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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent
of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has been reported to
have caused 18.2 million deaths globally until the end of 2021 [1]. Vaccine hesitancy and the
emergence of variants that evade antibody responses induced by vaccination and infection,
including the currently dominating Omicron variant [2–5], demonstrate the urgent need
for efficient treatment options. At present, monoclonal antibodies, Molnupiravir and
Nirmatrelvir, are available for therapy [6–8]. However, these agents need to be administered
early after infection, and some are not suitable for certain patient groups, indicating that
novel antivirals are still needed. One approach to obtaining new drugs is the repurposing
of existing drugs used for the treatment of diseases other than COVID-19.

Nafamostat is a serine protease inhibitor that is used in Japan for the treatment of acute
pancreatitis and disseminated intravascular coagulation [9,10]. With regard to SARS-CoV-2, it
has been demonstrated that nafamostat inhibits viral entry into cells by blocking the activity
of TMPRSS2 [11], a cellular protease that primes the SARS-CoV-2 spike protein [11–13]. A
recent study published in Viruses [14] showed that Nafamostat also inhibited −1 programmed
ribosomal frameshifting (−1PRF) of SARS-CoV-2, a process that is required for expression of
the viral ORF1b (Figure 1a) protein and viral replication [15,16].

Our previous studies showed that Nafamostat inhibits SARS-CoV-2 entry by blocking
TMPRSS2 and established the concept that Nafamostat should only exert anti-SARS-CoV-2
activity in cells for which viral entry depends on TMPRSS2 activity [11]. However, our
studies were mainly carried out with a surrogate system that measures SARS-CoV-2 entry
but not the subsequent steps in viral replication. As a consequence, we would have missed
the antiviral activity of Nafamostat that was due to the blockade of −1PRF. Therefore, we
sought to confirm that Nafamostat inhibits −1PRF, as suggested by the study by Munshi
and colleagues [14], and to determine whether inhibition of −1PRF translates into the
blockade of SARS-CoV-2 infection in cells that allow for TMPRSS2-independent entry.

We analyzed the inhibition of −1PRF using a dual-luciferase system similar to the
one employed by Munshi and colleagues. In this system, the open reading frames for
firefly (FLuc) and Renilla reniformis luciferase (RLuc) are separated by the −1PRF element
of SARS-CoV-2, and FLuc expression depends on −1PRF (Figure 1a). We employed Vero
76 cells (African green monkey, kidney) for our studies since these cells allow for TMPRSS2-
independent viral entry and are frequently used to grow SARS-CoV-2 [17]. As a control
for inhibition of −1PRF, we transiently overexpressed the cellular factor shiftless (SFL),
which blocks −1PRF of human immunodeficiency virus 1 (HIV) and SARS-CoV-2 [18–21],
and a splice variant of SFL, termed SFL short (SFLS), which is unable to block −1PRF in
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the context of HIV infection [18]. Expression of SFL inhibited −1PRF in Vero 76 cells by
roughly 50%, while expression of SFLS had no effect (Figure 1b), as expected. At the highest
concentration, 100 µM, Nafamostat inhibited −1PRF by approximately 20% (Figure 1b), and
this concentration was previously shown not to exert undesired cytotoxic effects [11]. Thus,
the effects observed were specific and confirmed that Nafamostat is a −1PRF inhibitor.
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SARS-CoV-2 -1PRF reporter cassette or were cotransfected with the reporter plasmid and pQCXIP-
plasmids encoding SFL or SFLS under the control of a CMV promotor using Lipofectamine 2000 
(Thermo Fisher Scientific, Waltham, MA, USA). To exclude unspecific effects of Nafamostat on 
translation (0 frame product) cells were transfected with LucMax reporter and were treated with 
Nafamostat as described for the -1PRF reporter. At 12 h post-transfection, the medium was replaced 
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Figure 1. Nafamostat inhibits SARS-CoV-2 −1PRF. (A) Top panel: Schematic illustration of the SARS-
CoV-2 genome, including the site of −1PRF and the frameshifting stimulation element (FSE). Bottom
panel: For quantification of −1PRF, the FSE sequence, including the heptanucleotide slippery se-
quence, and the three-stemmed pseudoknot sequence (GenBank: NC_004718) were inserted between
the coding sequences for Renilla reniformis luciferase (RLuc) (0 reading frame) and firefly luciferase
(FLuc) (−1 reading frame). As a consequence, FLuc is only translated if −1PRF occurs, with the
ratio between FLuc and RLuc activities indicating the efficiency of −1PRF. In order to determine the
maximum signal for frameshifting, the heptanucleotide slippery sequence and the FSE were removed
and FLuc was set into the same reading frame as RLuc (0 frame) (LucMax reporter). (B) Vero 76 cells
were treated with the indicated concentrations of Nafamostat for 1 h. DMSO treatment served as a
control. Subsequently, the treated cells were transfected with a plasmid encoding the SARS-CoV-2
−1PRF reporter cassette or were cotransfected with the reporter plasmid and pQCXIP-plasmids
encoding SFL or SFLS under the control of a CMV promotor using Lipofectamine 2000 (Thermo Fisher
Scientific, Waltham, MA, USA). To exclude unspecific effects of Nafamostat on translation (0 frame
product) cells were transfected with LucMax reporter and were treated with Nafamostat as described
for the −1PRF reporter. At 12 h post-transfection, the medium was replaced by fresh medium again
containing Nafamostat at the indicated concentrations and cells were incubated for an additional
36 h. At 48 h post-transfection, RLuc and FLuc signals were quantified using a luminometer. The
ratio of FLuc versus RLuc signals measured for the −1PRF reporter and the LucMax reporter was
determined. Next, the results obtained for the −1PRF reporter were normalized against the respective
results measure for the LucMax reporter. Finally, relative frameshifting measured upon treatment
with DMSO was set as 100%. The average of six biological replicates carried out with technical
triplicates is shown. Error bars indicate the standard error of the mean (SEM). Statistical significance
was assessed by one-way analysis of variance (ANOVA) with Dunnett’s multiple comparison test
(*, p ≤ 0.05; ***, p ≤ 0.001).

