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Abstract: Flaviviruses are present on every continent and cause significant morbidity and mortality.
In many instances, severe cases of infection with flaviviruses involve the invasion of and damage
to the central nervous system (CNS). Currently, there are several mechanisms by which it has been
hypothesized flaviviruses reach the brain, including the disruption of the blood–brain barrier (BBB)
which acts as a first line of defense by blocking the entry of many pathogens into the brain, passing
through the BBB without disruption, as well as travelling into the CNS through axonal transport
from peripheral nerves. After flaviviruses have entered the CNS, they cause different neurological
symptoms, leading to years of neurological sequelae or even death. Similar to neuroinvasion, there are
several identified mechanisms of neuropathology, including direct cell lysis, blockage of the cell cycle,
indication of apoptosis, as well as immune induced pathologies. In this review, we aim to summarize
the current knowledge in the field of mechanisms of both neuroinvasion and neuropathogenesis
during infection with a variety of flaviviruses and examine the potential contributions and timing of
each discussed pathway.
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1. Introduction
1.1. Background

Viruses of the flavivirus genus are present on every continent. Examples of flaviviruses
that can cause severe symptoms in humans are mosquito-borne viruses, such as dengue
virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever Virus (YFV), and
Japanese encephalitis virus (JEV), as well as several tick-borne flaviviruses, including tick-
borne encephalitis viruses (TBEV) and Powassan Virus (POWV) [1]. Although the clinical
presentation differs among the described viruses, they all cause significant morbidity and
mortality. DENV, for instance, can result in capillary leakage and hemorrhage that could
prompt circulatory shock [1,2]. Similarly, YFV can cause hemorrhage and shock but also
severe liver damage resulting in jaundice [1,3]. In addition, many severe cases of infection
with flaviviruses are often associated with neurological disease [4,5].

Although less common than the systemic symptoms, DENV can have substantial
neurological involvement, such as encephalopathy, Guillain–Barré syndrome, and acute
disseminated encephalomyelitis [6,7]. Other flaviviruses, such as ZIKV, TBEV, WNV, and
JEV, however, are well-known for their involvement with the central nervous system (CNS).
JEV and WNV cause parkinsonian symptoms with sequelae that can last years after the
initial infection [8], whereas TBEV mainly causes meningitis and meningoencephalitis [9].
For decades, ZIKV was only reported to cause a mild febrile illness in infected patients.
However, new outbreaks occurred in 2007 on the Yap islands and subsequently spread
to South America [10]. Since then, it has been shown that ZIKV has the ability to cross
the placental barrier in pregnant women, causing alarming new neurological symptoms
in the developing fetus such as microcephaly and other fetal abnormalities, commonly
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called congenital Zika syndrome [11,12]. Together, flavivirus infections cause significant
morbidity and mortality annually, emphasizing the urgent need for effective vaccines
and treatments.

The best way to prevent these severe infections is to vaccinate at-risk populations.
Vaccines are available against JEV, TBEV, and YFV, dramatically decreasing the mortality
of these infections. Currently, vaccines against WNV, DENV, and ZIKV are in clinical
trials or conditionally approved [13]. Despite these advances, flavivirus infections are still
widespread. DENV for instance, infects more than 96 million people annually [2]. The
search for an effective vaccine for DENV is complicated by the possibility of antibody-
dependent enhancement (ADE), which calls for a tetravalent vaccine that produces neu-
tralizing antibodies against all four serotypes simultaneously [14]. Furthermore, several
relatively unknown flaviviruses such as Usutu virus (USV) and Murray Valley Encephalitis
Virus (MVEV) could emerge to cause a new global health threat [1]. The risk of zoonotic
emergence of new flaviviruses and the continued threat of current endemic flaviviruses,
despite available vaccines, shows the need for further research about flavivirus biology. In
this review, we aim to summarize current findings on the mechanisms of how flaviviruses
cross the blood–brain barrier to establish infection, as well as causes of cellular pathology
once they have reached the brain.

1.2. Viral Migration during Infection and the Blood–Brain Barrier

Infection with flaviviruses occurs largely through mosquito or tick bites. As such,
the first cells that are infected are located in the dermis, such as dermal macrophages and
tissue resident dendritic cells (DCs), called Langerhans cells [15]. After local proliferation
in the dermis and DCs, the virus can disseminate in different ways: by being released into
the bloodstream as cell-free virus particles, or by being transported to the lymph nodes by
infected DCs. Through this dissemination, the flavivirus can reach and infect secondary
organs such as the lymph nodes, spleen, kidney, or liver [16]. Additionally, the brain can be
infected, which can happen immediately after the first dissemination of virus, or later in
the infection timecourse after multiplication of the virus in secondary organs.

After the initial infection, flaviviruses can invade the brain. The human body contains
several defenses aimed at preventing viruses and other microorganisms from infecting
the brain, chief of which is the blood–brain barrier (BBB). The BBB is a barrier between
blood in the blood vessels and the neuronal, glial, and other cells residing in the brain,
regulating homeostasis and protecting the brain from pathogens. Blood vessels have
differing morphologies throughout the body. In general, they have three layers: the tunica
intima, containing the endothelial cells laying on a basement membrane (BM), the tunica
media with smooth muscle cells, and the fibroelastic tunica adventitia [17]. Capillaries do
not have a tunica media or a tunica adventitia. They consist of a single layer of endothelial
cells, a BM, and pericytes [17]. Importantly, capillaries of the brain are not fenestrated,
meaning they possess an uninterrupted BM [18].

