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Abstract: Healthcare workers (HCWs) are known to be at higher risk of developing severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infections although whether these risks are equal
across all occupational roles is uncertain. Identifying these risk factors and understand SARS-
CoV-2 transmission pathways in healthcare settings are of high importance to achieve optimal
protection measures. We aimed to investigate the implementation of a voluntary screening program
for SARS-CoV-2 infections among hospital HCWs and to elucidate potential transmission pathways
though phylogenetic analysis before the vaccination era. HCWs of the University Hospital of Liège,
Belgium, were invited to participate in voluntary reverse transcriptase-polymerase chain reaction
(RT-PCR) assays performed every week from April to December 2020. Phylogenetic analysis of
SARS-CoV-2 genomes were performed for a subgroup of 45 HCWs. 5095 samples were collected
from 703 HCWs. 212 test results were positive, 15 were indeterminate, and 4868 returned negative.
156 HCWs (22.2%) tested positive at least once during the study period. All SARS-CoV-2 test results
returned negative for 547 HCWs (77.8%). Nurses (p < 0.05), paramedics (p < 0.05), and laboratory
staff handling respiratory samples (p < 0.01) were at higher risk for being infected compared to the
control non-patient facing group. Our phylogenetic analysis revealed that most positive samples
corresponded to independent introduction events into the hospital. Our findings add to the growing
evidence of differential risks of being infected among HCWs and support the need to implement
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appropriate protection measures based on each individual’s risk profile to guarantee the protection of
both HCWs and patients. Furthermore, our phylogenetic investigations highlight that most positive
samples correspond to distinct introduction events into the hospital.

Keywords: COVID-19; SARS-CoV-2; healthcare workers; occupational exposure; infection prevention
and control; healthcare-associated transmission; phylogenetic analysis

1. Introduction

Over two years after the onset of the ongoing coronavirus disease 2019 (COVID-19)
pandemic, the epidemiological situation is still a major concern in many parts of the world.
Originally arising in the province of Wuhan (China), the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spread to Belgium, among other countries, through travelers
returning from Tuscany, Italy [1]. It gave rise to the first wave of the disease, extending
from March to June 2020 in Belgium, quickly followed by a second wave of infections, from
September 2020 to February 2021 [2]. In many European countries, including Belgium,
healthcare systems have been challenged to deal with this global crisis. During the first and
the second epidemic waves, millions of people were confined to their homes by government
decisions in order to minimize transmission of SARS-CoV-2 [3]. In contrast, healthcare
workers (HCWs) were working at the frontline of the outbreak, which both directly and
indirectly exposed them to infected patients or contaminated materials, putting them
in turn at high risk of becoming infected [4–9]. Therefore, HCWs may be responsible
for nosocomial outbreaks and may transmit SARS-CoV-2 to vulnerable patients. During
previous SARS-CoV-1 (2003) and Middle East respiratory syndrome coronavirus (MERS-
CoV, 2012) epidemics, nosocomial outbreaks were considered to play a crucial role in the
amplification and spread of these viruses [10]. Concerning SARS-CoV-2, both importance of
healthcare-associated transmission as a pandemic driving force and risk factors for HCWs
to become infected are currently unclear [11–16]. Several studies investigating healthcare
associated clusters among HCWs, through genomic and phylogenetic analysis, revealed a
majority of community-acquired infections [11,17–19], whereas others [12,19–26] highlighted
occupational transmissions such as patient-to-HCW and HCW-to-HCW. The contribution of
community and healthcare associated transmission leading to SARS-CoV-2 infections among
HCWs is still debated. The reported proportion of SARS-CoV-2 infections among HCWs is
highly variable. Although still debated [11,27,28], there is an increasing body of evidence that
HCWs are at higher risk for SARS-CoV-2 infection than general population [4,19–25]. Patient-
facing HCWs including notably nurses, and HCWs working in COVID-19 units, showed
the highest infection rates [4,6–8,10,16,29–36]. Protection of patients and HCWs from
nosocomial SARS-CoV-2 infection is crucial for the control of the pandemic and justifies the
implementation of protection measures including the use of appropriate personal protective
equipment (PPE), isolation, hygiene, and effective ventilation, as well as rapid identification
and isolation of infected patients and HCWs [37,38]. Another strategy being considered is
the regular screening for SARS-CoV-2 infection of all HCWs through reverse transcriptase-
polymerase chain reaction (RT-PCR) assays performed on respiratory samples (throat
and nasopharyngeal swabs) [7,9,14,36]. In addition to self-isolation based on symptom
recognition, regular screening of HCWs could further reduce transmission by identifying
individuals with asymptomatic or presymptomatic infection [39,40]. To achieve optimal
efficiency, this protective intervention should be modulated depending on the individual
risk profile of being infected. It is crucial to understand transmission dynamics of healthcare-
associated outbreaks, including the complex interplay between and respective role of HCWs
in transmission, in order to inform infection prevention guidelines. Here, we evaluated the
implementation of a voluntary screening program for SARS-CoV-2 infection among HCWs
in a tertiary center using weekly RT-PCR assays during both the first and second epidemic
waves in Belgium. We assessed the frequency of positive test results among HCWs and



