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Abstract: The COVID-19 pandemic caused by SARS-CoV-2 remains a global public health threat
and has prompted the development of antiviral therapies. Artificial intelligence may be one of the
strategies to facilitate drug development for emerging and re-emerging diseases. The main protease
(Mpro) of SARS-CoV-2 is an attractive drug target due to its essential role in the virus life cycle and
high conservation among SARS-CoVs. In this study, we used a data augmentation method to boost
transfer learning model performance in screening for potential inhibitors of SARS-CoV-2 Mpro. This
method appeared to outperform graph convolution neural network, random forest and Chemprop
on an external test set. The fine-tuned model was used to screen for a natural compound library
and a de novo generated compound library. By combination with other in silico analysis methods, a
total of 27 compounds were selected for experimental validation of anti-Mpro activities. Among all
the selected hits, two compounds (gyssypol acetic acid and hyperoside) displayed inhibitory effects
against Mpro with IC50 values of 67.6 µM and 235.8 µM, respectively. The results obtained in this
study may suggest an effective strategy of discovering potential therapeutic leads for SARS-CoV-2
and other coronaviruses.

Keywords: deep learning; SARS-CoV-2 Mpro; transfer learning; drug development; natural compound

1. Introduction

SARS-CoV-2, first reported in the beginning of 2020 [1], has caused over 759 million
confirmed infection cases including 6.8 million deaths as of March of 2023 as reported to
the World Health Organization (WHO). SARS-CoV-2 is a novel coronavirus which shares
79.5% sequence similarity with SARS-CoV [2], both of which belong to the Coronaviridae
family, which contains positive single-stranded encapsulated viruses [3]. The virus genome
contains several open-reading frames (ORFs) that encode four structure proteins (sps),
16 non-structure proteins (nsps) and several accessory proteins [4,5]. Nsp5 is the main
protease (Mpro), which is also known as 3-Chymotrypsin like protease (3CLpro). It has
been characterized as one of the potential druggable targets of SARS-CoV-2 owing to its
essential role in viral replication and transcription [6]. Active Mpro consists of a homodimer
while each protomer has three domains (I–III) [7]. The active site of Mpro locates in the cleft
between domains I and II and features the catalytic Cys-His dyad (Cys145-His41) [8–10].
After ORF1a/b translates into two polyproteins pp1a and pp1ab, Mpro cleavages at 11
distinct sites to release functional polypeptides [6,11,12]. The core recognition sequence
is Leu-Gln↓ (Ser/Ala/Gly) [7,13]. Moreover, the high conservatism of Mpro among coron-
aviruses and the absence of homologues with similar cleavage specificity in humans make
it an attractive target for antiviral drug discovery [14,15].
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Many clinical trials have been initiated in the search for the prevention and treat-
ment of coronavirus disease 2019 (COVID-19). At the time of writing, several vaccines
have been approved by the U.S. Food and Drug Administration (FDA), including ones
by Pfizer/BioNTech, Moderna and Johnson and Johnson/Jassen (JnJ) [16]. There have
also been attempts in preclinical development of multiple formulations of vaccine candi-
dates [17]. However, the continuing mutations in the viral genome may affect the protective
effects of current vaccines. Notably, the emergence of the Omicron (B.1.1.529) VoC which
contains a high number of mutations in the viral spike protein has an increased reinfection
risk [18]. As the pandemic threat continues and vaccines cannot provide complete and
lasting protection [19], the need for antiviral agents to treat infected patients remains. Drug
repurposing, for the advantage of already confirmed clinical profiles data, is considered
to be a fast and low-cost approach to find potential effective therapeutic agents against
COVID-19 [20–22]. At present, there are only three drugs approved by the FDA for the treat-
ment of COVID-19, including Actemra (Tocilizumab), Veklury (Remdesivir) and Olumiant
(baricitinib) [23]. There are several authorized products under an EUA for the clinical treat-
ment of COVID-19 as well, including two anti-viral drugs which are Paxlovid (nirmatrelvir
and ritonavir) and Lagevrio (molnupiravir), three immune modulators, five SARS-CoV-2-
targeting monoclonal antibodies, sedatives and renal replacement therapies. Hundreds of
drugs are undergoing clinical trials for COVID-19, such as favipiravir, lopinavir, ribavirin,
ritonavir, and tocilizumab, which have shown positive effects in vitro [17,24]. Dexametha-
sone and hydroxychloroquine have been withdrawn from treatment options because of the
insignificant protection benefits and serious side effects [24–26].

