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Abstract: Infectious bursal disease (IBD) is an immunosuppressive disease causing significant damage
to the poultry industry worldwide. Its etiological agent is infectious bursal disease virus (IBDV),
a highly resistant RNA virus whose genetic variability considerably affects disease manifestation,
diagnosis and control, primarily pursued by vaccination. In Egypt, very virulent strains (genotype
A3B2), responsible for typical IBD signs and lesions and high mortality, have historically prevailed.
The present molecular survey, however, suggests that a major epidemiological shift might be occurring
in the country. Out of twenty-four samples collected in twelve governorates in 2022–2023, seven tested
positive for IBDV. Two of them were A3B2 strains related to other very virulent Egyptian isolates,
whereas the remaining five were novel variant IBDVs (A2dB1b), reported for the first time outside of
Eastern and Southern Asia. This emerging genotype spawned a large-scale epidemic in China during
the 2010s, characterized by subclinical IBD with severe bursal atrophy and immunosuppression. Its
spread to Egypt is even more alarming considering that, contrary to circulating IBDVs, the protection
conferred by available commercial vaccines appears suboptimal. These findings are therefore crucial
for guiding monitoring and control efforts and helping to track the spread of novel variant IBDVs,
possibly limiting their impact.

Keywords: infectious bursal disease virus; Gumboro disease; Egypt; China; very virulent; novel
variant; molecular epidemiology

1. Introduction

Infectious bursal disease (IBD), also known as Gumboro disease, is an immunosuppres-
sive infectious disease of chickens with severe implications for the global poultry industry.
IBD is characterized by high morbidity and mostly occurs in chickens aged 2–6 weeks,
when the bursa of Fabricius, its main target organ, reaches its full development. After
a short incubation period, the disease typically manifests with non-specific signs, such
as depression and dehydration, along with hemorrhagic lesions in the thigh and breast
muscles. The bursa appears enlarged at first due to edema and hyperemia but rapidly
undergoes atrophy, while lymphocyte depletion is observed at the microscopical level.
Alternatively, IBD may follow a subclinical course with lesions limited to the bursa, which
may be harder to diagnose whilst still causing immunosuppression [1]. The disease burden
may be significant both in case of overt clinical outbreaks and due to the impairment of im-
mune status, which may lead to poor productive performance, vaccine failures, secondary
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infections, etc. Rigorous control of the disease, primarily pursued by routine vaccination, is
therefore of utmost importance [2].

The etiological agent of IBD is known as infectious bursal disease virus (IBDV) and
belongs to the species Avibirnavirus gumboroense, genus Avibirnavirus, family Birnaviridae.
IBDV features a non-enveloped virion and a double-stranded RNA genome made of two
segments, named A and B. Segment A (3.2 kb) codes for a capsid protein (VP2), a scaffold
protein (VP3), a protease (VP4) and a non-structural protein with regulatory and anti-
apoptotic functions (VP5), whereas segment B (2.9 kb) encodes the RNA-dependent RNA
polymerase [3]. Two IBDV serotypes (1 and 2) are known, but only serotype 1 is pathogenic.
However, further distinctions are possible, as many different IBDV types have emerged
over time, mainly through mutation and reassortment events [4].

As a matter of fact, although IBDV is globally endemic, different countries and regions
are affected by a range of viral strains, whose diverse features may have profound conse-
quences in terms of disease manifestation and impact. Historically, the first IBDVs, known
as “classical” strains, have been reported in the USA since the late 1950s [5]. Two other
IBDV types were then described throughout the 1980s, one grouping highly pathogenic
strains (classified as “very virulent”) circulating all over Europe, Africa and Asia, and
another comprising the so-called “variant” strains, which were antigenically different from
other IBDVs and circulated mainly in North America [6], although they eventually spread
to Eastern Asia during the 2010s [7].

In recent years, it has become more and more evident that this traditional tripartite clas-
sification, albeit still valuable, is inadequate to fully capture the heterogeneity among IBDV
types. Several atypical IBDVs which hardly fit in any of the three major IBDV types have
been described in different continents [8–12], and reassortant strains are also being reported
with increasing frequency [13–16], further complicating the evolutionary landscape.