Viruses 2022, 14, 1302 3 of 16

we evaluated the risk factors for infection among different occupational role categories. To
identify possible transmission clusters, genome sequencing and phylogenetic analysis were
performed on nasopharyngeal swabs or throat washes from a subgroup of the cohort.

2. Materials and Methods

From April to December 2020, the University Hospital of Liège (Belgium) offered
the opportunity for its staff, symptomatic or not, to carry out a SARS-CoV-2 test by RT-
PCR. HCWs were invited to participate in voluntary nasopharyngeal swabs (NP) or throat
washes (TW) RT-PCR testing every week [41]. Data from each HCW were collected through
a questionnaire completed at the time of the first RT-PCR test, except when the subjects
had also participated in a prospective study on the seroprevalence of anti-SARS-CoV-2
IgG antibodies at our institute [42]. In this case, data were collected through the same
questionnaire that was completed between April and May 2020 for this previous study. The
questionnaires covered background data on staff role and working area, whether the HCW
was transferred to a working COVID-19 unit during the period study, whether the staff
member wore a mask or not, information related to potential contacts with SARS-CoV-2
infected patients as well as demographic information including age, gender, height, weight,
smoking history, comorbidities, and ongoing medical treatment.

Written informed consent was obtained from each participant and the study was
approved by the Research Ethic Committee of the University Hospital of Liège (approval
reference number: 2020:155, 7 May 2020).

2.1. Laboratory Assays

RT-PCR assays were routinely performed using different systems to detect two different
SARS-CoV-2 target genes in respiratory samples: Cobas 6800 (Cobas® SARS-CoV-2; Roche, Basel,
Switzerland), Abbott m2000 (RealTime SARS-CoV-2, Abbott, Chicago, IL, USA), GeneXpert
(Xpress SARS-CoV-2, Cepheid, Sunnyvale, CA, USA) or the SARS-CoV-2 N1 + N2 Assay
(Qiagen, Hilden, Germany). All methods were calibrated using a quantified positive control
provided by the Belgian National Reference Laboratory for SARS-CoV-2 (KUL Leuven,
Leuven, Belgium). Samples were considered positive when the viral load detected was
higher than or equal to one copy per milliliter (mL). RT-PCR results were considered
as indeterminate when the samples were positive for one target gene and negative for
the other. When several tests were performed in the same week for the same HCW,
only the first positive result was included in the study. If there were no positive result,
the first indeterminate result was included; if there were none, only one negative result
was included.

2.2. SARS-CoV-2 Sequencing and Phylogenetic Analysis

Sequencing of SARS-CoV-2 genomes was performed for 45 samples. RNA extraction
from nasopharyngeal swabs or throat washes (300 µL) was performed using a Maxwell
48 device and the Maxwell RSC Viral TNA kit (Promega) with a viral inactivation step us-
ing Proteinase K, following the manufacturer’s instructions. RNA was eluted in 50 µL of
RNAse free water. 1.2 µL of SuperScript IV VILOTM Master Mix (ThermoFisher Scien-
tific, Waltham, MA, USA, ID 11756500) and 1.5 µL of H2O were combined with 3.3 µL of
the eluted RNA to carry out Reverse Transcription, followed by incubation at 25 ◦C for
10 min, 50 ◦C for 10 min, and 85 ◦C for 5 min. PCR was carried out using Q5® High-Fidelity
DNA Polymerase (NEB) and primers to obtain 1200 bp amplicons as described by Freed
and colleagues [43]. PCR conditions were set up according to the recommendations of
the ARTIC Network sequencing protocol (https://artic.network/ncov-2019 (accessed on
1 May 2020). Samples were multiplexed following the manufacturer’s recommendations
using the Oxford Nanopore Native Barcoding Expansion kits 1–12, 13–24, and 96 in con-
junction with Ligation Sequencing Kit 109 (Oxford Nanopore, Oxford, UK). Sequencing
was carried out on a Minion using R9.4.1 flow cells.