Drug discovery and development is a time-consuming process in which computa-
tional methods can help speed up the identification and application of drug candidates.
Deep learning techniques have recently received wide attention and been applied to drug
discovery [27]. To facilitate efforts in exploring the chemical space against various thera-
peutic targets for SARS-CoV-2, deep learning combined with computer-aided drug design
(CADD) methodologies such as docking and molecular dynamics simulation have been
extensively used [20,28–35]. However, labeled data scarcity remains a challenge for super-
vised learning due to time-consuming and laborious benchwork testing. To better solve
this problem, transformer pre-training by making use of large amounts of unlabeled data
plus downstream task-specific finetuning has become a powerful architecture for learning
representation of texts, i.e., natural language processing (NLP) [36–40]. Compared with
many previous approaches such as graph neural networks (GNNs), modern transform-
ers display substantial gain of efficiency and throughput [41,42]. Given the availability
of millions of Simplified Molecular-Input Line-Entry system (SMILES) strings, different
molecular property prediction tasks can be tackled by using learned representations of
functional groups and atoms learned by the model [43–45].

In the present study, we used pre-trained ChemBERTa [39] which is based on RoBERTa [37]
transformer implementation from HuggingFace and fine-tuned it on a dataset which contains
over 280,000 molecules screened against SARS-CoV-1 Mpro [29]. Considering the fact that
natural compounds have been sources of pharmacologically active molecules for a long history
and that the de novo design of novel scaffolds might expand the chemical space of active drug
candidates, we made predictions of two libraries, a natural compound library (TargetMol) and a
de novo generated compound library from the literature by Santana et al. [29], to seek molecules
against SARS-CoV-2 Mpro. The predicted active molecules were evaluated using molecular
docking and PAINS filtering. In vitro enzyme activity inhibition experiments were performed
to validate the selected hits.

2. Materials and Methods
2.1. Dataset Preparation

Due to the high sequence similarity (~76%) shared between SARS-CoV-2 Mpro and
SARS-CoV-1 Mpro, we selected a dataset which contains over 280,000 molecules against
SARS-CoV-1 Mpro as the fine-tuning dataset. Obtained from the publication of Santana
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and Silva-Jr [29], it consisted of 629 active molecules and 288,940 inactive molecules.
Based on the fact that one molecule can be represented by more than one SMILES strings,
and that the augmented dataset with enumerated SMILES could help improve model
performance [46], we used the same approach to augment the dataset. Different ra-
tios of SMILES enumeration were calculated with a python script, which is available at
https://github.com/Ebjerrum/SMILES-enumeration (accessed on 1 July 2020).

2.2. Chemical Space Analysis

Morgan fingerprints for each molecule using radius 2 and 2048 bits fingerprint vec-
tors were determined after obtaining the canonical SMILES by rdkit in Python. Then,
t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering analysis was performed
by the scikit-learn package in Python. Data points were reduced from 2048 dimensions to
2 dimensions by t-SNE. All t-SNE parameters were Scikit-learn’s default values.

2.3. Model Performance Evaluation

The fine-tuned model performance was evaluated with five-fold cross-validation.
Scaffold splitting was used to ensure that the training/validation set is more structurally
different, which, as a result, is more challenging for the model. Additionally, an external
independent test dataset which was collected from results of a screening assay against
SARS-CoV-2 Mpro using X-ray crystallography (at Diamond Light Source, Oxfordshire,
United Kingdom) [47] was used. It consisted of 880 molecules with 78 hits. The performance
of Chemprop [48], which is a freely available message passing neural network (MPNN)
(http://chemprop.csail.mit.edu/predict (accessed on 27 October 2021)) on the same dataset,
was also determined for comparison. Various evaluation metrics including area un-
der the receiver–operator characteristic curve (au_roc), area under the precision–recall
curve (au_prc), recall score, accuracy score, precision score and f1 score were calculated.
Recall = TP/(TP + FN). Accuracy = (TP + TN)/(TP + FN + TN + FP).
Precision = TP/(TP + FN). F1 = 2 × recision × Recall/(Precision + Recall). TP, TN, FP and
FN stand for true positive, true negative, false positive and false negative, respectively.
Figures were plotted by matplotlib in Python.