The recent proposal of multiple classification systems relying on phylogeny, either
based on a portion of the VP2 [17] or both VP2 and VP1 genes [18,19], has certainly been
instrumental for characterizing such strains while retaining the information provided by
the traditional classification, offering easily applicable guidelines to perform molecular
surveys and generate informative and standardized results. The focus on VP2 and VP1 is
motivated by their functional relevance, which makes their genes the most studied genome
portions. The VP2 has a well-established role in determining antigenicity, containing
the main epitopes that elicit neutralizing antibodies [20], whereas both VP2 and VP1 are
known to contribute to pathogenicity determination [21]. Since they are located in different
segments, considering both genes also allows to detect reassortment events, which may
represent another major source of pathogenic variation [15,22].

The usefulness of this approach is obviously not limited to underinvestigated contexts
for which few or no data on circulating IBDVs are available, since it is also helpful to
revise the existing evidence and improve monitoring activities even in countries where
more information is available. Egypt is certainly an example of the latter case, as the
burden posed by IBD to the national poultry production is well-established. Since their
first identification in 1989 [23], very virulent strains have consistently posed the greatest
threat in the country, as confirmed by several epidemiological studies conducted over
the years [24–26]. Nonetheless, steady surveillance efforts remain crucial to keep the IBD
situation monitored, to assess whether existing control measures are effective and to rapidly
identify new epidemiological threats. Consistent with this rationale, the present study
reports the results of molecular diagnostic activities performed on samples collected in dif-
ferent Egyptian governorates and contextualizes them within the national and international
epidemiological context according to the current classification systems.

2. Materials and Methods
2.1. Sampling Activities

This study was based on molecular diagnostic activities conducted on samples col-
lected in Egypt for IBD investigation. Samples consisted of bursal imprints on FTA™
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cards (GE Healthcare UK Limited, Amersham, UK) and were collected from broiler farms
between February 2022 and August 2023 when IBD was suspected based on clinical signs
(i.e., anorexia, depression, etc.), lesions (i.e., hemorrhages in the thigh and breast muscles,
dehydration, enlarged or atrophic bursa, etc.) and a high mortality rate. Anamnestic infor-
mation such as farm location, age at sampling, administered IBD vaccines and cumulative
mortality up to the sampling date were recorded for all the investigated flocks.

2.2. Samples Processing and Nucleic Acid Extraction

Samples were processed by cutting 5 mm2 fragments from FTA™ card circles, eluting
them into 1.5 mL of 1× PBS and vortexing for 30 s. Nucleic acids were extracted from the
eluates by using the High Pure Nucleic Acids kit (Roche™, Basel, Switzerland) following
the manufacturer’s instructions. Samples were stored at −80 ◦C for the entire duration of
the molecular analyses and subsequently for archival purposes.

2.3. Molecular Investigation

All samples were first subjected to a one-step RT-PCR performed with the primers
743-1 and 743-2 designed by Jackwood and Sommer-Wagner [27] to amplify a portion of the
VP2 gene. Additional RT-PCRs were then conducted on positive samples using multiple
primer pairs partially derived from those listed by Lachheb et al. [28]. In detail, primers
VP5/1+ and VP2/1263- were used to amplify the rest of the VP2 [29], whereas primers
66 and 67 [30], B-Univ-F and B-Univ-R [31], X3 [32] and VP1/1997- [33] and B3-IPP2 and
B3′-P2 [34] allowed to cover the entire VP1 gene (Table 1).

The SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase
kit (Invitrogen™, Waltham, MA, USA) was used to carry out all molecular assays. When-
ever a positive result was evidenced by gel electrophoresis, amplicons were sent to Macro-
gen Europe Milan Genome Center (Milan, Italy), where Sanger sequencing was performed
using the respective primer pair. The resulting chromatograms were visually inspected
and appropriately trimmed using 4Peaks (Nucleobytes B.V., Aalsmer, The Netherlands),
and then used to generate consensus sequences in ChromasPro (Technelysium Pty Ltd.,
Helensvale, QLD, Australia).