The non-fenestrated endothelial cell is not the only structural characteristic in the BBB
providing protection. Blood in the vessels is sealed off from the vascular network in between
endothelial cells by several attachment molecules that form tight junctions (TJ), preventing
pericellular flow of fluid and molecules. Endothelial cells are maintained by pericytes and
the vascular integrity is supported by astrocytes [19]. Additionally, the BM is complete and
enfolds the capillary, making a division between the endothelial cells and the pericytes,
as well as between the pericytes and the astrocytes. This is especially pronounced in the
post-capillary venule, containing a perivascular space to regulate leukocyte trafficking. To
ensure that no infected cells or pathogens cross the barrier, there are very low levels of
leukocyte adhesion molecules and transcytosis [19]. These protective measures of the BBB
at the same time limit the influx of nutrients necessary for the normal function of the brain.
To overcome this, the endothelial cells contain transporter molecules.

There are several ways for neurotropic viruses to enter the CNS. The first and most
commonly hypothesized way is by going through the BBB. This means that the virus needs
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to cross the BBB, either by breaking the BBB down or by passing through the endothelial
cells. In the case of flaviviruses, this is considered plausible because flavivirus infection is
oftentimes systemic, meaning that the virus has access to the bloodstream and can thereby
be transported through blood vessels into the CNS [20]. The second major possibility for
CNS entry is by axonal transport, which has been reported extensively for several other
neurotropic viruses [21,22]. In this case, a neuron that spans a long distance from the
periphery to the CNS would become infected in the periphery. The axon would provide
a mode of transport directly to the CNS, without having to overcome the BBB obstacles.
In this review, the possible mechanisms used by flaviviruses to gain access to the CNS are
discussed, based on the most important human pathogenic flaviviruses.

After the flavivirus has entered the CNS by one of the two previously described
methods, it can cause neuropathogenesis. The exact cause of the different symptoms
triggered by different neuropathogenic flaviviruses remains debated. Here, we describe
three ways in which flavivirus neuroinvasion can lead to neuropathogenesis. This includes
not only neuronal death after direct infection but also the effects of the immune system
combating the virus and the consequences of viral invasion for non-infected bystander cells.

2. Blood–Brain-Barrier Crossing
2.1. Mechanisms of Permeabilizing the BBB

As mentioned before, the BBB has an important function in protecting the CNS from
pathogens. However, neurotropic viruses have developed a variety of ways in which to
overcome this natural host barrier. One of the most well-known mechanisms by which
neurotropic viruses overcome this obstacle is by directly targeting the BBB and damaging its
integrity, shown in vivo in mice following JEV infection [23,24]. Several different pathways
resulting in BBB breakdown are induced during flavivirus infection [25]. One of the
most potent pathways responsible for damaging BBB integrity is the triggering of the
production of matrix metalloproteases (MMP), which can cleave TJ proteins and collagen
IV (Figure 1) [26]. It was shown in vivo that WNV infection leads to an upregulation of
systemic MMP levels, which coincided with a reduction in TJ proteins as well as BBB
disruption [27]. This process can be accomplished by causing oxidative stress, which can
lead to the activation of MMPs. JEV infection was shown to similarly upregulate MMP-9
in an ROS-dependent manner in astrocytes [28]. Interestingly, astrocytes are not the only
cell type involved in this process as DENV was reported to infect DCs, also resulting in an
upregulation of MMP secretion [29]. Studies with WNV demonstrated that macrophages
infected during the first and systemic phases of the infection timecourse also upregulate
MMPs that can cleave TJ molecules and enhance BBB permeability [30,31]. The critical
role of MMPs in BBB breakthrough was further supported by the observation that MMP
knockout mice exhibited a lower amount of BBB permeability during WNV infection [31].

It is important to note, however, that other reports have demonstrated that macrophages
can also provide a protective effect against neuroinvasion, although this can also be at-
tributed to the protection macrophages provide against peripheral replication [32]. Simi-
larly, CD11chi DC ablation was shown to aggravate JEV neuroinvasion and BBB perme-
ability, possibly due to higher systemic inflammation after peripheral replication [33]. It is
also worth noting that the breakdown or downregulation of TJ molecules by flaviviruses is
not restricted to the tissues of the BBB. ZIKV, for example, was shown to utilize a similar
process to induce proteasomal degradation of ZO-1 proteins in the placental barrier [34].

A second reported mechanism for BBB breakdown is the activation of pathways
downstream of toll-like receptor 3 (TLR3). TLR3 is a pattern-recognition receptor that
recognizes double-stranded RNA (dsRNAs) and induces an anti-viral response [35]. During
flavivirus genomic replication dsRNAs, termed replication intermediates, are generated
and can be detected by this receptor. In general, TLR3 activation has an anti-viral effect
by triggering innate anti-viral immunity and the secretion of pro-inflammatory cytokines,
thereby recruiting immune cells to combat the infection [36]. Recent data indeed showed a
protective effect of TLR3 against neurological disease and BBB permeability by JEV [37].
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This protective effect of TLR3 was also reported by Daffis and colleagues during WNV
infection, although this effect was mostly seen after intracranial injection, suggesting TLR3
can also improve outcomes post neuroinvasion [38]. TLR3 activation, however, was also
reported to induce BBB leakage and thereby enhance virus influx in the brain. This was
confirmed by the disruption of Claudin-5 expression following Poly(I:C), a synthetic dsRNA
compound, stimulation of the TLR3 receptor [39]. Contrary to the protective effect of TLR3
described by Daffis and colleagues, other reports showed that TLR3 knockout mice had
a higher resistance to lethal WNV infection compared to WT mice [38,40]. In considering
these opposing findings, it has been suggested that the role of TLR3 in the flavivirus
immune response changes throughout the different stages of infection. The immune
response TLR3 induces appears to provide a protective role for neurons and peripheral
tissues during infection, but causes damage and increased permeability at the BBB [41].
Next to triggering the TLR3 response, direct infection of HBMECs with Dengue virus was
also shown to induce ROS, resulting in HBMEC death and higher endothelial permeability.
Additionally, non-mitochondrial ROS was shown to increase cytokine secretion by the
infected HBMECs [42]. Importantly, while TLR3 stimulation and other innate pathways
have been correlated with BBB permeability, the question remains as to whether this is a
direct result of TLR3 signaling in these tissues or a secondary mechanism resulting from
the produced inflammatory cytokine and chemokines.

