
Supplementary materials. 

King County transmission model. Our mathematical model used in section 3.1-3.7 consists of a 

series of differential equations (1), which describe a series of compartments described in 

Figure S2 and in the Results.  In the equations, the subscript i denotes age-group and j denotes 

viral variant. Equations are listed here: 
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 King County model parameters. Model parameters are listed as follows with values listed in the 

Supplementary Table S1: 

pi – proportion of the infections which become symptomatic by age in absence of a vaccine 

γ1, γ2- progression rates from exposed (E) to infectious (A and P) to symptomatic (I) 

hi – hospitalization rate among severe cases by age in absence of a vaccine 

h∗ – hospitalization rate among diagnosed by age (calculated) 

r1-3 - recovery rate of the asymptomatic, mild symptomatic and hospitalized cases 

r∗ - recovery rate of the diagnosed symptomatic cases by age (calculated) 

f ∗ – fatality rate among hospitalized by age 

vi – vaccination rate by age including prioritization strategy 

VESUSC – vaccine efficacy in reducing the risk of symptomatic infection upon acquisition  

VESYMP– vaccine efficacy in reducing the risk of hospitalization upon symptomatic infection 

nf ∗– death rate without hospitalization by age. 

di – diagnostic rate by age.  

The diagnostic rates are estimated using testing data from the Washington State 

Department of Health (DOH).  The equation uses the average daily tests for the time period in 



question divided by an estimate of the number of people desiring tests.  The rates are divided 

across age groups according to the fraction of tests in each age group during that month.  For 

tests, we use average daily tests by age-group as calculated monthly using a 7-day average taken 

mid-month, interpolating between each mid-month value.  To get the test demand estimate, we 

fit a parameter ρ  that represents to likelihood of non-infected individual seeking a test compared 

to a symptomatically infected individual. 

푇푒푠푡 푝표푝 =  휌 ∗ 푆 + ∑ ( 퐴 + 퐴푉 + 푃 + 푃푉 + 퐸 + 퐸푉  ) + ∑ ( 퐼 +   퐼푉  

) 

푑 =  
푇푒푠푡푠

푇푒푠푡 푝표푝

The forces of infection (λ ), representing the risk of the susceptible individuals by age to 

acquire infection (transition from susceptible to exposed), are differentiated by age of the 

susceptible individual, a contact matrix (proportion of contacts with each age group), infection and 

treatment status (asymptomatic, pre-symptomatic, symptomatic, diagnosed and hospitalized cases) 

of the infected contacts, and the time-dependent reduction of transmission due to physical 

distancing measures (work from home, closing non-essential businesses, banning large gathering, 

etc.) applied in the area (scaled up starting March 8 and fully taking effect March 29) and later 

relaxed during the reopening after May 15 to values that are fit monthly until Oct 31st, 2020. 

λ = c  1 − R (t) ( β A + β P + β I + β D +  β DA )

+ (1 − VE ) ( β AV + β PV + β IV + β DV +  β DAV ) /N

+ c β ( H + HV )/N  



where βa, βp, βs, βd, βh are the transmission rates from contacts with asymptomatic, pre-

symptomatic, symptomatic, diagnosed, and hospitalized infections (before the start of COVID 

measures at t= δ1), cik is contact matrix (proportion of the contact with other age groups), Ni is 

population size by age, VE  is vaccine efficacy in reducing the acquisition risk (reduction of 

susceptibility), VEINF is vaccine efficacy in reducing the transmission risk (reduction of 

infectiousness). 

Rsd (t) is the reduction of transmission due to physical distancing and other preventive 

measures which is applied uniformly to all age groups. It is scaled up linearly from 0 to 

R  between t= δ1 and t= δ2) at the beginning of the lockdown in March. Later it is calibrated 

monthly to match the King County epidemic through December of 2020 and then controlled 

dynamically based on the bi-weekly case rates per 100k of the population.  For age groups 1-3 

the highest value of R   is 0.6 (i.e. interactions at 40% of pre-COVID levels) and the lowest 

allowed is 0.3 (social interactions at 70% of pre-COVID levels).  These limits are each 0.2 

higher for the oldest age group.  The triggers for increasing or decreasing social distancing levels 

are given in the parameter table.  

King County model calibration. The model is calibrated to 3 “targets” based on local data 

(Supplementary Figures S2, S3), namely: the age-wise number of confirmed daily cases, daily 

hospital admissions, and daily deaths reported in King County over time since the start of the 

epidemic outbreak through December 31st, 2020.  We used the BFGS optimization algorithm to 

estimate the best parameter values for the time period being fitted. We defined thresholds for 

each parameter and proceeded with the best set reported by the routine selected by the 



optimization algorithm. Calibration was divided into multiple periods. The first was from the 

start of the epidemic through the initial lockdown period ending in early May. Subsequent fits 

were by month, but shared the initial fits for start date, β* (overall infectivity) and βd (adjustment 

to infectivity for diagnosed individuals). 