https://artic.network/ncov-2019
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To investigate the evolutionary relationships among HCW infectious cases, phyloge-
netic analysis were performed based on an alignment made of (i) the 45 viral genomes
obtained from the infections of HCWs and sequenced in the context of the present study,
(ii) all Belgian sequences available on GISAID (www.gisaid.org (accessed on 1 March 2022)) and
collected until 1 December 2020 (n = 3163), as well as (iii) all genomic sequences that were
used in the European Nextstrain [44] build dating of 1 December 2020 (n = 3721). We first
ran a maximum-likelihood phylogenetic analysis with the program IQ-TREE 2.0.3 3 [45]
using a general time-reversible (GTR) nucleotide substitution model [46] with empirical
base frequencies and four free site rate categories [47], which was selected as the optimal
model using IQ-TREE’s ModelFinder tool. The phylogeny was then time-calibrated using
the program TreeTime 0.8.4 5 [48].

Following a previously described analytical workflow [49,50], a discrete phylogeo-
graphic analysis was performed using the discrete diffusion model [51] implemented in the
software package BEAST 1.10 [52], with the objective to identify independent introduction
events of SARS-CoV-2 lineages into the hospital. Specifically, the time-scaled phylogenetic
tree was used as a fixed empirical tree and only considered two possible ancestral loca-
tions: “hospital” and “other location”. We conducted Bayesian inference through Markov
chain Monte Carlo (MCMC) for 3 × 105 iterations and sampled every 1000 iterations. We
inspected MCMC convergence and mixing properties using the program Tracer 1.7 [53] to
ensure that effective sample size (ESS) values associated with estimated parameters were
all higher than 200. After having discarded 10% of sampled trees as burn-in, a maximum
clade credibility (MCC) tree was generated using the program TreeAnnotator 1.10 [52], and
then the resulting MCC tree were used to delineate phylogenetic clades corresponding to
independent introduction events into the hospital.

2.3. Statistical Analysis

Quantitative variables were presented as means and standard deviations (SD) or me-
dian (Q1–Q3) while frequency tables (numbers and percentages) were used for qualitative
variables. Univariate logistic regression analysis was performed to evaluate the impact of
the demographic characteristics and HCWs staff role on the risk of presenting at least one
RT-PCR positive result. The results were reported as odds ratios (OR), 95% confidence In-
terval (95% CI) and p-values. HCWs were grouped into seven categories according to their
staff role (administrative staff, laboratory staff, physicians, paramedics, nurses, research
scientists, and technicians). Administrative staff and research scientists were regrouped
under the term “non-patient facing group”. Since their role does not require close contact
with patients or the hospital environment and many of them worked in an off-site location
separate from hospital sites, this non-patient facing group was used as a control for the
present analysis. The longitudinal aspect was also studied using generalized estimating
equations (GEE) modeling RT-PCR results according to demographic characteristics, HCWs
staff role, and time since beginning of the study. Statistically significant variables in univari-
ate models were included in a multivariate GEE model. Adherence to the study protocol
was evaluated through the comparison of the number of weeks of participation using linear
regression models. Results were reported using estimated coefficient ± standard error (SE)
and p-values. Missing data were not replaced, and calculations were always performed on
the maximum amount of available data. A p-value was considered statistically significant if
less than 0.05. Data analysis was carried out using SAS software (version 9.4) for Windows.
The R package ggplot2 (version 3.6.1) was used for the figures.

