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Abstract: African swine fever virus (ASFV) is the etiological agent of a lethal disease of domestic pigs
and wild boars. ASF threatens the pig industry worldwide due to the lack of a licensed vaccine or
treatment. The disease has been endemic for more than 40 years in Sardinia (Italy), but an intense
campaign pushed it close to eradication; virus circulation was last detected in wild boars in 2019. In
this study, we present a genomic analysis of two ASFV strains isolated in Sardinia from two wild
boars during the 2019 hunting season. Both isolates presented a deletion of 4342 base pairs near the 5′

end of the genome, encompassing the genes MGF 360-6L, X69R, and MGF 300-1L. The phylogenetic
evidence suggests that the deletion recently originated within the Sardinia ecosystem and that it is
most likely the result of a non-allelic homologous recombination driven by a microhomology present
in most Sardinian ASFV genomes. These results represent a striking example of a genomic feature
promoting the rapid evolution of structural variations and plasticity in the ASFV genome. They also
raise interesting questions about the functions of the deleted genes and the potential link between the
evolutionary timing of the deletion appearance and the eradication campaign.

Keywords: ASFV; wild boar; NGS; deletion; microhomology

1. Introduction

African swine fever (ASF) is a fatal hemorrhagic disease that affects both domestic and
wild pigs and is caused by the ASF virus (ASFV) [1]. ASF was first observed in settlers’ pigs
in Kenya in 1909 and was later described by Montgomery in 1921 [2]. To date, the disease
is present in Africa, Europe, Asia, Oceania, and the Americas [3]. Thus, it is regarded as
one of the major threats to the pig industry worldwide. There is currently no licensed
vaccine or treatment available; control measures during outbreaks rely solely on stamping
out affected animals, the establishment of restriction zones, and both active and passive
surveillance, with subsequent massive economic losses [4,5]. Furthermore, the ability of this
virus to infect different target populations, such as domestic pigs, wild boars (WBs), or other
feral swine, and of being transmitted by arthropod vectors (soft ticks) [4,6] results in high
morbidity and mortality, cross-border spread, and rapid diffusion at the intercontinental
level [7]. ASFV is a member of the family Asfarviridae, and it is characterized by a large
double-stranded DNA sequence. The virus genome size varies between ~170 and ~190 Kb
in length and contains 160–234 open reading frames (ORFs). Based on the genetic diversity
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of the C-terminal region of the B646L gene, which encodes the main variable capsid protein,
p72, ASFV isolates have been divided into 24 genotypes [8,9]. All genotypes are present
in Africa [10], while only genotypes I and II have spread globally [10]. The ASFV strains
isolated in Sardinia belong to genotype I, while genotype II is present in Eastern Europe,
Asia, Oceania, and Central America [3]. Both genotypes I and II are present in China [11,12].
More recently, new incursions of ASFV genotype II isolated from wild boars were reported
in January 2022 on the Italian mainland [13].

In Sardinia, ASFV genotype I was first introduced in 1978, probably as a consequence
of the import of contaminated food waste [14]. Since 2015, rigorous control efforts put
in place in Sardinia strongly reduced the occurrence of ASF in domestic pigs. A clear
decline in both virological and serological prevalence has been proven, and no outbreaks
nor PCR-positive animals have been detected in domestic or wild pig populations since
April 2019 [15]. Recently, we analyzed the genetic variability and genomic evolution
of 71 whole-genome sequences (WGSs) resulting from sampling over 40 years of ASF
endemicity in Sardinia. Three main genetic groups characterizing three temporal waves
were identified, which clearly reflected the course of the ASF epidemic without other
virus introductions from outside [16]. This study further showed that the evolutionary
trend of ASFV in Sardinia was generally constant and relatively slow [16], and how the
genetic variability might correlate with specific human-mediated activities (such as animal
movements, hunting management, and outdoor breeding) was described [15].