2.4. Phylogenetic Analyses

Sequencing results were used to characterize the detected strains based on the classi-
fication system proposed by Wang et al. [19], considering a portion of the hypervariable
region (HVR) of the VP2 gene (nt 737–1210) and the B marker located in the VP1 gene (nt
328–756) as defined by Alfonso-Morales et al. [35]. For both genomic segments, along with
the reference sequences used by Wang et al. [36], additional strains related to those detected
in the present survey, retrieved through dedicated BLAST queries [37], were also considered.
After aligning the reference datasets with the MUSCLE method in Mega X [38], phylo-
genetic trees were inferred using the same software, adopting the Maximum-Likelihood
method with 1000 bootstraps and the substitution model having the lowest Bayesian infor-
mation criterion (BIC) value. The resulting trees were then visualized using the Interactive
Tree Of Life online tool [39]. The obtained amino acid sequences were also compared with
those of reference isolates when deemed appropriate to identify relevant substitutions.
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Table 1. List of primer pairs used for the amplification and sequencing of the VP2 and VP1 genes.

Genome Segment Primer Sequence (5′-3′) Amplicon Length Designed by

VP5 and VP2 (1–1263)
VP5/1+ GGATACGATCGGTCTGAC 1263 bp Hernández et al. [29]VP2/1263- TCAGGATTTGGGATCAGC

VP2 (736–1478)
743-1 GCCCAGAGTCTACACCAT 743 bp Jackwood and Sommer-Wagner [27]
743-2 CCCGGATTATGTCTTTGA

VP1 (1–695)
66 GGATACGATGGGTCTGAC 695 bp Ruud et al. [30]67 ATCCTTGACGGCACCCTT

VP1 (319–1369)
B-Univ-F AATGAGGAGTATGAGACCGA 1051 bp Islam et al. [31]B-Univ-R CCTTCTCTAGGTCAATTGAGTACC

VP1 (756–1997)
X3 CGGTGAGGATGACAAGCCC 1241 bp He et al. [32]

VP1/1997- GAACCCCTTTGCCTCCAAG Tiwari et al. [33]

VP1 (1839–2827)
B3-IPP2 ATACAGCAAAGATCTCGGG 988 bp Mundt and Vakharia [34]B3′-P2 CGATCTGCTGCAGGGGGCCCCCGCAGGCGAAGG
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3. Results

A total of 24 samples were collected from broiler farms located in 12 different gover-
norates. The age at sampling was between 18 and 30 days (23.2 days on average). All flocks
were reportedly immunized against IBD with a range of vaccination protocols relying on
immune complex, vector or live vaccines (sometimes administered twice or after vector
vaccines). Seven samples (H792, H793, H798, H800, H801, H805 and H812) tested positive
for IBDV (29%). Detailed information on the sampled flocks is provided in Table 2.

Table 2. Anamnestic details recorded for each of the sampled flocks.

Sample ID Collection
Date Farm Location Age at

Sampling
Vaccination

Protocol Mortality * IBDV
Result

H792 February 2023 Cairo 19 d 1 d: vector vaccine 11.2 A2dB1b

H793 March 2023 Giza 21 d 1 d: vector vaccine;
14 d: live vaccine 9.7 A2dB1b

H794 April 2023 Alexandria 23 d 1 d: vector vaccine 13 Negative

H795 August 2022 Damietta 21 d 1d: vector vaccine;
12 d: live vaccine 13 Negative

H796 June 2022 Beheira 25 d 1 d: vector vaccine;
14 d: live vaccine 10.5 Negative

H797 January 2023 Cairo 28 d 14 d: live vaccine;
18 d: live vaccine 12.7 Negative

H798 July 2023 Sharqia 22 d 1 d: vector vaccine;
14 d: live vaccine 9.6 A2dB1b

H799 December 2022 Giza 30 d 12 d: live vaccine;
18 d: live vaccine 22.7 Negative

H800 April 2022 Beheira 24 d 1 d: vector vaccine;
12 d: live vaccine 17 A3B2

H801 August 2023 Asyut 18 d 12 d: live vaccine 9.8 A2dB1b
H802 February 2023 Dakahlia 22 d 1 d: vector vaccine 11.6 Negative

H803 March 2023 Sharqia 25 d 1 d: immune
complex vaccine 8 Negative

H804 March 2023 Sharqia 22 d 1 d: immune
complex vaccine 12.4 Negative

H805 February 2022 Monufia 26 d 12 d: live vaccine;
18 d: live vaccine 13.8 A3B2

H806 February 2022 Dakahlia 26 d 1 d: vector vaccine 13.9 Negative

H807 September 2023 Minya 21 d 1 d: vector vaccine;
14 d: live vaccine 9 Negative