Viruses 2023, 15, x FOR PEER REVIEW  4  of  21 
 

 

 

Figure 1. Mechanisms of BBB breakdown. Diagram demonstrating several mechanisms by which 

flaviviruses can induce the permeability of the blood–brain barrier. Abbreviations: MMP = matrix 

metallo proteases, TLR3 = Toll‐like receptor 3. Made in Biorender. 

It is important to note, however, that other reports have demonstrated that macro‐

phages can also provide a protective effect against neuroinvasion, although this can also 

be attributed to the protection macrophages provide against peripheral replication [32]. 

Similarly, CD11chi DC ablation was shown to aggravate JEV neuroinvasion and BBB per‐

meability, possibly due to higher systemic inflammation after peripheral replication [33]. 

It  is also worth noting  that  the breakdown or downregulation of TJ molecules by  fla‐

viviruses is not restricted to the tissues of the BBB. ZIKV, for example, was shown to uti‐

lize a similar process to induce proteasomal degradation of ZO‐1 proteins in the placental 

barrier [34]. 

A  second  reported mechanism  for BBB breakdown  is  the  activation of pathways 

downstream of toll‐like receptor 3 (TLR3). TLR3 is a pattern‐recognition receptor that rec‐

ognizes double‐stranded RNA (dsRNAs) and induces an anti‐viral response [35]. During 

flavivirus genomic replication dsRNAs, termed replication intermediates, are generated 

and can be detected by this receptor. In general, TLR3 activation has an anti‐viral effect 

by triggering innate anti‐viral immunity and the secretion of pro‐inflammatory cytokines, 

thereby recruiting immune cells to combat the infection [36]. Recent data indeed showed 

a protective effect of TLR3 against neurological disease and BBB permeability by JEV [37]. 

This protective effect of TLR3 was also reported by Daffis and colleagues during WNV 

infection, although this effect was mostly seen after intracranial injection, suggesting TLR3 

can also improve outcomes post neuroinvasion [38]. TLR3 activation, however, was also 

reported to induce BBB leakage and thereby enhance virus influx in the brain. This was 

confirmed  by  the  disruption  of Claudin‐5  expression  following  Poly(I:C),  a  synthetic 

dsRNA compound, stimulation of the TLR3 receptor [39]. Contrary to the protective effect 

of TLR3 described by Daffis and colleagues, other reports showed that TLR3 knockout 

mice had a higher resistance to  lethal WNV  infection compared to WT mice [38,40]. In 

considering these opposing findings, it has been suggested that the role of TLR3 in the 

flavivirus immune response changes throughout the different stages of infection. The im‐

mune response TLR3  induces appears to provide a protective role for neurons and pe‐

ripheral  tissues during  infection, but causes damage and  increased permeability at  the 

BBB [41]. Next to triggering the TLR3 response, direct infection of HBMECs with Dengue 

virus was also shown to induce ROS, resulting in HBMEC death and higher endothelial 

permeability.  Additionally,  non‐mitochondrial  ROS  was  shown  to  increase  cytokine 

Figure 1. Mechanisms of BBB breakdown. Diagram demonstrating several mechanisms by which
flaviviruses can induce the permeability of the blood–brain barrier. Abbreviations: MMP = matrix
metallo proteases, TLR3 = Toll-like receptor 3. Made in Biorender.

Along this line of questioning, it has been shown that the release of pro-inflammatory
cytokines and chemokines causes BBB disruption [43,44]. For example, IFNα, IL-6, and
IL-8 were reported to affect BBB permeability [45]. Cytokine and chemokine levels in
both serum and CSF fluid are upregulated during flavivirus infection, prompting the
question if this provides the virus with an advantage for neuroinvasion through a permeable
BBB [46]. During JEV and DENV infection, patients with higher inflammatory cytokine
levels experienced worse neuropathological outcomes, substantiating this hypothesis [46].
This is exemplified in a report where JEV-infected pericytes were reported to produce
IL-6, causing proteasomal degradation of BBB protein ZO-1 and subsequent leakage [47].
Importantly, however, some cytokines, such as IFNλ, have been reported to tighten the BBB,
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thereby restricting WNV neuroinvasion [48]. Additionally, cytokines play an essential role
in the protection of neurons against viral infection and replication [49]. An example of the
protective role of cytokines is IFNα, which is essential for individual neuron and astrocyte
cell protection against the cytopathic effects of viral replication [50]. These reports of BBB
tightening and neuron protection by cytokines, together with the opposing mechanism of
BBB disruption, show that the role of cytokines in flavivirus pathogenesis likely represents
another example of the balancing act of regulating inflammation during viral infection to
restrict the virus without causing excessive host damage.

Although cytokines and chemokines were shown to be causative molecules for BBB
breakdown in vitro, there could also be a secondary mechanism by which they cause
BBB permeabilization. Namely, cytokines and chemokines recruit leukocytes, which can
induce BBB breakdown themselves. Peripheral leukocytes have limited access to the CNS
in a normal situation. However, during infection of the endothelial cells in the blood
vessel lining, leukocyte adhesion proteins and chemokines will be upregulated, causing
leukocytes to be recruited and migrate through the BBB [51]. ICAM-1, an adhesion protein
responsible for the attraction and binding of lymphocytes, was reported to be significantly
upregulated after WNV infection [52]. Interestingly, in this report the researchers found
that ICAM-1 presence appeared to benefit WNV neuroinvasion as ICAM-1 knockout mice
were more resistant to lethal WNV encephalitis [52]. Additionally, in the brains of WT
mice WNV titer and BBB permeability were significantly higher than in the brains of
ICAM-1 KO mice, further supporting a role for BBB breakdown in this process [52]. ICAM
upregulation coinciding with higher BBB permeability was also observed in ZIKV-infected
mice, although the BBB permeability was not as pronounced as with WNV infection [53].
This BBB disruption was most likely caused by the recruitment of leukocytes, which can
cause permeability by migrating through the BBB [54]. An alternative explanation would
be that these higher rates of neuroinvasion result from virus passing the BBB inside of
infected leukocytes. This mechanism is called the “Trojan horse” and will be discussed at a
later point. Putting this into perspective, was a report stating that neutrophil invasion of
the CNS was not paired with BBB breakdown in TBEV patients [55]. Nevertheless, there is a
large body of evidence pointing towards leukocyte invasion of the CNS being an additional
factor in BBB breakdown.