The hunting season in Sardinia historically took place between November and January.
Starting from the 2011–2012 season, a more accurate control of the hunting activity and
a more rigid regulation for hunters were put in place, leading to an increase in wild
boar sampling, resulting in better epidemiological knowledge of ASFV in the wild boar
population. The density distribution ranges of wild boar populations were redesigned,
resulting in 11 hunting management units (HMU) with different control measures applied
inside and outside each wild-boar-infected area, as established by the official ASF-EP-15-18
eradication program and subsequent modifications [15,17,18].

In this paper, we report the genetic characterization of ASF viruses isolated from two
wild boars hunted in January 2019 from two different Sardinian provinces, Sassari and Nuoro.
These strains are the last ASFV isolated in Sardinia. To date, natural deletions were described
in ASFV genotype I isolates from Portugal (NH/P68 and OURT 88/3) [19,20] and in genotype
II strains isolated in northeastern Estonia (Estonia2014) [21], Latvia (Lv17/WB/Rie1) [22],
and China (HuB20, Pig/Heilongjiang/HRB1/2020) [23,24], but this is the first time that a
substantial genomic deletion was identified in Sardinian ASFV isolates, despite the presence
of the disease on the island for more than 40 years.

2. Materials and Methods
2.1. Ethics Statement

Two 6- to 18-month-old crossbred pigs (Sus scrofa domesticus) were used as blood
donors. Blood samples were heparinized with 100 IU/mL sodium heparin and then used
for virus isolation (described in Section 2.2) [25]. The animals’ health status was routinely
monitored by trained veterinarians, and their blood samples were screened for several
pathogens: ASFV [26], porcine parvovirus (PPV) [27], porcine circovirus 2 (PCV2) [28],
porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneu-
moniae, the last two using commercial real-time PCR kits (LSI VetMAX™ PRRSV EU/NA
and VetMAX™-Plus qPCR Master Mix, both Thermo Fisher Scientific (Waltham, MA, USA),
respectively), according to the manufacturer’s instructions.

Tissue samples from wild boars were collected by veterinarians of the Italian Animal
Health Service during the 2018–2019 hunting season. Animals were already dead at the
time of sampling; thus, the approval of the ethics committee was not required.

Animal husbandry and handling procedures (bleeding) were performed according
to the Italian Legislative Decree no. 26, dated 4 March 2014, and in agreement with
the Guide for the Use of Laboratory Animals issued by the Italian Ministry of Health
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(authorization no. 1232/2020-PR). Animals were housed at the experiment station of the
Istituto Zooprofilattico Sperimentale (IZS) of Sardinia (‘Surigheddu’, Sassari, Italy).

2.2. Sampling, Diagnostic Tests, and Virus Isolation

Tissues were initially tested for virus presence by real-time PCR with amplification
targeting the B646L (p72) gene [26]. The presence of infectious ASFV was assessed using
the Malmquist test (hemadsorption test) [25]. ASFV isolation was carried out on either
homogenized spleen (7212WB/19) or lung (7303WB/19) tissues. In detail, tested samples
were added to two-day-old porcine monocytes/macrophage monolayers, and cells were
monitored daily for five days for the hemadsorption effect, in accordance with the WOAH
Manual of Diagnostic Test and Vaccines for Terrestrial Animals [25]. When the presence of
live ASFV was confirmed, culture supernatant was collected and stored at −80 ◦C until it
was used for genome sequencing.

Sera samples of these animals were tested for ASFV antibodies (Ab) presence using
a commercial ELISA test (Ingezim PPA Compac®, Ingenasa, Madrid, Spain) as screening
test, and then confirmed by tan Immunoblotting test (IB), in accordance with the WOAH
Manual of Diagnostic Test and Vaccines for Terrestrial Animals [25].

2.3. DNA Extraction, PCR Assay, and Sanger Sequencing

Viral DNA was extracted directly from the cell culture supernatant using a QIAmp Ul-
traSens Virus Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions.

For molecular analysis, different PCRs were set up. The sequences of the B602L
(genome location: bases 96,322–97,938) and EP402R genes (genome location: bases
68,928–70,112) were confirmed by Sanger sequencing using primers and the methods
that were described previously [29].