H809 July 2022 Alexandria 20 d 12 d: live vaccine;
20 d: live vaccine 8 Negative

H810 June 2023 Giza 27 d 1 d: immune
complex vaccine 16 Negative

H811 April 2022 Giza 24 d 1 d: immune
complex vaccine 11.5 Negative

H812 August 2023 Beheira 19 d 1 d: vector vaccine;
12 d: live vaccine 8.7 A2dB1b

H813 February 2022 Ismailia 24 d 1 d: vector vaccine;
12 d: live vaccine 14 Negative

H814 April 2023 Ismailia 20 d 1 d: vector vaccine;
12 d: live vaccine 10.7 Negative

H815 June 2022 Port Said 23 d 1 d: vector vaccine 11 Negative

* Cumulative mortality observed from the start of the productive cycle to the sampling date.

Five of the obtained VP2 sequences showed a reciprocal genetic identity ranging from
99.5 to 100% and belonged to genogroup A2 lineage d (novel variant). The remaining two
VP2 sequences were identical to each other and fell within genogroup A3 (very virulent)
(Figure 1).
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Figure 1. Classification of the detected field strains (marked with solid squares, �) at VP2 level
according to Wang et al. [19]. The evolutionary history was inferred with the Maximum Likelihood
Method (1000 bootstraps) applying the K2 + G substitution model [40], based on 74 sequences and
considering a 473 nt long portion. Node support values are shown only when higher than 70.

The detection of two separate strain clusters was confirmed also at the VP1 level. The
five A2d strains had a 99.6–100% reciprocal genetic identity and belonged to VP1 genogroup
B1 lineage b (novel variant), whereas the two A3 ones showed a 99.9% identity and were
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part of genogroup B2 (very virulent) (Figure 2). The two identified genotypes, both having a
field origin, were thus A2dB1b and A3B2. In both cases, the most closely related sequences
retrieved from GenBank belonged to recent Egyptian isolates. VP1 and VP2 sequences were
submitted to GenBank under the accession numbers OR791866-OR791872 and OR79183-
OR791879, respectively.
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Figure 2. Classification of the detected field strains (marked with solid squares, �) at VP1 level
according to Wang et al. [19]. The evolutionary history was inferred with the Maximum Likelihood
Method (1000 bootstraps) applying the K2 + G + I substitution model [40], based on 60 sequences
and considering a 428 nt long portion. Node support values are shown only when higher than 70.

Positive samples were collected from farms located in six different governorates,
namely Asyut, Beheira, Cairo, Giza, Monufia and Sharqia. No IBDV was detected in the
remaining six governorates (Alexandria, Dakahlia, Damietta, Ismailia, Minya and Port
Said). The distribution of the two detected genotypes is shown in Figure 3.
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Figure 3. Distribution of IBDV field genotypes at governorate level according to the present molecular
survey. The map was prepared using QGIS ver. 3.34 [41] based on a shapefile retrieved from the
Dataset of Global Administrative Areas ver. 4.1 (GADM) [42].

The amino acid sequences of the detected A2dB1b strains were compared to those of
other novel variant isolates to establish whether any difference was acquired at relevant
sites. No consistent amino acid substitutions were unique to Egyptian strains compared
to viruses of Asian origin. Nonetheless, multiple changes found in all Egyptian strains,
such as A321V at the VP2 level and R511K, S687P and T859I within VP1, had previously
only been encountered in a handful of Chinese novel variant IBDVs. Moreover, several
substitutions were present only in some of the sequenced strains, both at the VP2 (I15M,
S76N, N97K, A277V, G409A) and VP1 level (E393D, T576S, S596F, G630S, Q832R, Q879P)
(Supplementary Tables S1 and S2).

4. Discussion

Despite the small scale of the study, the present results offer meaningful insights into
the circulation of IBDV in Egypt, which, albeit partly in agreement with the established
epidemiological scenario, also suggest that a change of great concern may be occurring.

Two of the seven field IBDVs detected were characterized as A3B2 strains, commonly
referred to as very virulent strains. The enduring circulation of very virulent IBDVs in
Egypt is well documented [23–25] and is further corroborated by detections in turkeys [43]
and in cattle egret (Bubulcus ibis) [44], which suggest that interspecies transmission may play
a role in their spread and maintenance. The herein described A3B2 viruses clustered with
other Egyptian sequences both at the VP2 and VP1 level, thus confirming the persistence of
very virulent strains with consistent features at national level. According to Samy et al. [26],
very virulent Egyptian IBDVs can further be divided into antigenically typical and atypical
strains based on residue 321 within VP2, with the former group featuring an alanine and
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the latter a threonine. The two detected strains presented an alanine in that position and can
be therefore considered as typical very virulent IBDVs. Although this single mutation was
shown to induce drastic changes in reactivity towards neutralizing monoclonal antibodies
directed against VP2, it seems to have neither positive nor negative effects on viral fitness,
as supported by the long-lasting cocirculation of these two very virulent subtypes in the
country [26].