2.4. Compound Libraries and Compounds

The Natural Compound Library obtained from Targetmol (L6000) contains 2364 com-
pounds after 228 compounds with large molecular weight were removed. The de novo
generated compound library of Santana and Silva-Jr contains 66,392 generated molecules.
PF-07321332 and Boceprevir were purchased from MedChemExpress. Compounds T2983,
T3872, T2765, T2950, T2730, T2755, T2957, T3012, T2133, T3227, T1016, T2844, T2775, T1648,
T1400, T1160, T2570, T3232, T5429, T2727, T5497, T1035, T1609, T6S1529, T3149, T3S1612
and TL0006 were purchased from TargetMol.

2.5. PAINS Filtering

All predicted active compounds were submitted to FAF-DRUGS4 server (available at
http://fafdrugs4.mti.univ-paris-diderot.fr (accessed on 25 November 2021)) by evaluating
their physicochemical properties [49]. Molecules with suspicious substructure features
were flagged out by Pan Assay Interference Compounds (PAINS) filter.

2.6. Molecular Docking Protocol

Crystal structures of SARS-CoV-2 Mpro bound with inhibitor PF-07321332 (PDB ID:
7VH8) and inhibitor N3 (PDB ID: 6LU7) were accessed from the RCSB Protein Data Bank.
The Mpro protein and inhibitor ligands were prepared using AutoDockTools by removing
water atoms and adding polar hydrogen atoms and charges. Prepared protein and ligand
files were converted to PDBQT format. Molecular docking was carried out using AutoDock
Vina-1.2.0 software while Mpro in the structure of 7VH8 was used as the docking protein
due to its higher resolution. The redocking of PF-07321332 and N3 was performed in order

https://github.com/Ebjerrum/SMILES-enumeration
http://chemprop.csail.mit.edu/predict
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to validate the performance of the docking model; then, the docking model was determined
for the virtual screening process. The grid box center was set at X: −18.217, Y: 17.605,
Z: −25.603 and box dimension was set to X: 20, Y: 26, Z: 24. The binding affinities of the
compounds with Mpro protein were calculated and ranked.

2.7. Protein Expression and Purification of SARS-CoV-2 Mpro

The plasmid pET-28b-SARS-CoV-2-Mpro was a kind gift from Professor George Fu Gao
from the Institute of Microbiology, Chinese Academy of Sciences. The expression plasmid
was transformed into E. coli strain BL21 cells and then cultured in LB medium containing
50 µg/mL kanamycin in a shaking incubator at 37 ◦C. When the cells were grown to an
OD600 of 0.6–0.8, 0.6 mM IPTG was added to the cell culture to induce the protein expression
at 16 ◦C. After 18 h, the cells were harvested by centrifugation at 4000 rpm for 20 min
at 4 ◦C. The cell pellets were washed twice by PBS, resuspended in lysis buffer (50 mM
HEPES, 300 mM NaCl, 10 mM imidazole, pH 7.5), lysed by sonication on ice for 3 s ON time
5 s OFF time for 30 min of total time and then clarified by ultracentrifugation at 18,000 rpm
at 4 ◦C for 40 min to remove debris. The supernatants were then purified by TALON metal
affinity resin and washed with washing buffer (25 mM HEPES, 500 mM NaCl, pH 7.5) to
remove unspecific binding proteins. The His-tagged Mpro was eluted by elution buffer
(25 mM HEPES, 500 mM NaCl, 300 mM imidazole, pH 7.5). His-tagged SUMO protease
(home-made) was added to remove the His-tag, His-tagged SUMO protease and uncleaved
His-tag protein overnight at 4 ◦C. The Mpro was further purified by His60 Ni superflow
resin. The quality of Mpro was checked by SDS-PAGE, and the concentration of Mpro was
determined via a BCA Protein Assay Kit. The purified Mpro was stored in (10 mM Tris-HCl,
1 mM DTT, 1 mM EDTA, 10% glycerol, pH 7.5).