Furthermore, to confirm the deletion of 4342 base pairs, we designed a set of specific
primers with Primer-BLAST (Table S1, Figure S1) using the following PCR protocol: 1× PCR
buffer, 2.5 mM MgCl2, 0.2 mM dNTPs (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA), 0.2 µM of each primer, and 0.25 U of Platinum Taq (Invitrogen) in a total volume
of 50 µL. The incubation profile was established as follows: 95 ◦C for 5 min, followed by
40 cycles of 95 ◦C for 30′′, 50 ◦C for 30′′ (primer, ASFV_4DEL, ASFV_5DEL, ASFV_6DEL, and
ASFV_8DEL), 55 ◦C for 30′′ (primer ASFV_1DEL, ASFV_2DEL, ASFV_3DEL, ASFV 7DEL),
and 72 for 60′′, with a final extension of 72 ◦C for 10 min.

The whole region encompassing the deletion (ASFVfullDel, Figure S1) was amplified
using the primers ASFV_1DEL forward and ASFV_8DEL reverse using the same PCR
protocol outlined above with an annealing temperature of 55 ◦C.

The reference strain KX354450 was used as a positive control in each PCR.
The correct size of the amplicons was verified on 2% agarose gel using the precast

E-Gel EX Agarose on the E-gel power Snap (Invitrogen), according to the manufacturer’s
instructions. The PCR products were purified using the ExoSap-IT PCR Product Cleanup
(Applied Biosystems, Thermo Fisher Scientific), according to the manufacturer’s protocol.
The templates were used for cycle sequencing reactions using Big Dye Terminator version
1.1 (Applied Biosystems, Thermo Fisher Scientific). Purified products were run on an ABI
PRISM 3500 Genetic Analyzer (Applied Biosystems, Thermo Fisher Scientific). Sequences
were reference-aligned using ASFV reference strains retrieved from GenBank (KX354450)
in BioEdit 7.2.5 [30] and MEGA 7.0 [31,32].

2.4. Full-Genome Sequencing and Assembly Analysis

For full-genome sequencing, the extracted DNA of the 7303WB/19 and 7212WB/19
viruses were prepared using a Nextera DNA Flex Library Prep Kit (Illumina Inc., San
Diego, CA, USA) starting from a minimum DNA input of 50 ng. After quantification by
Qubit 2.0, the DNA samples were sequenced at the AMES Group, Centro Polidiagnostico
Strumentale, Napoli, Italy, using an Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA,
USA), according to the manufacturer’s instructions. Median coverage values of 250 and
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120, respectively, were obtained. Genome data processing was performed using an in-
house bioinformatic pipeline. The bcl2fastq program was used to convert the BCL files
generated by the sequencing systems to standard FASTQ file formats [33] that were used to
quality trim the data and remove sequencing adaptors [34]. The reads were then aligned
to the pig reference genome (Sus scrofa 10.2) [35] using the bwa-mem algorithm [36]. Only
reads mapping uniquely to the ASFV genome were retained and realigned using GEM [37].
Aligned bam files were sorted and indexed with SAMtools [38] and deduplicated with
Picard tools [39]. To obtain high-quality variants, FreeBayes [40] was used to call variants
for each sample using the KX354450 [41] sequence as a reference genome (parameters:
“–ploidy 1 -X -u -m 20 -q 20 -F 0.2”). Whole-genome sequences (WGSs) were aligned using
MAFFT 7.427 [42], and polymorphism positions were visually inspected using Jalview 2.10.3
B.1 software [43]. Bam files of both 7303WB/19 and 7212WB/19 were aligned with the
KX354450 sequence and visually inspected with IGV 2.4.14 [44]. Genome annotation was
performed in GATU [45] using KX354450 as the reference genome. The Artemis Genome
browser and annotation tool (Sanger Institute) allowed the visualization of sequence features,
next-generation data, and the results of analyses within the context of the sequence and
were used to calculate the % G~C content. The genome sequence data generated in this
study are available in the GenBank database (accession numbers ON260839 and ON260838).