3. Results
3.1. Characteristics of HCW Groups

During the observation period (April to December 2020), 846 HCWs were tested
weekly for SARS-CoV-2 infection using RT-PCR assays. Among them, 143 subjects were
excluded from the study because they did not complete the requested questionnaire; thus,
no information was available to conduct the study (Figure 1). In total, nearly one in

www.gisaid.org
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ten employees (703/6263) of our institution who participated in the SARS-CoV-2 testing
campaign during the study period completed a questionnaire and were therefore included
in this study. Demographic characteristics of the HCWs cohort are presented in Table 1.
The average age of individuals in the cohort was 41.4 years (SD ± 11.3 years) and the
average body mass index was 24.3 kg/m2. The cohort was skewed towards females, with
only 20% of the cohort comprising males. Comorbidity information was available for
the 661 HCWs. Among them, 179 (27.1%) had at least one of the comorbidities currently
considered as risk factors for severe COVID-19 (including diabetes mellitus, hypertension,
cardiovascular disease, stroke, liver failure or cirrhosis, renal failure, chronic lung disease,
asthma, immunodeficiency, and cancer), and 75 (11.3%) were smokers. Nurses represented
23.4% of the cohort, administrative staff 22.1%, laboratory staff 19.8%, paramedical 17.1%,
physicians 10.8%, technicians 5.3%, and research scientists 1.4%. Nurses, physicians, and
paramedics were the groups most exposed to patients, with 96%, 85%, and 66% of them
being in contact with patients, respectively. Among the laboratory staff, 32.4% handled
potentially contaminated respiratory samples.
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Figure 1. Study design. Among 846 consenting healthcare workers (HCWs) participants,
143 subjects were excluded from the study because they did not complete the requested questionnaire.
Between April and December 2020, 5411 tests were performed in the 703 individuals included in the
study. Among these tests, 316 were excluded for one of the following reasons: no results available
(37 samples), duplicate tests (223 samples), ineligible sampling method (14 saliva samples), and
two samples performed the same week for the same patient (42 samples). 212 SARS-CoV-2 reverse
transcriptase-polymerase chain reaction (RT-PCR) assays were positive, 15 were indeterminate and
4868 returned negative. Of the 703 included subjects, 156 presented with at least one positive or
indeterminate test result during the study period. For the remaining 547 participants, all SARS-CoV-2
tests were negative. Reprinted with permission from ref. [54].
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Table 1. Characteristics of the healthcare workers (HCWs) study cohort.

Characteristics Data
Available (n = 703) Results 1

Demographics

Age (years) 703 41.4 ± 11.3

Female Gender 703 560 (79.7)

Height (cm) 661 168 ± 9

Weight (kg) 659 68.7 ± 13.5

BMI (kg/m2) 659 24.3 ± 4.2

Smokers 661 75 (11.3)

Comorbidities

Diabetes mellitus 661 25 (3.8)

Hypertension 661 48 (7.3)

Heart failure/coronary artery disease 661 6 (0.9)

Stroke 661 1 (0.1)

Liver failure/cirrhosis 661 1 (0.1)

Renal Failure 661 1 (0.1)

Chronic lung disease 661 3 (0.4)

Asthma 661 70 (10.6)

Autoimmune disease 661 50 (7.6)

Immunodeficiency 661 6 (0.9)

Hematological cancer 661 3 (0.4)

Non hematological cancer 661 18 (2.7)

Organ or cell transplantation 661 0 (0.0)

Taking medication 661 438 (66.3)

Staff role

Administrative staff 701 155 (22.1)

Laboratory staff 701 139 (19.8

Handling respiratory samples 701 45 (6.4)

Physicians 701 76 (10.8)

Paramedics 701 120 (17.1)

Nurses 701 164 (23.4)

Research scientists 701 10 (1.4)

Technicians 701 37 (5.3)

In contact with patients 703 395 (56.2)
1 Results are mean ± SD or n (%) as appropriate.