The detection of five novel variant strains, on the other hand, represents an unexpected
and alarming finding. These strains have been reported since 2015 in China, where they
caused a large-scale epidemic of subclinical IBD [45]. According to phylogenetic analyses,
novel variants are related to North American variant IBDVs (genotype A2B1), but also
sufficiently divergent to be considered as part of segregated lineage A2d [19]. Similarly,
novel variant IBDVs cluster separately from other exponents of genogroup B1, leading to
the definition of lineage B1b [35]. Their emergence seems to have been caused by a spread
of variant IBDVs from North America to China during the 1990s, followed by a period
of latent circulation until A2dB1b broke out in the 2010s [36]. A2dB1b strains were also
involved in a reassortment event with an A3B3 IBDV of Chinese origin, originating a novel
genotype (A2dB3) showing enhanced pathogenicity [46].

Despite their recent identification, novel variant IBDVs rapidly became one of the
dominant IBDV types in Eastern and Southern Asia. Outside of China, they were also found
in Malaysia [47], South Korea [48,49] and likely in Japan [50], although the unavailability of
Japanese VP1 sequences does not allow to confirm this claim. The spread of novel variant
IBDVs to these countries seems to have been favored by strong trade flows of live chickens
and poultry products [36], but their entry into Egypt appears more difficult to explain.
Interestingly, when the diagnostic activities on which this study is based were originally
conducted, all the available A2dB1b sequences with a high genetic identity to the herein
described strains were of Chinese origin. However, when the same BLAST query was later
repeated, a group of highly homologous Egyptian sequences, which were also collected
in 2022 and 2023 based on their metadata, were also retrieved. This information clearly
substantiates the present results, suggesting that novel variant strains might be affirming
themselves as a significant epidemiological threat in Egypt despite an apparently recent
entry in the country.

The comparison of amino acid sequences did not highlight any unique substitution in
the Egyptian strains. Nonetheless, some of the observed changes were only present in a
minority of Asian novel variant IBDVs. Like in the case of Egyptian A3B2 strains, the most
notable mutation involved residue 321 of the VP2, located in the PHI loop and supposedly
involved in antigenicity determination [20,26]. The A321V substitution observed in most
Egyptian novel variant IBDVs was found only in Chinese strain IBD/SD/LY/CN/01/2020,
whereas other novel variant viruses showed an A321T change, corroborating previous
reports that this site may be prone to mutations [17]. At the VP1 level, Egyptian novel
variant IBDVs showed three consistent substitutions compared to most A2dB1b strains,
namely R511K, S687P and T859I. Among these, residue 687 has been proposed to play a role
in the increased pathogenicity of very virulent IBDVs, which feature a proline, compared
to less virulent strains, mostly featuring a serine [51]. In future studies, it will be important
to monitor the evolution of Egyptian novel variant IBDVs to determine if these changes
will become a permanent feature and if others will emerge as a possible consequence to the
adaptation to a new epidemiological context.

Currently, novel variant strains do not seem to be circulating in countries neighboring
Egypt. A recent epidemiological survey conducted in the Near and Middle East highlighted
the circulation of A3B1, A3B2, A4B1 and A6B1 IBDVs [52], whereas the most recent studies
conducted in Northeast Africa suggest that very virulent IBDVs still represent the main
threat in the area [53,54]. Nonetheless, further monitoring activities, to be conducted not
only in Egypt but also in countries where A2dB1b strains may be circulating undetected, are
required to shed light on their diffusion and to track their potential spread to new territories.
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Both A3B2 and A2dB1b were found in multiple governorates in the northern and
central part of Egypt. The limited number of samples collected in different governorates
meant that usually only one of the two genotypes was detected in each of them, with
Beheira being the only exception. However, considering that very virulent IBDVs are
widespread in the country and that the investigated governorates were in proximity to
each other, it might be assumed that very virulent and variant strains are cocirculating in
the same areas. It is also worth noting that field IBDVs have already been detected in all
the governorates from which no positive samples were retrieved [24,26,55–58], suggesting
that this finding was due to the small sample size rather than the actual absence of field
strains in these settings.