2.5. Phylogenetic Analysis

To investigate the evolutionary relationship of the 7303WB/19 and 7212WB/19 isolates
among the historical context of the ASFV genotype I in Sardinia, a phylogenetic analysis was
performed using an alignment consisting of (i) 75 WGSs generated from viruses historically
isolated from Sardinia between 1978 and 2019 and (ii) 3 WGSs from viruses of European
and African origins. A maximum-likelihood phylogeny was reconstructed in IQ-TREE
2.2.0 [46] by modeling the nucleotide substitution with a general time-reversible (GTR+Γ)
model with empirical base frequencies. The obtained phylogeny was then time-calibrated
using TreeTime 0.9.3 [47] (Table S2).

3. Results
3.1. Isolation of 7212WB/19 and 7303WB/19 and Their Genomic Analysis

The samples analyzed in this study were collected in January 2019 from two wild boars
that were hunted in two distinct WB hunting management units inside the WB-infected
area. The strain 7303WB/19 was isolated from a 30-month-old male sampled in Sassari
province (latitude: 40.531633; longitude: 9.132233; Pattada municipality), whereas the strain
7212WB/19 was isolated from a 30-month-old female sampled in Nuoro province (latitude:
39.891; longitude: 9.499; Lanusei municipality) (Table 1, Figure 1).

Table 1. ASF virus strains isolated from wild boar hunted in Sardinia during January 2019. Results
of both virological (tested organs, Ct values of real-time PCR, and Malmquist test) and serological
(ELISA and immunoblotting) tests are provided.

Strain ID ◦
Hunting Time

(Year and
Month)

Municipality
(Province) HMU § Host

Species Genotype Organ Ct Value * Malmquist
Test Elisa IB #

7303WB/19 January 2019 Pattada
(Sassari)

Goceano-
Gallura Wild Boar I Lung 36.2 pos pos pos

7212WB/19 January 2019 Lanusei
(Nuoro)

Gennargentu-
Ogliastra Wild Boar I Spleen 19.37 pos neg neg

◦ ID: identification number; § HMU: wild boar hunting management unit; * Ct: threshold cycle; # IB: immunoblot-
ting; pos: positive; neg: negative.
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Figure 1. The map represents the locations of the two wild boars analyzed in this study, which were
sampled in Sardinia during the 2018–2019 hunting season. The blue lines indicate the wild boar (WB)
hunting management unit (HMU), while the red line indicates the limits of the WB-infected zone in 2019.

Considering an average distance of 5 km between WB home ranges [48], the distance
between the areas where the two animals were sampled is 76 km (Figure 1).

Strain 7303WB/19 was isolated from the lung of an ASFV-antibody-positive (Ab+)
wild boar and presented a weak PCR result (Ct = 36.2), whereas 7212WB/19 was collected
from the spleen of an ASFV-antibody-negative (Ab-) wild boar and presented a strong PCR
result (Ct = 19.37), as described in Table 1. Both isolates showed a hemadsorbing (HAD)
phenotype with no visible differences with other Sardinian isolates collected in the last
40 years (data not shown).

The lengths of the genome sequences obtained from the ASFV 7303WB/19 and
7212WB/19 isolates were 177,417 and 177,416 bp, respectively. These sequences did not
include the terminal inverted repeat KP86R, KP96L, DP93R, and DP86L genes (probably
due to the difficulties in assembling low-coverage reads of these regions), with GC contents
ranging from 38.78% to 38.79%, respectively.

Following annotation by GATU, we identified 228 ORFs in both 7303WB/19 and
7212WB/19, with 162 protein-encoding genes involved in virus assembly, enzymes, extracel-
lular region parts, and viral reproduction and 66 uncharacterized reading frames (URFs).