3.2. SARS-CoV-2 PCR Testing

During the study period, our laboratory processed and provided SARS-CoV-2 RT-
PCR results for 5411 samples collected from 703 included individuals. Among these,
316 samples were excluded from the analysis for one of the following reasons: no available
results (37 samples), duplicate tests (223 samples), ineligible sampling method
(14 saliva samples), or because the same participant was sampled several times during the
same week (42 samples; Figure 1). 79 samples were obtained via NP swabs and 5016 via
TW. The number of samples per individual ranged from 1 to 28, with an average of
7.2 (±5.4) tests per subject (Table S1) and the average duration of participation was
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14 (±11) weeks. Although HCWs were offered weekly RT-PCR testing, the workers at-
tended less frequently than that with an average interval between RT-PCR tests of 2.2 (±2.0)
weeks. Adherence was significantly lower in HCWs with a previously positive test result
(p = 0.004). Overall, adherence to the study protocol was low and varied notably accord-
ing to the occupational role of the staff. Females (2.1 ± 1.0, p = 0.033), nurses (7.1 ± 1.1,
p < 0.001), and HCWs working in a direct contact with patients (3.6 ± 0.81, p < 0.001) were
the most adherent subgroups (Table 2). In total, 212 SARS-CoV-2 RT-PCR assays were
positive, 15 were indeterminate and 4868 returned negative (Figure 1). Of the 703 included
subjects, 156 (22.2%) presented with at least one positive or indeterminate test result during
the study period. For the remaining 547 participants (77.8%), all SARS-CoV-2 tests were
negative (Figure 1). The respective peaks of RT-PCR assays performed, and the positive
results occurred concomitantly between the 40th and 52nd weeks of the year 2020 (from
September 28 to December 27, 2020), corresponding to the second wave of the COVID-19
epidemic in Belgium (Figure 2a,b).

Table 2. Adherence to the study protocol.

Characteristics n Number of Weeks of
Participation 1

Comparison
(Coef. ± SE, p-Value)

Age (years)
20–29 139 9 (3–21) 0.058 ± 0.036, p = 0.11
30–39 208 10 (5–26)
40–49 177 11 (5–25)
≥50 179 12 (6–26)

Gender
Female 560 11 (5–25) 2.1 ± 1.0, p = 0.033

Male (reference) 143 9 (4–21)

Staff role
Administrative staff (reference) 155 8 (4–24) -

Laboratory staff 139 10 (5–22) 0.82 ± 1.2, p = 0.49
Physicians 76 12 (4–25) 1.3 ± 1.4, p = 0.35
Paramedics 120 8 (5–15) −1.7 ± 1.2, 0.17

Nurses 164 24 (8–30) 7.1 ± 1.1, p < 0.0001
Research scientists 10 5 (1–16) −5.3 ± 3.4, p = 0.12

Technicians 37 7 (2–21) −1.1 ± 1.9, p = 0.55

In contact with patients
Yes 395 13 (5–27) 3.6 ± 0.81, p < 0.0001

No (reference) 308 8 (5–21) -
1 Results are Median (Q1–Q3) and estimated coefficient ± Standard Error (SE), p-value linear regression.
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Figure 2. (a) Evolution of the number of reverse transcriptase-polymerase chain reaction (RT-PCR)
assays performed and their results over time; (b) SARS-CoV-2 RT-PCR positive results rates (%)
over time.
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3.3. Association of HCWs Role with SARS-CoV-2 Infection

Laboratory staff handling respiratory samples (OR (95% CI): 2.2 (1.1–4.8); p = 0.004),
paramedics (OR (95% CI): 2.0 (1.1–3.5); p = 0.020) and nurses (OR (95% CI): 1.9 (1.1–3.3);
p = 0.015) were at higher risk for SARS-CoV-2 infection (with at least one RT-PCR test
positive) compared to the control non-patient facing group (Figure 3, Table 3). The test
positivity rates increased over time as the study progressed (p < 0.001; Table S2). We found
no significant association between SARS-CoV-2 infection and demographic characteristics
(Table 3). The longitudinal aspect studied using GEE led to the same conclusions (Table S2).
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Figure 3. Impact of the healthcare workers (HCWs) staff role on the risk of developing SARS-CoV-2
infection (at least one RT-PCR positive result). Odds ratio and 95% confidence intervals calculated
by logistic regression when compared to control non-patients facing group (administrative staff and
research scientists).

Table 3. Impact of the demographic characteristics and healthcare workers (HCWs) staff role on the
risk of presenting at least one reverse transcriptase-polymerase chain reaction (RT-PCR) positive
result. Adjusted odds ratio and 95% confidence intervals calculated by logistic regression when
compared to control non-patients facing group (administrative staff and research scientists).

