figure A3D–F), and IAV-CoV2 coinfection (Figure A4A–C).

Coinfection with interaction
Coinfection without interaction
Single infectionTarget cell partitioning

RVβ+

cIAV
+andδRV

_

D  Coinfection with IAV followed by RV at day 2 with

A  Simultaneous coinfection with IAV and RV with

_
B  Simultaneous coinfection with IAV and RV with IAVandδRV

_
p

C  Simultaneous coinfection with IAV and RV with IAVβ
_

andδRV

_

F  Coinfection with IAV followed by RV at day 2 with δRV
_

0 (RV)T and
_

E  Coinfection with IAV followed by RV at day 2 with δIAV
_

0 (RV)T and
_

21 3

RVIAV

0
Days post first infection

and

21 3

RVIAV

0
Days post first infection

and

21 3

RVIAV

0
Days post first infection

and

IAV RV

0 21 3
Days post first infection

IAV RV

0 21 3
Days post first infection

IAV RV

0 21 3
Days post first infection IAV coinfection

IAV only RV only
RV coinfection

coinfection

IAV only
RV only

coinfection

IAV only
RV only

IAV coinfection
IAV only

RV coinfection
RV only

coinfection

IAV only
RV only

coinfection

IAV only
RV only

coinfection

IAV only
RV only

coinfection

IAV only
RV only

Figure A3. Model dynamics of alternate mechanisms of IAV-RV coinfection. Model simulations
of the dynamics for monoinfection (solid line) or IAV coinfection with RV using the target cell
partitioning model (Equations (9)–(12)) without interaction (dotted line) or with interaction (dashed
line). The predicted viral loads and CAUC of the infected cells are shown alongside the percent
weight loss from infected animals [33]. Dynamics of simultaneous coinfection with IAV and RV with
RV infected cell clearance reduced by IAV (δ−RV) and (A) IAV clearance reduced by RV (c−IAV), (B) IAV
production reduced by RV (p−IAV), or (C) IAV infectivity reduced by RV (β−IAV). Dynamics of IAV-RV
coinfection with (D) RV infectivity increased by IAV (β+RV), (E) reduced number of target cells (T−0 )
for RV and IAV infected cell clearance reduced by RV (δ−IAV), or (F) reduced number of target cells for
RV (T−0 ) and RV infected cell clearance reduced by IAV (δ−RV).
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Coinfection with interaction
Coinfection without interaction
Single infectionTarget cell partitioning

IAV

0

SARS-CoV-2

21 3
Days post first infection

IAV

0

SARS-CoV-2

21 3
Days post first infection

IAV

0

SARS-CoV-2

21 3
Days post first infection

A  Coinfection with IAV followed by SARS-CoV-2 at day 3 with CoV2β+

B   Coinfection with IAV followed by SARS-CoV-2 at day 3 with 

C  Coinfection with IAV followed by SARS-CoV-2 at day 3 with CoV2δ
_

T0 (CoV2) and
_

δIAV
_

andT0 (CoV2)
_

IAV only
IAV coinfection

CoV2 only
CoV2 coinfection

IAV only
CoV2 only
coinfection

IAV only
CoV2 only
coinfection

IAV only
CoV2 only
coinfection

Figure A4. Model dynamics of alternate mechanisms of IAV-CoV2 coinfection. Model simulations
of the dynamics for monoinfection (solid line) or IAV coinfection with SARS-CoV-2 using the target
cell partitioning model (Equations (9)–(12)) without interaction (dotted line) or with interaction
(dashed line). The predicted viral loads and CAUC of the infected cells are shown alongside the
percent weight loss from infected animals [37]. Dynamics of IAV-CoV2 coinfection with (A) SARS-
CoV-2 infectivity increased by IAV (β+CoV2), (B) reduced number of target cells for SARS-CoV-2 (T−0 )
and IAV infected cell clearance reduced by SARS-CoV-2 (δ−IAV), or (C) reduced number of target cells
for SARS-CoV-2 (T−0 ) and SARS-CoV-2-infected cell clearance reduced by IAV (δ−CoV2).
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