Following NGS, the comparison of 7303WB/19 and 7212WB/19 against other Sar-
dinian strains (Table S3) [16,49,50] evidenced new point mutations in the intergenic regions
(IG) and the replacement of the G > A base in position 142,703 (relative to KX354450),
resulting in a synonymous mutation located in the region coding for the S273R gene.
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3.2. A Deletion with Respect to the Reference ASFV Isolate from Sardinia

By aligning the NGS reads to the KX354450 reference genome, we observed that the
read depth dropped significantly between 11 kb and 17 kb from the 5′ end of the genome
(Figure 2). The lack of coverage in this region pointed to the presence of a deletion in the
genomic sequence of both isolates. The length of the complete deletion was about 4000 base
pairs (Figure 2, Table S4); a finer resolution of the exact start and endpoint of the deletion is
limited by the read length.
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Figure 2. Read depth along the genome before read deduplication. (A) Depth of reads aligned to
the Sardinian reference genome KX354450. The drop in read depth corresponding to the deletion is
highlighted in grey. (B) Zoomed view centered on the region of the deletion (about 12–16 k from 5′

end of the genome). (C) Depth of reads aligned to the modified reference KX354450MMD, which
included the theoretical microhomology-mediated deletion.

The deletion involved the totality of the coding regions of the genes MGF360-6L, X69R,
and MGF300-1L (Table S4).

The flanking regions of the deletion were characterized by a sequence of 48 bases
that is found in all Sardinia ASFV isolates. The repeated sequences involved in this
perfect microhomology corresponded to the nucleotide sequence “TGGTAATTGTACTC-
TATAAGTTTATAAAAATTTCAGTATATTTTTTTT” located in positions 11,774–11,821 and
16,116–16,163 with respect to the Sardinian reference genome KX354450.

These 48-base sequences are the longer identical subsequences within two regions of
imperfect microhomology, as shown in Figures S2 and S3. These regions span 176 bases
each, are located in positions 11,656–11,831 and 15,998–16,173, and differ from each other
by only 11 bases (i.e., 6.2% divergence).
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Both regions involved in this microhomology appear to be conserved among all
published Sardinian isolates sampled until 2018 but not among ASFV genotype I sequences
from outside Sardinia (see alignments in Figures S2 and S3).

The presence of the microhomology in correspondence to the flanking regions of the
deletion suggests that the deletion arose as a result of mechanisms related to non-allelic
homologous recombination (NAHR) or microhomology-mediated end-joining (MMEJ) [51].
Microhomology-mediated deletions are known outcomes of these mechanisms [52,53] and
represent the most natural explanation for our findings.

We confirmed that the deletion is microhomology-mediated both by NGS and by PCR
using specific primers. The sequence in the 2019 wild boar isolates contained only one copy
of the 47-base sequence involved in the microhomology, and the region between the two
repeated sequences was completely absent (Figure 3), as expected for a microhomology-
mediated deletion.
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To confirm this by NGS, we included the microhomology-mediated deletion (MMD)
into the KX354450 sequence, removing all bases between 11,822 and 16,163 to obtain a new
reference sequence that we denote as KX354450MMD. We realigned all reads from isolates
7303WB/19 and 7212WB/19 to this KX354450MMD reference. A manual inspection of
the alignment around positions 11,775–11,821 revealed the presence of perfectly aligned
reads spanning the whole sequence and the flanking regions of KX354450MMD, with
no significant drop in read depth (Figure 2C), confirming the microhomology-mediated
nature of the deletion. The consensus from the reads perfectly matches the sequence of
KX354450MMD, implying that the breakpoints of the deletion lie within the two regions
of perfect microhomology. The same local sequences were confirmed by PCR. In detail,
using primers pairs from ASFV1DEL to ASFV8DEL, no amplification was evidenced in
the 7303WB/19 and 7212WB/19 samples (data not shown). Instead, the PCR performed
with ASFV_1DEL forward and ASFV_8DEL reverse primers produced a shorter amplicon
for both isolates with respect to the reference strain KX354450, which was used as positive
control (data not shown). The Sanger sequencing confirmed the deletion of 4342 base pairs
in the region coding for the genes MGF 360-6L, X69R, and MGF 300-1L genes plus the
neighboring intergenic regions.
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3.3. Genetic Relatedness to other Sardinian ASFV Sequences

To better understand the origin of this deletion, we analyzed the phylogenetic rela-
tionship between the two isolates, 7303WB/19 and 7212WB/19, and previously published
ASFV genotype I sequences.

We first considered the region involved in the deletion. The deletion itself was the
same in the two samples from 2019, while it was not present in any of the other Sardinian
samples published to date, which were sampled in a period spanning the years 1978–2018.