2.8. FRET-Based Mpro Enzyme Activity Inhibition Assay

Fluorescence resonance energy transfer (FRET)-based Mpro enzyme activity inhibition
assay was conducted as follows. First, 5 µL serially diluted concentrations of candidate
compounds were incubated with 35 µL 150 nM Mpro in Assay Buffer (10 mM Tris-Hcl, pH
7.5; 1 mM DTT; 1 mM EDTA; 0.01% Triton X-100) in a 96-well plate at room temperature for
30 min. This was followed with the adding of 10 µL 20 µM fluorogenic substrate (Dabcyl-
KTSAVLQSGFRKME-Edans, P9733-5 mg, purchased from Beyotime) in Assay Buffer on
ice, after which the plate was shaken for 1 min and then transferred to a 37 ◦C incubator for
30 min of incubation. Fluorescence signals (excitation wavelength at 340 nm and emission
wavelength at 490 nm) were measured using a PerkinElmer Envision multimode plate
reader. Experiments were performed in triplicate. Experimental data were plotted by
GraphPad Prism 8.0.

3. Results
3.1. Dataset Preprocessing and Chemical Space Analysis

Because of the highly conserved sequence and the similar substrate binding site of Mpro

between SARS-CoV-1 and SARS-CoV-2, the previously described inhibitors targeting SARS-
CoV-1 Mpro could be used as templates for the design of novel inhibitors against SARS-CoV-
2. Thus, the dataset used for fine-tuning was collected from PubChem (AID:1706) and from
the literature, which contains 629 active molecules and 288,940 inactive molecules [29,50].
Structural relationships between active compounds and inactive compounds using t-SNE
(t-distributed stochastic neighbor embedding) were calculated (Figure 1A). Analysis details
were provided in the Supplementary Information. Data obtained from PubChem were
the result of a QFRET-based biochemical high-throughput screening assay. Two inactive
molecules were dropped due to long SMILES length, which is over 150. Scaffold-based
5-fold split was used to split the data. Due to the high imbalance of the lab dataset, data
augmentation via a SMILES enumeration script was used to create more copies of active
molecules. As shown in Table 1, different ratios of augmentation were conducted for later
comparison to seek the optimum dataset size. To confirm the scaffold differences among
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the five-fold compounds, we also analyzed the structural relationships among the five-fold
molecules using t-SNE (Figure 1B).

1 
 

 
Figure 1. t-Distributed stochastic neighbor embedding (t-SNE) analysis of (A) active molecules
(magenta) and inactive molecules (cyan) of the original dataset; (B) molecules in five subsets;
(C) active molecules in five subsets; (D) molecules in original dataset (cyan) and the independent test
dataset (red).

Table 1. Augmented dataset.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Label 1 0 1 0 1 0 1 0 1 0
Original 142 57,771 75 57,838 168 57,754 164 57,749 80 57,833
Augmentation_10 1420 57,771 750 57,838 1680 57,754 1640 57,749 800 57,833
Augmentation_20 2840 57,771 1500 57,838 3260 57,754 3280 57,749 1600 57,833
Augmentation_80 11,360 57,771 6000 57,838 13,440 57,754 13,120 57,749 6400 57,833

3.2. Performance of the Fine-Tuned Model

We used transfer learning to fine-tune a classification model for Mpro target bioactivity
prediction. A pre-trained ChemBERTa model was downloaded from huggingface. To
compare the performance of the classifier on different datasets, we calculated various eval-
uation scores using five-fold cross-validation. As shown in Table 2, the pre-trained model
using augmented training data displayed better predictive ability on the validation dataset
than no augmented data. An obvious improvement of evaluation scores was observed in
all augmented datasets, especially in datasets with augmented active molecules 20 and
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80 times. In addition, with augmented datasets, the pre-trained model for downstream
task learning outperformed Graph Convolution Neural Network (GCNN) and baseline
model Random Forest (RF).

Table 2. Performance of fine-tuned model, GCNN model and RF on validation dataset.