Characteristics All Negative RT-PCR Results
(n= 547)

At Least One Positive RT-PCR
Result (n = 156)

Logistic Regression
Models

n Non Missing Result 1 n Non Missing Result 1 OR (95% CI) p-Value

Demographics

Age (years) 547 41.4 ± 11.4 156 41.7 ± 11.2 1.0 (0.99–1.02) 0.79
Gender, women 547 432 (79.0) 156 128 (82.0) 0.82 (0.52–1.3) 0.40

Heigth (cm) 514 168 ± 9 147 168 ± 9 1.0 (0.98–1.02) 0.91
Weigth (kg) 512 68.6 ± 13.7 147 69.3 ± 13.0 1.0 (0.99–1.02) 0.59

BMI (kg/m2) 512 24.3 ± 4.2 147 24.6 ± 4.3 1.0 (0.97–1.1) 0.51
Smoking 514 64 (12.4) 147 11 (7.5) 0.57 (0.29–1.1) 0.098

Comorbidities
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Table 3. Cont.

Characteristics All Negative RT-PCR Results
(n= 547)

At Least One Positive RT-PCR
Result (n = 156)

Logistic Regression
Models

n Non Missing Result 1 n Non Missing Result 1 OR (95% CI) p-Value

Diabetes mellitus 514 21 (4.1) 147 4 (2.7) 0.66 (0.22–2.0) 0.45
Hypertension 514 37 (7.2) 147 11 (7.5) 1.0 (0.52–2.1) 0.91

Heart failure/coronary
artery disease 514 5 (1.0) 147 1 (0.7) 0.70 (0.10–6.0) 0.74

Stroke 514 0 (0.0) 147 1 (0.7) - -
Liver failure/cirrhosis 514 1 (0.2) 147 0 (0.0) - -

Renal failure 514 1 (0.2) 147 0 (0.0) - -
Chronic lung disease 514 3 (0.6) 147 0 (0.0) - -

Asthma 514 52 (10.1) 147 18 (12.2) 1.2 (0.70–2.2) 0.46
Autoimmune disease 514 43 (8.4) 147 7 (4.8) 0.55 (0.24–1.2) 0.15

Immunodeficiency 514 5 (1.0) 147 1 (0.7) 0.70 (0.10–6.0) 0.74
Hematological cancer 514 3 (0.6) 147 0 (0.0) - -

Non hematological cancer 514 14 (2.7) 147 4 (2.7) 1.0 (0.32–3.1) 1.0

Staff role 545 156

Control group: administrative
staff and research scientists 137 (25.1) 28 (18.0) - -

Laboratory staff handling
respiratory samples 31 (5.7) 14 (9.0) 2.2 (1.1–4.8) 0.0035

Laboratory staff not handling
respiratory samples 79 (14.5) 15 (9.6) 0.94 (0.48–1.9) 0.87

Physicians 64 (11.7) 12 (7.7) 0.93 (0.44–2.0) 0.85
Paramedics 86 (15.8) 34 (21.8) 2.0 (1.1–3.5) 0.020

Nurses 118 (21.7) 46 (29.5) 1.9 (1.1–3.3) 0.015
Technicians 30 (5.5) 7 (4.5) 1.1 (0.46–2.9) 0.75

In contact with patients 547 296 (54.1) 156 99 (63.5) 1.5 (1.02–2.1) 0.039
1 Mean ± SD or n(%).

3.4. Viral Sequencing and Phylogenetic Analyses

Our phylogenetic analysis revealed that most positive samples from HCWs that se-
quenced in the context of the present study corresponded to independent SARS-CoV-2
introduction events into the hospital. Specifically, we identified a minimum of 35 intro-
duction events into the hospital (95% highest posterior density interval = [36–38]) for
45 sequences sampled among HCWs from the hospital (Figure 4 and Figure S1). We esti-
mated that 30 (95% highest posterior density interval = [27–32]) out of 45 sequenced HCW
positive cases were not directly related to any other HCW sample analysed in our study.
We only identified five (95% highest posterior density interval = [4–6]) pairs of samples that
seem to be directly related to each other, as well as two infectious clusters likely connecting
four and eight samples, respectively.
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2020−02−01 2020−04−01 2020−06−01 2020−08−01 2020−10−01 2020−12−01