Aside from characterizing field strains from a molecular perspective, it is essential
to understand their pathogenic features and ensure that the currently enacted control
measures are effective. A wealth of data has been produced in the Egyptian context on the
pathogenicity of locally circulating very virulent IBDVs, which consistently cause typical
IBD signs and lesions with high mortality rates [59–61], and on the protection induced by
different live [61], vector [62,63] and immune complex [64] vaccines, which appears ade-
quate. Novel variant IBDVs, on the other hand, are associated with subclinical infections
with severe bursal atrophy and lymphocyte depletion [16,46,65,66]. Infections sustained
by these strains may therefore be easily overlooked, favoring their spread and circulation.
Another factor that likely played a role in their evolutionary success is their divergent
antigenic features, which may thwart control measures. As a matter of fact, the effective-
ness of currently marketed vaccines against them has been put into question [67,68]. This
prompted the development of multiple vaccine candidates based on different technolo-
gies, including reassortment [67] and virus-like particle vaccines [69–71], which yielded
promising results in terms of efficacy and safety but are not yet commercially available.

In partial contrast with the literature, the anamnestic information retrieved during
sampling activities suggests that both very virulent and novel variant IBDVs were respon-
sible for severe mortality. This finding might be explained by the immunosuppressive
potential of A2dB1b strains, which may have favored secondary infections and reduced
the efficacy of vaccination against relevant diseases affecting the Egyptian poultry sector,
including avian influenza and Newcastle disease [72]. Nonetheless, it should be noted that
equally high or even higher mortality rates were also encountered in IBDV-negative flocks,
and that no other possible cause (neither primary nor secondary) was investigated, limiting
such conclusions. Since the present research was not originally designed with this aim,
additional studies, which should include viral isolation and standardized experimental
infections, are therefore required to properly evaluate the pathogenic features of Egyptian
novel variant strains.

The complete absence of IBDV vaccine detections represents another noteworthy
finding. Detecting the administered vaccine strains is commonly considered a useful proxy
for vaccine take and coverage, particularly in the case of vaccines relying on bursal colo-
nization (i.e., live and immune complex vaccines) and to a lesser extent for vector vaccines
expressing VP2 inserts, which can still be found in the bursa, although it is not their primary
replication site [73]. Even if the early sampling age likely hampered vaccine detection in
some cases, especially when live vaccines were used, the absence of vaccine-positive flocks
suggests that the conferred protection might have been subpar, and that administration
errors at hatchery or farm level cannot be excluded. On this note, many of the sampled
farms were anecdotally reported to have a multi-age organization and to suffer from man-
agerial and hygiene deficiencies, thus complicating vaccine administration and increasing
the risk of exposure to field IBDVs. Regardless of the circulating field genotypes and used
vaccine types, the optimization of vaccination quality and its continuous assessment should
represent a priority not only to protect the immunized flock against clinical signs, but
also to reduce the circulation and persistence of field viruses in the long term, eventually
favoring the entire epidemiological scenario rather than just the single immunized flock.
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5. Conclusions

The present study provides a crucial update on the IBDV epidemiological situation
in Egypt, capturing the entry of novel variant strains in the country in a timely manner.
Compared to the historically circulating very virulent IBDVs, which were still detected,
such viruses, reported for the first time outside of Asia, pose an entirely different challenge
both in terms of clinical manifestation, as they are mostly subclinical and thus easily
overlooked despite still causing relevant losses, and required control measures, as the
protection conferred by the currently marketed vaccines is likely limited by their antigenic
divergence. Albeit relevant, the identification and molecular characterization of genotype
A2dB1b should be intended as just the first step of a larger-scoped investigation. Its spread
to Egypt could lead to its establishment as a substantial epidemiological threat in the
country and neighboring regions, requiring appropriate studies to track its propagation
and evolution, establish its pathogenicity and ultimately assess its impact in a different
epidemiological context from the one where it originated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15122388/s1, Table S1: Comparison of VP2 amino acid sequences
of A2dB1b strains; Table S2: Comparison of VP1 amino acid sequences of A2dB1b strains.
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