Both flanking regions involved in the microhomology appeared to be present and
conserved among all published Sardinian isolates. The 5′ flanking region was conserved
only in a few samples from genotype I from Spain and Portugal, which represent the
closest outgroups of the Sardinian epidemic. Surprisingly enough, it was also conserved in
genotype XX. The 3′ flanking region was conserved among Sardinian isolates and more
generally among all genotype I sequences but was absent from all other genotypes. Hence,
the microhomology is restricted to a subclade of ASFV genotype I from Portugal, Spain,
and Sardinia (Figure 4, Table S3). The same is true for the larger regions of imperfect
microhomology (Figure S3).
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Figure 4. Conservation of the perfect microhomology and the two involved sequences of 48 bp
(one at the 5′ end of the deletion and one at the 3′ end) among ASFV genotypes. Top: number
of mismatches between the sequence closer to the 5′ end of the genome in KX354450 and the
corresponding sequences in other samples from different genotypes, ordered by genomic divergence
from KX354450. Middle: mismatches between the sequence closer to the 3′ end of the genome in
KX354450 and the corresponding sequences in other samples from different genotypes. Bottom:
mismatches between the two sequences from the same sample. “Missing” denotes bases that were
missing (i.e., contained gaps in the alignment) for both sequences.

A phylogenetic analysis of whole-genome Sardinian sequences showed that the two
ASFV isolates containing the deletion lie in the middle of the clade formed by the Sardinian
isolates and therefore clearly descended from the Sardinian epidemic. The two sequences,
7303WB/19 and 7212WB/19, were also very similar to each other, strongly suggesting that
the deletion originated with a single mutational event in their ancestral lineage. Their closer
ancestors lie in a minor clade containing a few recent Sardinian sequences from 2004 to 2015
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and are estimated to have been circulating during late 2012 (95% HPD 2010 to 2013), which
might correspond to the time window in which the deletion could have occurred (Figure 5).
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Figure 5. Time-scaled phylogeny of 75 ASF viruses isolated from Sardinia between 1978 and 2019.
Colored branches indicate phylogenetic clades that include: (i) ASF viruses collected between 1978
and 1995 (blue), (ii) viruses isolated after 2000 (green), and (iii) the two 2019 ASFV isolates with the
microhomology-mediated deletion (orange).

4. Discussion

In this study, we analyzed the genomic sequences of two Sardinian ASF viruses
isolated from wild boars sampled during the 2018–2019 hunting season in the ‘WB infected
zone’, which was a historically endemic area of ASF. Sardinia is the oldest ASF endemic area
in Europe and is characterized by a peculiar epidemiological context: the virus circulates
within three diverse populations (domestic pigs, free-ranging pigs, and wild boars) without
the presence of Ornithodoros ticks [54,55].

ASFV has been present in Sardinia since 1978, and it rapidly spread due to several
factors mainly related to cultural habits. In 2015, a strict eradication plan (PE-AS15-18 and
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subsequent additions) was put in place: biosecurity measures were remarkably improved,
and several depopulation actions against illegal pigs were carried out [49,55]. Thanks to
these strict control measures, ASFV circulation dropped drastically after 40 years, leading to
a reduction in the number of pigs affected and resulting in improved disease management.
The ASFV genome was last detected in domestic pigs in 2018 and in wild boars in April
2019 [15,17], and antibody positivity is currently detected in <1% of tested animals [49].
The strains 7303WB/19 and 7212WB/19 are the last ASFV strains isolated in Sardinia.

In a previous study 71 ASF viruses collected in Sardinia between 1978 and 2018 were
sequenced, but none of them presented significant deletions in their genomes [16,50]. No
deletions were observed in strains isolated from apparently healthy Ab+ free-ranging pigs [49].
The 7303WB/19 and 7212WB/19 strains are the first Sardinian isolates in which a consistent
genomic deletion was observed. Evidence of naturally occurring deletions in the ASFV
genome were reported in other studies in ASFV isolates belonging to either genotype I or II,
which are often associated with reduced virulence [56]. Deletions were further identified in
two attenuated genotype I strains in Portugal: the NH/P68 strain, isolated from chronically
infected pigs in 1968 [19], and the OURT 88/3 strain, isolated from Ornithodoros erraticus in
1988 [20]. More recently, Zani et al. (2018) reported that a genotype II ASFV strain isolated
from a wild boar hunted in northeastern Estonia presented a 14,560 bp deletion from the 5′

end. This isolate (Estonia 2014) was associated with a moderately virulent phenotype with
reduced lethality compared to the virulent Georgia 2007/1 [21].