Migration through the BBB is not the only way that leukocytes can contribute to the
process of viral breakdown of the BBB. Flaviviruses can also trigger leukocytes to secrete
BBB-disrupting molecules, such as proteases. Recently, JEV and DENV were found to
induce mast cell secretion of the serine protease chymase, which cleaves BBB proteins,
thereby breaking down the BBB [56,57]. Serum chymase levels were predictive of DENV
disease severity, although this is possibly due to TJ disruption in tissues other than the
brain [58].

After the BBB is permeabilized through one of the above-mentioned mechanisms,
paracytosis can take place (Figure 1). Paracytosis describes the passing of virus or molecules
through the space in between cells of the endothelial barrier [59]. The expression of TJ
molecules in the BBB normally impedes paracellular infiltration. However, the previously
described BBB breakdown mechanisms can break open the path for cell-free virus to pass
the endothelial barrier. Indeed, DENV cell-free virus particles were described to pass
through the BBB [60]. This mechanism does not only happen at the BBB, but also the
placental barrier where it was reported that the breakdown of TJ proteins allowed the
paracellular passage of ZIKV [61]. In conclusion, although BBB breakdown is not likely to
encompass the only CNS invasion mechanism, evidence suggests that it heavily contributes
to the wide-scale invasion of the CNS by flaviviruses.

2.2. Mechanisms of Passing through an Intact BBB

Although the conventional way viruses were thought to cross the BBB is through
breakdown of the barrier itself, it has been found that flaviviruses can invade the CNS
before BBB disruption or leakage occurs, suggesting that BBB breakdown is not the only



Viruses 2023, 15, 261 6 of 20

mechanism by which flaviviruses invade the CNS [62,63]. For example, Tembusu virus, an
avian encephalitic flavivirus, was recently detected in the brains of ducklings before any
BBB disruption was observed [64]. The BBB breakdown happened simultaneously with
the appearance of neurological clinical signs at a late stage of the infection, suggesting BBB
breakdown was necessary for large-scale neuroinvasion, but it was not the first mechanism
for neuroinvasion [64]. Indeed, it was found that inflammatory molecules such as IL-6,
CCL5, IFNα, and CXCL10 were significantly upregulated during in vitro JEV infection
of HBEC and astrocyte co-cultures, resulting in an increase in BBB permeability after
neuroinvasion [65]. However, determining whether BBB breakdown is the first cause
of neuroinvasion remains problematic, as it is difficult to gather BBB permeability data
at different time points during in vivo studies. Moreover, a recent non-human primate
(NHP) infection with ZIKV resulted in both acute and chronic BBB permeability, further
highlighting the complexity of uncovering the timeline of neuroinvasion mechanisms [66].

The delay in BBB permeability in some studies suggests that disruption of the BBB is
potentially responsible for large-scale invasion, but not the first entry of flaviviruses to the
CNS. This would mean that there are other entry mechanisms. The first barrier that other
entry mechanisms need to overcome to invade the CNS is the endothelial cell layer. An
important way to overcome this barrier is by going through these cells. This can happen in
two ways: transcytosis or infection of the endothelial cells themselves (Figure 2).
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Transcytosis is the mechanism where molecules, or in this case viruses, are trans-
ported across an endothelial cell layer by intracellular vesicles. The virus is endocytosed
by receptor-mediated or random sampling, through the formation of clathrin-coated or
caveolae-mediated vesicles [67]. Instead of being sorted for degradation or recycling, the
vesicle continues to the other side of the cell [67,68]. Endothelial cells in the vesicle walls
of the CNS are polarized, ensuring that endocytosed vesicles go to one specific side of the
cell [69]. After the vesicle with virus has crossed the cell, the virus is released at the other
side by the fusion of the vesicle with the cell membrane.

Several studies indicate that transcytosis might be an important pathway by which
flaviviruses enter the CNS. A first hint at this was shown with electron microscopy, where
JEV was observed in coated and uncoated vesicles in endothelial cells and pericytes [70].
However, it could not be concluded from these pictures whether the virus was actively
replicating in the cell or passing through by transcytosis. This distinction was later made in
the work of Hasebe, R. et al., where they found that WNV-like particles could cross endothe-
lial cells via this mechanism [71]. These particles were replication-deficient, indicating that
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transcytosis without active replication might be one mechanism by which BBB crossing
occurs. In addition, ZIKV was shown to cross BBB cells in a transwell system without
causing permeability [34]. Single-virus tracking techniques confirmed that this crossing
happened through transcytosis, which was temperature-, microtubule-, and endocytosis-
dependent [34]. It is important to note that a potential limitation of this research is that it
is often performed using in vitro models, which do not represent the full BBB, and might
therefore miss the complexity of an in vivo system [71].