Model Transfer Learning GCNN Random Forest

Dataset Original Active× 10 Active× 20 Active× 80 Active× 20 Active× 80 Active× 20 Active× 80

mcc 0.06931 0.88577 0.77580 0.97618 0.17995 0.26405 0.47148 0.46608
tp 1.4 1021.4 2294.6 9712 192 2160 948 3792
tn 57787.4 57757.8 57761.6 57755 57489.2 54236.6 57784.2 57783.8
fp 0 29.8 26 32.6 298.4 3551 3.4 3.8
fn 124.4 236.6 219.6 352 232.4 7904 1568 6272
auroc 0.52137 0.96239 0.98226 0.99226 0.76543 0.76389 0.77730 0.77897
auprc 0.03054 0.88366 0.95221 0.98621 0.3119 0.50636 0.52265 0.65047
recall 0.01532 0.80871 0.90753 0.96350 0.08885 0.19786 0.31199 0.31759
accuracy 0.99785 0.99550 0.98794 0.99436 0.95663 0.83353 0.97394 0.90750
precision 0.36667 0.97514 0.98818 0.99568 0.59492 0.84163 0.97671 0.99222
f1 0.02881 0.88391 0.94605 0.97931 0.11763 0.20417 0.38709 0.39592

To assess the model performance more realistically, we also evaluated on an exter-
nal test dataset [47]. The external test dataset contains 880 fragments including 78 hits,
which were screened through a combined mass spectrometry and X-ray approach against
SARS-CoV-2 Mpro. The structural diversity between the training and external datasets
was also analyzed using t-SNE, as shown in Figure 1D. As shown in Table 3, a drop in
performance on the external dataset was observed compared with the performance on
the validation dataset, which was expected because no molecules in the test dataset were
learned by the model before. The F1 score is one of the most meaningful metrics because it
represents the harmonic mean of recall and precision. Datasets with 20 times more active
molecules exhibited the highest f1 score of 0.34793, while GCNN and RF using the same
training dataset only scored 0.0788 and 0.02025, respectively. Au_prc and au_roc were
two other evaluation metrics for imbalanced data, while the former is more sensitive to
the improvements of the positive class, which is a better indicator. In fine-tuned models,
training datasets with 10 and 20 times more active molecules achieved similar au_prc scores,
of 0.28671 and 0.28472, respectively, while the 80 times augmented datasets achieved a
lower au_prc of 0.23152.

Table 3. Performance of fine-tuned model, GCNN model and RF on an external dataset.

Model Transfer Learning GCNN Random Forest

Dataset Original Active× 10 Active× 20 Active× 80 Active× 20 Active× 80 Active× 20 Active× 80

mcc 0 0.30798 0.30973 0.26022 0.05526 0.08691 0.08652 0.08652
tp 0 16.6 22.6 26.2 4.8 11.8 0.8 0.8
tn 802 789.8 774 746.2 787.8 754.2 802 802
fp 0 12.2 28 55.8 14.2 47.8 0 0
fn 78 61.4 55.4 51.8 73.2 66.2 77.2 77.2
auroc 0.50025 0.66905 0.67788 0.68109 0.66972 0.68249 0.68298 0.71836
auprc 0.08868 0.28671 0.28427 0.23152 0.20616 0.23784 0.35956 0.40239
recall 0 0.21282 0.28974 0.39990 0.06154 0.15128 0.01026 0.01026
accuracy 0.72909 0.91636 0.90523 0.87773 0.90068 0.87045 0.91227 0.91227
precision 0 0.58623 0.44416 0.31989 0.13992 0.23694 0.8 0.8
f1 0 0.29778 0.34973 0.32647 0.07880 0.10446 0.02025 0.02025

Having evaluated performances of various models and confirmed the advantages of
data augmentation, we used the whole dataset as training input to compare the prediction
abilities of transfer learning and a freely available classifier chemprop (http://chemprop.

http://chemprop.csail.mit.edu/
http://chemprop.csail.mit.edu/


Viruses 2023, 15, 891 7 of 14

csail.mit.edu/ (accessed on 27 October 2021)) on this external test dataset. Chemprop could
be used for molecular property prediction through a Message Passing Neural Network
(MPNN), which works directly on a molecular graph [48]. Transfer learning with a 20 times
augmented dataset achieved the highest au_prc of 0.34433, while the AUC-PR of chemprop
was 0.19321. The f1 score of transfer learning using 20 times augmentation data was 0.41321,
while that of chemprop was 0.19048 (Table 4).