Figure 4. Time-scaled phylogeny in which we identified phylogenetic clades introduced in the
University Hospital of Liège (Belgium) and delineated through a discrete phylogeographic recon-
struction along the tree (while only considering two potential ancestral locations: “hospital” and
“other location”). We identified a minimum of 35 introduction events into the hospital (95% highest
posterior density interval = [36–38]) for 45 sequences sampled among healthcare workers (HCWs)
from the hospital. On the phylogeny, large red nodes correspond to the most ancestral node of each
clade resulting from an introduction event into the hospital. Most of these clades consist of only one
sampled sequence: 30 (95% highest posterior density interval = [27–32]) out of 45 sequenced positive
cases corresponded to independent introduction events into the hospital. In the figure, small red
nodes correspond to sampled sequences that would not result from a distinct introduction event into
the hospital. In other words, smaller red nodes are tip nodes belonging to clades gathering at least
two sequences sampled among HCWs from the hospital. In the figure, smaller red nodes are tip nodes
corresponding to sequences sampled among HCWs but that do not result from a distinct introduction
event into the hospital. In other words, smaller red nodes correspond to clades gathering at least two
sequences sampled among HCWs, and the phylogenetic branches of these clades are also highlighted
in red. See Figure S1 for an alternative circular visualization of this annotated phylogenetic tree.
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4. Discussion

Through the rapid establishment of an expanded in-hospital HCWs SARS-CoV-2
screening program using voluntary RT-PCR assays, we observed that almost a quarter
(22.2%) of the HCWs study cohort were tested positive for SARS-CoV-2 infection between
March and December 2020. Almost all infections occurred between the end of September
and December 2020, corresponding to the second epidemic wave in Belgium. Several
factors could explain this observation. First, in contrast to other locations more affected
by material shortages, all staff members working in the COVID-19 units of our hospital
had access to PPE and other protective materials since the beginning of the pandemic
(Figure 2). Second, most of the tests performed during our voluntary screening program
were conducted during the second wave of the epidemic (Figure 2a). Then, staff exposure to
SARS-CoV-2 outside the workplace may have varied between the different epidemic waves,
which could for example be related to the Belgian government adopting less stringent social
restrictive measures during the second epidemic wave. Moreover, to overcome the problem
of healthcare personnel staffing shortages during the second epidemic wave, HCWs with
COVID-19 could continue to work in healthcare facilities, including in non-COVID wards,
which might have favored transmission to other HCWs. Finally, Belgium was particularly
affected by this second epidemic wave, and Liège was even considered as the epicenter of
the pandemic in Europe at that time.

RT-PCR assay positivity rates varied depending on the occupational role of the HCW
included in the study and were significantly higher for nurses, paramedics and laboratory
staff handling respiratory samples compared to the non-patient-facing control group,
as already suggested in other studies [4,6–8,10,16,29–36]. Although we cannot formally
exclude the contribution of infections transmitted outside the hospital, our observations
suggest that direct contact with infected patients or contaminated materials is a risk factor
for infection. In this context, our phylogenetic investigations highlight that most yet not
all positive cases among HCWs corresponded to distinct introduction events into the
hospital. Our results support the role of community acquired infections in HCWs, who
may then introduce the virus into the facility, and are in line with most studies investigating
dynamics SARS-CoV-2 transmission among hospital employees [19,22,28,55,56]. Interestingly,
physicians were not at an increased risk of infection compared to the control group. One
possible explanation for this observation is that their contacts with patients and coworkers
were less close and briefer than those of nurses and paramedics. During the pandemic,
physician-patient interactions were rethought and reorganized in order to limit close contact
as much as possible [57].