Due to the limitations of in vitro research, in vivo research will always be needed
to provide an accurate picture of the importance of flavivirus transcytosis through the
BBB during infection. Jia Zhou et al. found an indication of transcytosis playing a role in
flavivirus CNS involvement in a mouse model by showing downregulation of Mfsd2a by
ZIKV [72]. Under normal circumstances, Mfsd2a suppresses transcytosis by regulating
the amount of unsaturated fatty acids in the outer leaflet of the plasma membrane, which
causes a blockade of caveolae-mediated transcytosis [67,73,74]. ZIKV E-protein was shown
to promote ubiquitination and subsequent degradation of Mfsd2a [72]. It has been demon-
strated that loss of Mfsd2a promotes transcytosis [73]. In addition to its role in transcytosis,
Mfsd2a is also suggested to be important for ZIKV pathogenesis. When the effect of Mfsd2a
downregulation was countered with the direct administration of Docosahexaenoic acid
(DHA), an essential fatty acid that is normally taken up by Mfsd2a, the number of ZIKV
copies in the brain was reduced and brain health increased [72]. It has to be noted that
although ZIKV-induced brain injury was significantly lower after DHA administration,
this could also be caused by the general benefits of DHA for brain development [72].

Moreover, Nakayama and colleagues recently showed that one of the differences
between a virulent strain (MR766) and a less virulent strain (PRVABC59) of ZIKV was a
difference in the ability to enter the CNS. This difference in mortality was eliminated by
intracranial injection, showing the importance of crossing the BBB has for virulence [75].
From this work, it was proposed that the more virulent strain crosses the BBB with transcy-
tosis, as there was more virus in the lower compartment in the in vitro setup, representing
the intracranial side of the BBB, despite the endothelial cell monolayer remaining intact.
Importantly, this finding does not, however, examine the role differential immune response
might play, or exclude the possibility of viral replication in endothelial cells, as it was
shown that ZIKV infection and replication in endothelial cells does not necessarily lead to
cytopathic effects and subsequent loss of barrier function [76].

Transcytosis is partly responsible for BBB crossing and infiltration into the CNS.
However, another mechanism to pass the BBB without damaging it is through active
infection and replication in endothelial cells and subsequent viral release on the CNS
compartmental side (Figure 2) [76,77]. This mechanism is possible without rupturing the
BBB because flaviviruses are able to infect some cell types without causing cytopathic
effects [76]. TBEV, ZIKV, Usutu virus, and POWV, for example, were shown in vitro to
infect and replicate in human brain microvascular endothelial cells (hBMECs), albeit with
different efficiencies and timing [76–79]. After Powassan infection, the absence of barrier
disruption and the enhanced titer at the basolateral side, correlating with the intracranial
side of the BBB, indicated a preference for virus release at that side [79]. Although there
was no barrier disruption measured during the timepoints taken in this study, infection of
hBMECs likely causes a release of inflammatory factors, leading to delayed, indirect barrier
disruption via previously discussed mechanisms. Indeed, both WNV and ZIKV infection
in hBMECs in vitro resulted in increased CCL5 chemokine production, which, as discussed
before, can disrupt BBB integrity [76,80].

The most likely scenario of flavivirus crossing the BBB without obvious disruption
would be a combination of both transcytosis as well as endothelial infection. This was
shown by treating ZIKV-infected hBMECs with Nystatin, Chloroquine, and Brefeldin A
(BFA) [63]. Nystatin can inhibit caveolae-mediated transcytosis, whereas BFA changes
vesicle traffic from the ER to the Golgi, thereby inhibiting exocytosis after viral replica-
tion [81,82]. Chloroquine raises the pH of acidic compartments, taking out the trigger for E
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protein conformational changes, thereby inhibiting viral replication. All three compounds
were able to substantially reduce virus crossing to the abluminal side of the cells, indicating
that both transcytosis and endothelial cell infection play a key role in BBB crossing for
ZIKV [63].

2.3. Trojan horse

The last option for BBB passage is a phenomenon called the “Trojan horse principle”
(Figure 3). As previously discussed, immune cell migration forms an important mechanism
for BBB disruption. However, it can also provide the virus with a different method of
neuroinvasion, which happens when immune cells that are infected in the periphery enter
the CNS. Recently it was shown that ZIKV, WNV, and JEV can employ the Trojan horse
mechanism to enter the CNS by infecting monocytes that subsequently migrate through
the BBB [83–85]. This was also shown in vivo where ZIKV infection in myeloid cells had a
big impact on neuropathology [86]. Although several different factors are necessary for
immune cell migration, there is one protein that was specifically implicated in both JEV
as well as ZIKV pathogenesis: High-mobility group box 1 (HMGB1) [83,85]. HMGB1 is
secreted by JEV-infected hBMECs and ZIKV-infected monocytes. HMGB1 can act as a
chemoattractant and adhesion factor, and can thereby stimulate immune cell migration
into the CNS [87]. Additionally, ICAM-1 and VCAM were induced by WNV infection in
endothelial cells, providing a point of engagement for infected immune cells [54].
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adhesion molecule. Made in Biorender.

It is important to note, however, that the Trojan horse mechanism cannot occur on its
own. In order for immune cells to migrate and cause this “Trojan horse” invasion, there
first needs to be a trigger for the secretion of chemokines, the upregulation of adhesion
factors, and the creation of an inflammatory environment in the blood vessels of the brain.
This trigger could be an initial infection of the systemic flavivirus at the BBB or even a
co-infection of the BBB with a different pathogen.