Table 4. Performance of fine-tuned model and Chemprop on an external dataset.

Model Input Mcc Auroc Auprc Recall Accuracy Precision f1

Transfer
Learning

Active × 20 0.37804 0.68186 0.34433 0.34359 0.91341 0.51978 0.41321
Active × 80 0.29978 0.68306 0.26118 0.34359 0.89091 0.37632 0.35833

Chemprop original 0.17636 0.68152 0.19321 0.12821 0.90341 0.37037 0.19048

3.3. Prediction of Bioactivities of Natural Compound and De Novo Generated Molecule Libraries

The fine-tuned model using a 20 times augmented dataset was then used for making
predictions of the Targetmol natural compound library and a de novo generated molecule
library. Scoring ranks were the average results of five independent predictions. A total of
385 natural compounds and 66 de novo generated molecules were predicted as bioactive.
The lists of predicted active compounds are provided in Tables S1 and S2. The top ranked
20 compounds from the natural compound library and 20 from the de novo generated
molecule library are shown in Figures 2 and 3, respectively.
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We next submitted all the predicted active compounds to docking simulation using
AutoDock Vina (version1.2.0). Crystal structures of SARS-CoV-2 Mpro in complex with
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inhibitor PF-07321332 (PDB:7VH8) and N3 (PDB:6LU7) were both downloaded from the
Protein Data Bank. PF-07321332 (Paxlovid) is an oral SARS-CoV-2 Mpro inhibitor devel-
oped by Pfizer and has shown positive responses in Phase III trials in combination with
Ritonavir [51]. N3 is a covalent inhibitor of SARS-CoV-2 Mpro derived from the inhibitor
targeting SARS-CoV-1 Mpro [15]. After calculating the binding affinities of the compounds
with Mpro, 46 compounds were selected for further binding pose analysis according to
a cutoff score of −8.5 kcal/mol. After analysis of residue interactions in crystal struc-
tures of Mpro with PF-07321332 and N3, ligand interactions with F140 and E166 were
considered critical for binding with Mpro. Twelve molecules were finally confirmed as
hits due to more than two H-bonds formed with residues F140 and E166. These hits in-
clude 10 natural compounds (T5429, T2727, T5497, T1035, T1609, T6S1529, T3149, T3S1612,
TL0006) and two de novo generated molecules (58353 and 52917). The binding poses of
these hit compounds with Mpro are displayed in Table 5.
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3.5. PAINS Filtering

In the final round of the in silico analysis, we performed PAINS (pan assay interfer-
ence compounds) filtering through a freely available web server FAF-Drugs4 to estimate
potential molecules that may interfere with biological assays [49]. These compounds may
display false positives in screening assays via a number of means and therefore represent
poor choices for drug development [52]. We submitted all predicted active molecules to the
server; 78 natural compounds and 5 de novo generated molecules were flagged as PAINS.
For those natural compounds, among the top 20 predicted hits and 10 high-dock-scoring
hits, T2765 (rosmarinic acid), T2730 (gossypol acetic acid), T3012 (mangiferin), T3227 (dan-
shensu), T2844 (hyperoside), T2775 (baicalin), T3232 (higenamine hydrochloride), T5429
(theaflavin 3,3′-digallate), T2727 (salvianolic acid B), T6S1529 (1,5-Dicaffeoylquinic acid),
T3149 (salvianolic acid C), TL0006 (chicoric acid) and T3242 (breviscapin) were flagged
as PAINS. For those de novo generated molecules, among the top 20 predicted hits and
two high dock-scoring hits, compound 52917, compound 42806, compound 64500 and
compound 58353 were flagged as PAINS. However, virtual filters may not be perfect in
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identifying molecules that interfere with biological assays. Therefore, the judgement of
PAINS should be taken with caution, and experimental confirmation is always necessary
before any ‘problematic’ molecules are discarded.

Table 5. Summary of selected molecules screened against SARS-CoV-2 Mpro with their structures,
binding affinities and interactive residues.

IDs Name Source Structure Docking Score
(kcal/mol)

Mpro Residues Interacting
with Molecules through
H-Bond and Other Types

PF-07321332 - -
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Table 5. Cont.