We next analyzed whether Nafamostat inhibits SARS-CoV-2 infection of Vero 76 and
Calu-3 cells. Nafamostat did not reduce infection of Vero 76 cells, even at a concentration
of 100 µM (Figure 2) that inhibited −1PRF. In contrast, Nafamostat efficiently reduced
infection of Calu-3 cells (Figure 2), for which viral entry depends on TMPRSS2 activity.
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Figure 2. Nafamostat inhibits SARS-CoV-2 infection of Calu-3 but not Vero 76 cells. Vero 76 and
Calu-3 cells were incubated with the indicated 10-fold serial dilutions of Nafamostat for 1 h prior to
infection with SARS-CoV-2, Pango lineage B.1.513, at a multiplicity of infection of 0.01 for 1 h. After
virus inoculation, cells were washed and further incubated with Nafamostat for 24 h. Virus-containing
supernatants were harvested and viral titers were determined by titration on Vero E6 cells. Titers
are shown as plaque forming units (PFU)/mL. The graphs show mean ± SEM of three independent
biological replicates. Statistical significance of differences between viral titers of control-treated
cells (DMEM) and cells incubated with Nafamostat was analyzed by one-way analysis of variance
(ANOVA) with Dunnett’s posttest (p > 0.05, not significant [not indicated]; ***, p ≤ 0.001).

Our results confirm that Nafamostat can inhibit −1PRF. We note that Munshi and
colleagues observed inhibition of −1PRF in the presence of 20 µM Nafamostat while we
detected inhibition only in the presence of 100 µM Nafamostat. This difference might be
due to the cell systems used–we employed Vero 76 cells for our study while Munshi and
colleagues examined A549 cells, a human lung cell line that has been reported to be only
poorly permissive to SARS-CoV-2 infection [22–24] and, therefore, did not allow studies
focusing on viral replication efficiency. Importantly, the same Nafamostat concentration
that inhibited −1PRF in Vero 76 cells did not block SARS-CoV-2 infection of these cells,
although it reduced infection of a control cell line, Calu-3, by more than a thousand-fold.
These results suggest that inhibition of −1PRF by Nafamostat observed in cell-free and
cell-based reporter assays [14] might not translate into antiviral activity. The underlying
reasons are at present unclear, and one can speculate that potential differences in RNA
structures of the −1PRF element in the context of the reporter construct and the SARS-
CoV-2 genome might contribute. Further, we cannot exclude that somewhat more potent
inhibition of −1PRF can be detected in other cell systems and may result in low levels of
antiviral activity. Importantly, Nafamostat has a short half-life time due to rapid hydrolysis
by blood and liver esterases [25–27]. Therefore, it remains unclear whether Nafamostat
concentrations suitable to block −1PRF can be attained in patients receiving Nafamostat
via continuous infusion, the approved route of Nafamostat administration [28,29], or upon
topical application, a recently pursued approach to COVID-19 therapy [30]. Nevertheless,
although Nafamostat-mediated inhibition of −1PRF did not translate into reduced SARS-
CoV-2 replication in our study, interference with SARS-CoV-2 −1PRF by more potent
compounds could still represent a promising antiviral strategy.
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