2.4. Mechanisms of Bypassing the BBB Entirely

Given the proximity of the BBB to the CNS, it is no wonder so many groups have spent
time studying its relevance for neuroinvasion. However, when considering the pathway
of infection, there is another important target to study. Most flaviviruses enter the human
body via a mosquito or tick bite through the skin, which is studded with free nerve endings
that are in direct contact with the CNS. These axonal nerve endings are believed to be used
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by flaviviruses to gain access to the CNS (Figure 4). Several lines of evidence confirmed
this axonal transport playing a role in flavivirus infection, for example in WNV infection,
which was reported to spread through motor nerve cells [88]. In vitro studies showed
that WNV could spread through intact axons to target cells and other neurons, whereas
if the axon was damaged, the infection was obstructed [89]. Cell-free viral particles were
observed at the medium surrounding the distant axon site and neutralization of these
viral particles blocked infection of target cells, thereby substantiating the hypothesis of
infection with cell-free particles at the synapse [89]. In addition, viral spread by axonal
transport has been reported in a significant proportion of neurotropic viruses such as Polio
and Rabies, demonstrating that this mechanism is generally conserved among neurotropic
virus infection [90,91].
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Axonal transport can be retrograde (towards the cell body) and anterograde (from the
cell body to the synapse) [92]. WNV was found to be transported in both directions in a
simulation with artificial compartmentalized neurons [89]. This ability for both retrograde,
as well as anterograde, transport of WNV was confirmed in vivo by ultrastructural mapping
in WNV-infected Rhesus monkeys [88]. However, retrograde transport appears to be more
relevant for neuroinvasion, as it provides the virus with a direct way to travel towards the
CNS from the periphery without having to cross the BBB.

Although both motor and sensory neurons are present in the sciatic nerve, where the
WNV infection took place, only motor neurons were involved with CNS invasion [93]. Within
the brain, the WNV spread showed a preference for areas involved in motor control [88]. In
accordance with this mechanism, WNV induces severe neuromuscular pathology [94]. An
alternative hypothesis is that motor neuron pathology is caused by a bystander effect of
the lack of glutamate, an excitatory neurotransmitter, caused by WNV-infected astrocytes,
leading to hyper-excitation and glutamate toxicity [95]. However, this hypothesis was
based on experiments with Sindbis virus, a different positive-stranded RNA virus.

An indication toward the intracellular mechanism of axonal flavivirus transport was
provided by electron microscopy of WNV-infected Rhesus monkey neurons. There, au-
tophagosomes containing several viruses were found at the synapse site [88]. Virus could
be autophagocytosed by the cell to be degraded at the cell stoma. However, this mechanism
could also be a way for the virus to take advantage of the cell machinery to be transported
to the cell body and replicate there. Indeed, JEV was reported to induce autophagy in
neuronal cells to accomplish replication at the cell body [96]. Additionally, autophagic
vacuoles containing TBEV virions were demonstrated by electron tomography to have a
connection with microtubules [97]. Treatment with nocodazole, a microtubule-destabilizing
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agent, greatly inhibited the released amount of infectious TBEV in vitro and delayed viral
entry in the brain in vivo of both TBEV as well as WNV [97,98]. Moreover, ZIKV and DENV
were reported to use autophagy as an egress mechanism by releasing membrane-enclosed
infectious particles, although this was not tested in neuronal cells [99]. These reports
point towards autophagocytosis as the main mechanism of flavivirus axonal transport. In
conclusion, although axonal transport is an essential mechanism in flavivirus CNS entry, all
of the work summarized thus far suggests that these different mechanisms of overcoming
the BBB often work in parallel to allow the flavivirus to achieve efficient neuroinvasion.

3. Neuropathogenesis

As reported previously, flavivirus infections can provoke mild and severe neuro-
logical disease, depending on the virus and the immune status of the host [9]. To date,
different mechanisms have been investigated, and this work seems to suggest, similarly
to neuroinvasion, that no one mechanism can be responsible for all of these symptoms.
Currently, three main causes for neuronal death are thought to have the highest influence:
virus-induced, immune-induced, or bystander effects on uninfected cells.

3.1. Neuronal Death after Infection

The first mechanism of neuronal cell death, and thereby neurologic sequelae and
mortality, is direct killing or growth restriction of the cells by the virus during infection
(Figure 5A). It has been well-documented that flavivirus infection causes cell death in
in vitro neuronal cultures [100–102]. The pathways leading to cell death however can
differ greatly. Lytic cell death, or the cell “bursting” during replication of the virus, is a
commonly occurring mechanism during viral infection. Interestingly, DENV and JEV were
described to encode for non-structural proteins called viroporins (NS2B) that can perforate
the cell membrane and increase membrane permeability [103,104]. Although not yet tested
in neuronal cells, these proteins cause cytopathic effects in other cell types and therefore
might also contribute to neuropathogenesis. TBEV was also reported to cause cytopathic
effects, necrosis, and apoptosis in human neural cells [105].
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Apoptosis is induced by a wide range of flaviviruses as reviewed by Pan et al. [106].
The widespread modulation of apoptotic pathways by flaviviruses suggests that this is
another important mechanism in flavivirus-induced neuronal cell death (Figure 5A). Indeed,
apoptosis was detected after WNV infection of neuronal cells as indicated by Annexin
V staining, DNA fragmentation, and the TUNEL assay [107]. Moreover, apoptosis was
observed as a result of JEV infection [101]. Contrarily, another report demonstrated that
apoptosis was rare after TBEV and WNV infection [108]. This inconsistency could be due
to primary neuron sampling from a different area in the brain, or a different time point
of examination [108]. Pan and colleagues describe modulation by flaviviruses in both the
intrinsic and extrinsic pathways of apoptosis [106]. The intrinsic pathway mostly relies on
intracellular signals, whereas the extrinsic pathway is triggered by death receptors on the
surface [106]. For instance, WNV-infected primary cortical neurons upregulated caspase 3,
a protein appearing in both the intrinsic and the extrinsic pathway [109]. Another report
shows WNV induction of Bax-dependent apoptosis, a protein mostly belonging to the
intrinsic pathway [102]. Additionally, a neuroblastoma cell line (N2a) was reported to
overexpress TNFR-1, a receptor from the extrinsic pathway, during JEV infection, as well as
JNK and p53, which are proteins belonging to the intrinsic pathway [101].