Intra-host model of SARS-CoV-2 kinetics. This model is used in the paper (section 3.8) to 

predict the impact of lowering viral load on vaccine efficacy against transmissibility given 

infection (VEINF) assumes SARS-CoV-2 (V) infects susceptible cells (S) at rate β producing 

infected cells (I) that then generate new virus at a per-capita rate π. In the model, the death of 

infected cells is mediated by (1) the innate responses (δI ) which is dependent on the infected 

cell density and the exponent k, and (2) the acquired immune responses by SARS-CoV-2-

specific effector cells (E). The acquired responses are non-linear. More details on the model can 

be found in the ref (2). 

The model is expressed as a system of ordinary differential equations described in the Methods 

and characterized in Sup fig 1. The initial conditions for the model were assumed as S(0) = 10  

cells/mL, I(0) = 1 cells/mL, V(0) = ( )
γ  copies/mL. E  is the number of cytolytic immune cells 

and is varied between simulations to approximate different vaccine efficacies. For simulations, 

we sampled parameter values from a nonlinear mixed-effect model, with the following fixed 

effects and standard deviation of the random effects (in parenthesis): Log10β: -7.23 (0.2) virions-1 

day-1; δ: 3.13 (0.02) day-1 cells-k; k: 0.08 (0.02); Log10(π): 2.59 (0.05) day-1; m: 3.21 (0.33) 

days-1cells-1; Log10(ω): -4.55 (0.01) days-1cells-1. These parameter values were obtained by 

fitting to serial viral load data in (2) using nonlinear mixed effects modeling. We further fixed 

m = 0.01 days-1cells-1 and γ = 15 day−1 



Intra-host transmission model. To estimate SARS-CoV-2 infectiousness P [V(t)] in section 3.8 

we employed the function, P [V(t)] = ( )
( )  . Here, V(t) is the viral load of the transmitter 

obtained from our previously proposed within host model and estimates (2). λ is the infectivity 

parameter that represents the viral load that corresponds to 50% infectiousness and 50% 

contagiousness, and α is the Hill coefficient that controls the slope of the dose-response curve. 

Our transmission model assumes that only some contacts of an infected individual with viral load 

dependent infectiousness are physically exposed to the virus (defined as exposure contacts), that 

only some exposure contacts have virus passaged to their airways (contagiousness) and that only 

some exposed contacts with virus in their airways become secondarily infected (successful 

secondary infection). Contagiousness and infectiousness are then treated as viral load dependent 

multiplicative probabilities with transmission risk for a single exposure contact being the 

product. Contagiousness is considered to be viral load dependent based on the concept that a 

transmitter’s dispersal cloud of virus is more likely to prove contagious at higher viral load, 

which is entirely separate from viral infectivity within the airway once a virus contacts the 

surface of susceptible cells. Details can be found in (3, 4). 

We assumed that the total exposed contacts within a time step (η ) is gamma 

distributed, i.e. η ~Γ , ρ Δ , using the average daily contact rates (θ) and the dispersion

parameter (ρ). To obtain the true number of exposure contacts with airway exposure to virus, we 

multiply the contagiousness of the transmitter by the total exposed contacts within a time step 

(i.e., ζ = η P ). Transmissions within a time step are simulated stochastically using time-

dependent viral load to determine infectiousness (P ). Successful transmission is modelled 

stochastically by drawing a random uniform variable (U(0,1)) and comparing it with 



infectiousness of the transmitter. In the case of successful transmission, the number of secondary 

infections within that time step (T ) is obtained by the product of the infectiousness (P ) and the 

number of exposure contacts drawn from the gamma distribution (ζ ).  In other words, the 

number of secondary infections for a time step is T = Ber(P )P η . We obtain the number of 

secondary infections from a transmitter on a daily basis noting that viral load, and subsequent 

risk, does not change substantially within a day. We then summed up the number of secondary 

infections over 30 days since the time of exposure to obtain the individual reproduction number, 

i.e. R = ∑ T .

We further assume that upon successful infection, it takes τ days for the virus to move 

within-host, reach the infection site and produce the first infected cell. To calculate serial interval 

(time between the onset of symptoms of transmitter and secondarily infected person), we sample 

the incubation period in the transmitter and in the secondarily infected person from a gamma 

distribution (5, 6). In cases in which symptom onset in the newly infected person precedes 

symptom onset in the transmitter, the serial interval is negative; otherwise, serial interval is non-

negative.   