Many studies support the widespread adoption of iterative screening strategies for
all HCWs, assuming that presymptomatic or asymptomatic SARS-CoV-2 carriers might
significantly contribute to COVID-19 outbreaks [39,40,58]. However, there is currently no
recommendation because of the weak evidence of transmission dynamics, particularly
using genomic sequencing [14,59], and the role of HCWs in initiating or amplifying noso-
comial outbreaks remains unclear. One possibility in order to make screening strategies
as efficient as possible would be to focus screening programs on HCWs at higher risk of
being infected as nurses, paramedics, and laboratory staff handling respiratory samples.
This approach will enable infected HCWs to self-isolate at the time of peak infectivity [60]
and prevent uncontrolled staff-to-staff or staff-to-patient transmission, which could lead
to substantial morbidity and mortality in a particularly vulnerable patient group [61].
Moreover, such strategies might have potentially positive effects on the mental health of
HCWs. HCWs reported high levels of psychological distress, including fear of infecting
themselves and their environment [62]. This fear is even more pertinent to HCWs in contact
with infected patients or contaminated materials. In previous epidemics, HCWs screening
programs have boosted morale, decreased absenteeism, and potentially reduced long-term
psychological sequelae [63]. The screening protocol enables HCWs to return to work more
rapidly and might have an additional positive effect on health behavior [9,13].
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The number of tests performed varied according to the occupational role profile,
which is in line with the results reported by Modenese and colleagues [57] and Jones
and colleagues [64]. HCWs were enrolled in a voluntary testing program with a flexible
follow-up schedule, which led to different attendance frequencies. Indeed, women, HCWs
patient-facing groups, and most notably nurses, were subpopulations demonstrating higher
attendance rates, further supporting that they may represent the most suitable population
for iterative screening strategies.

Several elements still need to be determined before implementing of such screening
strategies in daily practice. A recent study suggested the need for weekly testing to prevent
16 to 33% of onward transmission from HCWs [15,65], while others proposed screening
every 2 to 4 weeks [64]. Therefore, the optimal testing frequency should be further studied.
Then, the sampling method should also be adjusted to increase compliance. In this respect,
our team has recently reported that alternative specimen sampling techniques, such as
throat wash, should be considered to improve SARS-CoV-2 testing strategies in HCWs [41].
Although NP swabs remain a more sensitive collection method than TW when performed
early after the first symptom onset, compliance is better among HCWs with this alternative
method because NP swabs are more invasive and require a second person for collection.

We must acknowledge several limitations to our study. Firstly, the conclusions drawn
from our data should consider the overall low adherence of the participants to the screening
protocol. Secondly, the collected data did not allow us to distinguish laboratory staff who
handled respiratory samples in a laminar flow hood from those who did not. Therefore, the
differential risk between these two populations could not be evaluated. Moreover, we were
not able to sequence all genomes from all positive samples. Thus, we may have missed
potential clusters. Finally, we focused on phylogenic analysis to detect clusters. However,
epidemiological data including contact tracing investigations are also necessary to confirm
the existence of clusters.

5. Conclusions

In conclusion, we evaluated the establishment of a voluntary SARS-CoV-2 infection
screening program for HCWs in a tertiary center during first and second COVID-19 epi-
demic waves. This approach identified differential risk of becoming infected depending on
the occupational role, with nurses, paramedics, and laboratory staff handling respiratory
samples found to be at higher risk when compared to the non-patient facing control group.
Moreover, HCWs in contact with patients, most notably nurses, were more likely to adhere
to screening protocol. Therefore, our data suggest that these HCWs may represent the
most suitable population for iterative targeted screening strategies. However, several
elements need to be determined to make this strategy as efficient as possible, such as the
optimal testing frequency or optimal sampling method. In addition, our phylogenetic
analysis indicates that most positive HCW samples correspond to the introduction of
distinct transmission chains into the hospital. Finally, our results further support the need
to implement appropriate protection measures based on each individual’s risk profile to
guarantee the protection of both HCWs and patients. Even if the vaccination campaign has
now greatly modified the scenario of the COVID-19 pandemic, including among HCWs,
our study provides data that can be useful for further development of strategies to mitigate
the occupational risk of becoming infected, notably by the new SARS-CoV-2 variants, and
therefore, the evolution of the pandemic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061302/s1, Table S1: Number of SARS-CoV-2 RT-PCR tests
performed per subject; Table S2: Impact of demographic characteristics, HCWs staff role, and
time since beginning of the study on RT-PCR result; Figure S1. Time-scaled phylogeny in which
we identified phylogenetic clades introduced in the University Hospital of Liège (Belgium) and
delineated through a discrete phylogeographic recon-struction along the tree (while only considering
two potential ancestral locations: “hospital” and “other location”).

https://www.mdpi.com/article/10.3390/v14061302/s1
https://www.mdpi.com/article/10.3390/v14061302/s1
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