Although the in vitro detection of wide-spread apoptosis in flavivirus-infected neu-
ronal cell cultures suggests a role for apoptosis in neuronal death, it does not definitively
prove a role for apoptosis in neuropathogenesis. The utilization of caspase 3 knockout
mice, however, did accomplish this as they were shown to be more resistant to lethal WNV
infection, even though the viral load in the brain remained stable [109]. Another group
supported the role for apoptosis in pathogenesis by knocking down TRADD, a protein
downstream from the TNFR-1 receptor, leading to a decrease in JEV-induced apoptosis
and higher survival rates in mice [101]. However, fewer apoptotic neurons were not the
only consequence of TRADD silencing. It was reported that there was less microglial
and astrocyte activation, decreased leukocyte infiltration, and lower ICAM and VCAM
expression on endothelial cells [110]. Therefore, it cannot be concluded with certainty that
the improvement in life expectancy of TRADD-silenced mice is a direct result of a lower
apoptotic rate, or due to the complicating factor of reduced apoptosis, leading to lower
immune activation in general. Nevertheless, there is a large body of evidence showing that
apoptosis forms an important neuropathogenic mechanism for flaviviruses.

In addition to differentiated neurons, flaviviruses can also target neural progenitor
cells (NPCs), which form robust pools of stem cells that are important for maintenance in
different regions of the adult brain [111]. JEV was shown to target NPCs in the subven-
tricular zone (SVZ) of mice brains, which did not lead to direct cell death in these cells,
but a blocked cell-cycle progression from G1 to S phase, leading to an inability to divide
and perform their stem-cell function (Figure 5A) [112]. A similar mechanism was shown to
contribute to congenital Zika syndrome, where ZIKV was reported to target NPCs, thereby
attenuating their growth [113].

3.2. Immune System Killing Infected Neurons

Infection of the CNS does not pass unnoticed and, while the neural immune system has
an important role in the clearance of viruses, it can also contribute to pathogenesis [114]. The
CNS contains several lines of defense against viral intruders; the first consists of microglia,
which serve as CNS-resident macrophages, and provide protection against incoming
pathogens by phagocytosing them [115]. Indeed, the depletion of microglia in WNV-
infected mice leads to increased viral titers and more severe disease [116]. On the other hand,
it has been suggested that microglia can also contribute to neuropathogenesis in flavivirus
infections. For example, one recent report demonstrated that activation of microglia
can induce loss of pre-synaptic terminals of WNV-infected neurons in the hippocampus
(Figure 5B) [117]. The hippocampus is responsible for the formation of memories and
therefore the loss of synaptic terminals can lead to learning deficits [118]. The mechanism
of this synapse elimination is described to be facilitated by the complement system, which is
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also involved in synapse elimination in a healthy situation during development [119]. This
group further supported this claim by showing that WNV-induced synapse elimination was
abrogated in microglia- or complement-deficient mice [117]. In another report, this role of
microglia in synaptic terminal loss was confirmed, and T-cells were suggested to activate the
process. T-cells were found to produce a trigger for microglia activation, namely, IFNG [120].
This conclusion is further supported by the fact that mice deficient in IFNG-producing
T-cells or IFNG-signaling incompetent microglia were protected against the loss of synapses
during WNV or ZIKV infection, suggesting that this mechanism consists of an interplay of
several factors. Importantly, T-cells not only have a role in assisting microglial-mediated
pathology. Cytotoxic T-cells also play their own role in neuropathogenesis.

After flavivirus invasion into the CNS, cytotoxic T-cells (CD8+) can invade the neural
tissue via recruitment induced by chemokines and adhesion proteins. These invading
CD8+ T-cells have been shown to contribute to flavivirus neuropathogenesis as they can
cause damage to infected neurons, using either fas-ligand or granzyme-related pathways
(Figure 5B) [121]. For instance, after infection with MVEV, a virus related to JEV, it was
found that mice deficient in fas-ligand or granule exocytosis were more resistant to en-
cephalitis [122]. Contrarily, another group reported that CD8+ T-cells offered great protec-
tion against BBB leakage and JEV-induced morbidity [123]. This discrepancy in the role of
CD8+ T-cells could be related to the place the CD8+ T-cells are operating: in the periphery,
they may prevent further viral production and dissemination, whereas in the CNS, they
can damage non-regenerative neurons. This was confirmed by studies reporting TBEV
infection in mice, where CD8+ T-cell-deficient mice showed prolonged survival to TBEV
infection [124]. When CD8+ cells were transferred into the CD8+-deficient mice, the shorter
survival time returned. After the mice were sacrificed, it was found that wild-type mice had
more infiltrates in the brain, especially of CD8+ T-cells [124]. Additionally, the infiltration of
CD8+ T-cells in the brain after TBEV infection was confirmed in human cases, where post-
mortem immunohistochemistry showed CD8+ T-cells in direct contact with TBEV-infected
neurons [125]. These results demonstrate that although CD8+ T-cell cytotoxicity can help
prevent further viral spread by killing infected cells, it can also cause severe damage in
some areas of the body, such as the immune privileged CNS. In peripheral tissues, these
eliminated cells can be regenerated. However, because of the low regenerative rates of the
brain, this neuronal death leads to severe and lasting neurological symptoms [126].

3.3. Non-Infected Bystander Neurons

The infection of neurons and subsequent immune activation does not only cause
damage to infected cells, but also uninfected cells, or so-called “bystander” cells (Figure 5C).
This bystander damage can, for example, result from the highly inflammatory environment
that is created by the innate and CNS-intrinsic immune system [127]. For example, JEV
infection has been shown to cause microglia to produce a large number of inflammatory
cytokines. Microglia contain the CLEC5A, a C-type lectin receptor that is responsible for
regulation of cytokine release. Interaction of JEV with CLEC5A induced proinflammatory
cytokine release by macrophages and microglia [128]. When the medium taken from JEV-
infected microglia was UV-irradiated to inactivate the virus and added to neurons in vitro,
there was even higher neuronal death than following direct JEV addition, showing that
bystander neuron damage contributes to a large part of neuropathogenesis [128]. Strength-
ening this hypothesis, CLEC5A knockout mice are protected from JEV-induced lethality
despite continued JEV infection in neurons [128]. In addition, a higher inflammatory cy-
tokine level in the CNS, as well as in serum, correlated with a poor outcome in DENV and
JEV patients [46,129]. However, cytokines do not only directly cause bystander neuron
damage; they can also cause damage by breaking down the BBB.