IDs Name Source Structure Docking Score
(kcal/mol)

Mpro Residues Interacting
with Molecules through
H-Bond and Other Types
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3.6. In Vitro Binding Assay Validation

In order to validate the in vitro binding activities of selected hits, we purchased
18 natural compounds from the top 20 scored active compounds predicted by deep learn-
ing and 9 selected natural compounds screened by molecular docking from Targetmol.
PF-07321332 and Boceprevir were used as positive controls. These 27 compounds were
tested by SARS-CoV-2 Mpro inhibition assay at concentrations of 200 µM and 40 µM. As
shown in Figure 4A, except for PF-07321332, only compound T2730 (Gossypol acetic acid)
and T2844 (Hyperoside) had over 50% inhibitory effects against Mpro catalytic activity at
200 µM, while all tested compounds exhibited less than 50% inhibitory effects at 40 µM. The
IC50 values of compounds T2730 and T2844 were further determined in dose-dependent
studies, which are 67.6 µM and 235.8 µM, respectively. Noteworthily, as many researchers
have reported that some molecules self-associating into colloidal aggregates is one of the
most common cause of non-specific inhibition [53,54], we added detergent triton X-100 in
the experimental solvent; thus, the false positives caused by aggregate-based inhibition
could be avoided. When treated with and without triton X-100, the inhibitory efficacies
of the positive control Boceprevir and compound T2730 displayed no obvious differences
within the experimental error, although a slight decrease in the inhibitory effects of T2844
when added with triton-X100 was observed. Gossypol acetic acid, a polyphenolic com-
pound isolated form cottonseeds, has been reported to inhibit Bcl-2, Bcl-xL and Mcl-1
function and have antiproliferative effects on some cancer cells in vitro [55]. Hyperoside,
a naturally occurring flavonoid compound isolated from Artemisia capillaris, shows my-
ocardial protective, hepatoprotective, anti-redox and anti-inflammatory activities [56]. It
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is also a derivative of quercetin, which was predicted to potentially inhibit SARS-CoV-2
Mpro [57]. Recently, Dr. Souza’s group has demonstrated a biflavonoid (agathisflavone)
and two flavonols (myricetin and fisetin) as non-competitive inhibitors of SARS-CoV-2
Mpro, which indicated an interesting potential mode of action of these classes of com-
pounds [58,59]. Further studies to deeper understand the mechanism of actions of these
compounds are essential for chemical design to improve the activity profiles. Taken to-
gether, we have found that two natural compounds showed biological activity against Mpro

in vitro.
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Figure 4. Inhibition of SARS-CoV-2 Mpro. (A) Inhibition percentage of selected compounds at
concentrations of 200 µM. (B) Inhibition percentage of selected compounds at concentrations of
40 µM. (C) Representative curves of Boceprevir, compound T2730 and T2844. All data are from at
least three independent experiments and shown as mean ± SD.

4. Discussion

Artificial intelligence-aided drug design is becoming extensively used especially for
emerging diseases because of its potential advantage in saving the time and cost of the drug
discovery and development process. Here, we used a data augmentation method to boost
transfer learning model performance in the fine-tuned bioactivity prediction task. The
model outperformed GCNN, RF and chemprop. A natural compound library and a de novo
generated molecule library were screened by this fast and efficient model. In combination
with frequently used CADD techniques, such as molecular docking and PAINS-filtering,
this method allowed us to select a group of 27 commercial available compounds for
further experimental validation. Among these experimentally tested compounds, gossypol
acetic acid and hyperoside displayed inhibitory effects against Mpro with IC50 values
of 67.6 µM and 235.8 µM, respectively. Even though these two compounds displayed
only micromolar potency, they still provided valuable scaffolds for further drug design in
searching for treatment of COVID-19. Follow-up cellular assays and in vivo experiments
are also essentially necessary to ensure the efficacy and safety of these compounds and
more deeply understand the mechanism of actions. Overall, our results demonstrated
the feasibility of finding potential candidate compounds using a deep learning method,
and the experimental outcome suggested that these natural products may merit further
biological studies of their potential ability in blocking SARS-CoV-2 infection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v15040891/s1, the Fine-tuned model prediction results are pro-
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