To date, two naturally occurring deleted ASFV isolates were identified in China:
HuB20 and Pig/Heilongjiang/HRB1/2020. The strain HuB20, isolated from a domes-
tic pig in the Hubei province of China, presented a partial deletion of the CD2v gene
and the adjacent 8CR gene [23]. In vitro, HuB20 displayed a non-hemadsorbing phe-
notype [23]. The Pig/Heilongjiang/HRB1/2020 strain was isolated from the spleens
of pigs in Harbin [24] and also presented a non-hemadsorbing phenotype. In addi-
tion, Pig/Heilongjiang/HRB1/2020 was characterized by low virulence in vivo, per-
sistent infection, a chronic disease course, and reduced lethality in pigs [24]. In a
recent study, the genome sequences of the five “field attenuated strains” described
above (OURT 88/3, NH/P68, Estonia2014, Pig/Heilongjiang/HRB1/2020, and HuB20)
were analyzed and compared to related virulent ASFV isolates [56]. The deletion of
EP153R and EP402R was observed to occur in four of the five field-attenuated strains
that were analyzed, whereas eight different genes were simultaneously absent in three
field-attenuated strains: DP60R, MGF110-2L, MGF110-4L, MGF100-1R, MGF110-9L,
MGF110-12L, MGF360-6L, and MGF360-14L [56]. A major deletion of MGF110 family
genes was detected in Estonia 2014, but no gene loss was found in the MGF360-10L to
MGF505-3R region. On the contrary, no loss of the MGF110 gene was found in NH/P68
and OURT 88/3, except the deletion of MGF360-10L to MGF505-3R [56]. Researchers
speculated that the MGF360 and MGF505 families, rather than the MGF110 family, might
play a crucial role in the reduction in ASFV virulence [56].

Both Sardinian isolates investigated in this work (7303WB/19 and 7212WB/19) showed
a hemadsorbing phenotype, and their sequences revealed the presence of a deletion
of 4342 bases near the 5′ end, encompassing the genes MGF 360-6L, X69R, and MGF
300-1L. This deletion affects two genes belonging to the ASFV multigene families (MGFs),
which are a group of genes located within the left terminal and right terminal of the ASFV
genome [1]. Depending on the sizes of the MGF proteins, they can be divided into five
families, including MGF-100, MGF-110, MGF-300, MGF-360, and MGF-505. Each MGF
family is present in multiple copies per genome. MGF proteins differ greatly among viruses
due to frequent duplications, deletions, and inversions. It has been reported that MGF
proteins play important roles in multiple steps of viral infection, including transcription and
translation, virulence, and immune escape [57]. For example, the deletion of the MGF-360
and MGF-505 genes have been shown to attenuate a highly virulent isolate of ASFV [58],
and a different study showed that MGF-360 can suppress IFN-I responses and improve
the proliferation efficiency of the virus [58,59]. Nevertheless, the function of many of these