As discussed previously, cytokines and chemokines upregulated after flavivirus in-
fection can result in BBB leakage [130]. BBB leakage has large-scale consequences. On the
one hand, it can play an essential role in virus neuroinvasion, where it permits peripheral
immune cells to enter the brain and combat the virus. On the other hand, BBB breakdown



Viruses 2023, 15, 261 13 of 20

has been linked with a myriad of diseases. In the first place, BBB leakage can cause a
positive feedback loop, where cytokines and chemokines that infiltrate the CNS because
of the BBB leakage attract more T-cells, neutrophils, and macrophages into the CNS and
activate CNS-resident immune cells, leading to enhanced inflammation in the CNS and
more BBB permeability [131]. As detailed before, this increased inflammation can then
lead to bystander damage, and the cyclical process repeats. Furthermore, BBB leakage
is associated with acquired epilepsy as well as Parkinson’s disease [132,133]. Although
BBB leakage has not been described to have a causal relationship with these diseases, it is
clear that it contributes to their pathogenesis, and could have the same effect on flavivirus-
related pathologies. Therefore, BBB breakdown is not only an important contributor to
neuroinvasion, but also neuropathology.

4. Conclusions

Flaviviruses are endemic in over 100 countries and can cause severe neurological
symptoms, thereby resulting in significant morbidity and mortality [134]. Neuroinvasion is
an important part of flavivirus pathology for which they employ several different mecha-
nisms. The most commonly studied is flavivirus entry by BBB breakdown. This happens,
for example, by the upregulation of TJ-degrading proteins, TLR3 stimulation, or leukocyte
recruitment. The second mechanism of neuroinvasion by flaviviruses consists of BBB
passing without breakdown. This can happen through endothelial infection, transcytosis,
or the “Trojan horse” principle. Finally, flaviviruses have also been shown to bypass the
BBB entirely through axonal transport. During this phenomenon, the virus enters the
axon at the periphery, after which the virus can be transported across the neuron from the
periphery all the way to the CNS.

The existence of the above-mentioned neuroinvasion mechanisms has been exten-
sively studied and discussed. However, the interplay between these mechanisms remains
uncertain. Interestingly, after WNV infection, fluctuations of the viral load in the CNS
over time were reported [135]. After peripheral inoculation of WNV in the footpad of
mice, WNV appeared at a low viral load two days post-infection in the spinal cord, cere-
bellum, and brain stem. Subsequently, the virus was cleared, only for it to return at six
days post-infection with a much higher viral load [135]. This suggests that the virus enters
the CNS at several different time points during infection, which substantiates the parallel
existence of different CNS entry pathways during the same infection. Furthermore, the
entry mechanisms of leukocyte recruitment and cytokine release require a primary trigger,
indicating that the study of different entry mechanisms in isolation does not provide the
full picture. Indeed, in vivo data show that BBB permeability and MMP production only
occur 6 days after infection, despite viral RNA already being detected in the brain, showing
that although it contributes to large-scale invasion, it might not be the first mechanism [27].
Therefore, in the future, studying the appearance of and decrease in the different entry
mechanisms over time will likely better represent the complete picture.

Unfortunately, several experimental difficulties complicate the study of neuroinvasion
and neuropathogenesis; for example, the age of the mice used influences T-cell mainte-
nance [136]. Moreover, the dose and delivery method are extremely important to consider.
Intracranial injection, for example, does not include BBB passage and peripheral inoculation
with a low dose of virus might not result in neuroinvasion at all. In addition, host species
and strain- or virus-specific virulence factors may influence the appearance of neuroinva-
sion in a model [137,138]. These details need to be considered carefully when studying
neuroinvasion and neuropathogenesis. Additionally, neural sampling at different time
points in vivo is difficult and complicates in vivo studies. Therefore, human brain organoid
models might offer a useful alternative for exploratory studies about neuroinvasion as
well as neuropathogenesis. Recently, human brain organoid models were explored in
the context of viral pathogenesis. However, these models do not contain a BBB making
them unsuitable to study neuroinvasion [139]. An iPSC-derived BBB model overcomes
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this disadvantage, but does not recreate the 3D structure of the brain [140,141]. Therefore,
despite the development of better in vitro models, there still is a need for in vivo data.

It has been hypothesized that flaviviruses not only pass through the BBB but also
through the lesser-studied blood–CSF barrier, formed between the CSF in the choroid plexus
and surrounding blood vessels. Additionally, reports have shown a possible invasion
route through an olfactory and a gut–brain neural circuit. However, more research is
needed to confirm these routes of invasion and to determine their relative contribution to
neuroinvasion [142].

After flaviviruses have entered the CNS, they provoke neuronal damage. This damage
occurs through direct infection of neural cells, which can succumb to infection through
cell lysis, necrosis, or apoptosis. The neuronal damage can also be caused by the immune
system, for instance, microglia and cytotoxic T-cells. While these cells certainly contribute
to cell death, it is important to remember that several immune components perform an in-
dispensable protective function during flavivirus infection. When studying these infections,
the fragility of the balance between providing enough inflammation and immune activa-
tion to clear the infection, but not so much as to irreparably damage the brain, becomes
apparent. This calls for more research about which strategies can be employed to maintain
this balance and thereby limit flavivirus- or immune-induced pathology. Additionally, it
is still unclear how much each one of the neuropathogenesis mechanisms contributes to
clinical outcome. This is especially difficult to study as most mechanisms can aggravate
each other in vivo. Therefore, future research will have to shed light onto these unknowns.
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