Viruses 2022, 14, 2524 11 of 15

genes is still unknown. Both 7303WB/19 and 7212WB/19 presented the deletion of MGF
360-6L; future studies should investigate whether this deletion might be linked to reduced
virulence or other phenotypic effects. The deletion found in this work also affected the
uncharacterized X69R gene. It was first speculated that the X69R gene facilitates virus
replication [60], but a more recent study demonstrated that the X69R gene is not essential for
ASFV viability or its efficient replication in macrophages in vitro [61]. In addition, in vivo
experiments revealed that X69R does not alter the Georgia 2007 strain’s ability to replicate
or its virulence in domestic pigs [61]. Thus, it might be possible that its deletion in Sar-
dinian ASFV isolates might not result in an attenuated phenotype. We provide high-quality
evidence that the deletion is actually an MMD that originated by some processes related
to recombination (NAHR or MMEJ). These processes are well-known to shape eukaryotic
genomes [51,53], but they are much less studied in viruses. Our results suggest a possible
wider role for MMD (and NAHR/MMEJ) in the evolution of ASFV genomes and other
dsDNA viruses. In fact, recombination itself is a poorly known and poorly studied process
in ASFV genomes. However, recombination can be easily overlooked when occurring
between similar sequences, even in RNA viruses where intra-host recombination rates can
be surprisingly large [62,63]. For ASFV, there is little direct evidence of recombination, most
of it resulting from phylogenetic analyses [64–66], and no evidence is available related to
its molecular mechanisms. Our work provides the first clear independent evidence that
intra-host recombination occurs in ASFV.

Given the microhomology, this mutation had a higher chance to appear than most
other structural variants. However, it appeared only once in 40 years of ASFV evolution
in Sardinia. The fact that it appeared once across the whole evolutionary tree of available
sequences with conserved microhomology suggests that this MMD occurs at a rate of
roughly once every 350 years. This MMD has never been recorded before in any sequence
from outside Sardinia, despite the fact that the microhomology is conserved across more
genotype I sequences. We can speculate that either the mutation is under purifying selection
or, most likely, the sampling rates for genotype I were far too low in the past to find evidence
of other instances of this mutation.

It is striking that the only two sequences isolated in 2019 came from different areas
of the island, yet they were both very similar and carried the mutation, hinting at a
recent common origin. It is tempting to speculate that this was not a coincidence but a
consequence of the fact that most of the residual viruses that were circulating in Sardinia
in 2019 carried that mutation. It is also an interesting coincidence that such a mutation
was observed more than 40 years after ASFV’s introduction to the island, around the time
of an intense eradication campaign. Both strains were isolated from hunted wild boars.
Thus, we have no information regarding the clinical status of the animals. Nevertheless,
7303WB/19 was isolated from an ASFV Ab+ wild boar with a weak PCR result (Ct = 36.2),
suggesting that this animal was surviving infection. In vitro and in vivo studies will be
necessary to establish if one of the phenotypic effects of this deletion is a decrease in
virulence, clinical symptoms, and lethality. Attenuated ASFV strains often appeared after
virulent isolates invaded a territory for a period of time, and they might be the result of
the long-term coexistence and adaptation of ASFV to its host (pigs or Ornithodoros) [56].
Interestingly, the virus variant described in this study was identified more than 40 years
after the introduction of ASFV to the island. Future studies should investigate whether this
variant was previously circulating in Sardinia by screening other viruses collected from
wild boars before 2019 in order to better understand its origin and its putative implication
in the long persistence of the disease on the island.

5. Conclusions

This study describes for the first time the presence of Sardinian ASFV isolates with a
sustain deletion in their genome (4342 bases near the 5′ end). Genomic analyses suggest that
this deletion was most likely a result of a non-allelic homologous recombination driven by
a microhomology. Interestingly, both strains were isolated in 2019 at the end of a rigorous
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eradication campaign. Our results raise questions on the functions of the deleted genes
and, most importantly, whether this ASFV variant has implications in the long persistence
of the disease in Sardinia or whether its appearance is linked to the successful eradication
campaign that was carried out in recent years.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14112524/s1, Table S1: List of primers used in this study for
deletion detection; Figure S1: Primer locations along the ASFV genome with respect to the reference
sequence KX354450; Table S2: Metadata associated with the whole ASFV genomes analyzed in this
study; Table S3: Metadata associated with the ASFV microhomology analysis; Table S4: Deletions
and changes between the two isolates under study and the reference strain KX354450; Figure S2:
Alignment of the two regions of imperfect microhomology starting at positions 11,656 and 15,998
of the Sardinian ASFV reference sequence (KX354450); Figure S3: Conservation of the imperfect
microhomology and the two 176 bp sequences that are involved (one at the 5′ end of the deletion and
one at the 3′ end) among ASFV genotypes.
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