The model was fit to distributions of individual R0 (secondary transmissions per person) 

and serial interval as previously described (7-11). We then arrived at parameter estimates for 

λ, τ, α and θ and identified that a skewed distribution of daily exposure contacts explains the 

virus super-spreader property. This model was used to obtain baseline levels of secondary 

transmission for simulated placebo recipients.  



Supplementary Figure S1. Intra-host mathematical model schematic. S=susceptible cells, I = infected cells, 
E = effector immune cells, V = virus, β=infectivity, π=viral production rate, δIk=density dependent death rate, 
mE=effector cell killing rate, ωI/(I+I50)=effector cell killing rate, and γ=viral clearance rate. 
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Supplementary Figure S2. Calibration of a SARS-CoV-2 transmission model in King County, Washington 
between January 1, 2020 and January 1, 2021. Model fit is to a. daily cases, b. daily hospitalizations, c. daily 
deaths, d. cumulative cases, e. cumulative hospitalizations, and f.  cumulative deaths through the end of October 
2021. 



Supplementary Figure S3. Calibration of a SARS-CoV-2 transmission model in King County, 
Washington between January 1, 2020 and January 1, 2021. Model fit is to a. age-stratified cases, b. age-
stratified hospitalizations and c. age-stratified deaths.  



Supplementary Figure S4. Conceptual basis for reduction in viral load lowering transmission. 



Supplementary Figure S5. Small reduction in peak viral load due to vaccinations would 
translate to significant VEINF . a. Simulated virologic trajectories with higher imputed initial 
number of vaccine-generated tissue-resident immune cells (E0) demonstrate lower peak viral 
loads. b. Varying number of tissue-resident  immune effector cells generated by a vaccine (x-
axis) predicts peak viral load (y-axis) in individual infection simulations each denoted with a dot. 
The red line indicates a correlation line. c. Reduction in viral load (x-axis) predicts VEINF (y-
axis) in vaccine simulations. Each black dot is a simulation of 1000 vaccine recipients given a 
vaccine which generates a fixed E0 versus 1000 placebo recipients. VEINF=50% is achieved with 
a 0.6 log10 reduction in peak viral load. VEINF=90% is achieved with a 2.5 log10 reduction in 
peak viral load. The relationship between change in peak viral load (x) and VEINF is captured 
with the formula: VEINF = (log10 x)1.6  / (IV50)1.6 + (log10 x)1.6 where IV50=0.6. 

c.b.a.



Supplementary Table S1. Parameters and ranges used in the analysis. (Fixed in 
black, Calibration in red) 

Parameter Description Values and ranges Type 

γ1 Progression rates from exposed (E) 
to infectious (A or P) (latent time)-1 

(3 days)-1 Fixed 

γ2 Progression rates from pre-
symptomatic (P) to symptomatic (I) 
(pre-symptomatic time)-1 

(2 days)-1 Fixed 

pi Proportion of the infections which 
become symptomatic by age 

80% Fixed 

ρ (i, j) Relative likelihood of susceptibles 
seeking Testing by age (i)  

ρ (i, j)=0.1-10% Fit Monthly 
(see table 
S2) 

id Symptomatic infectiousness 
duration 

7 days Fixed 

βi Daily transmission from infected 
from asymptomatic, pre-
symptomatic, symptomatic, 
diagnosed and hospitalized groups 
in absence of COVID measures 

=βs*(1, βp, 1, βd, 0) 
βp calculated to get 
44% pre-sympt. 
transmission 
βs =R0/(βp/γ2 + id) = 
0.2 (R0 = 2.2-4) 
βd calibrated during 
lockdown (0.6) 

Calibrated 

R Minimum SD during dynamic SD 
periods 

0.3, 0.5 for 70+ Fixed 

R Maximum SD during dynamic SD 
periods 

0.6, 0.8 for 70+ Fixed 

SDtighten Trigger for tightening SD (bi-
weekly cases per 100k) 

350 Fixed 

SDrelax Trigger for relaxing SD (bi-weekly 
cases per 100k) 

100 Fixed 

SDrelax rate Rate for relaxing SD (bi-weekly 
percentage to min) 

10% Fixed 

 R  Reduction of transmission due to 10%-90% Fit Monthly 



social distancing (scaled up linearly 
between t= δ1 and t= δ2) 

(see table 
S2) 

δ0 Number of days between the start 
of the simulation (day 0) and the 1st 
diagnosed case from data (Feb 28) 

49 (45-55) Calibrated 

[δ1, δ2] Period of scaling up COVID 
measures 

March 8-29 Fixed 

[δ3, δ4] Reopening period May 15- July 15 Fixed 

hfi Proportion of diagnosed cases 
requiring hospitalization 

Monthly 
Average 
from DOH 
data 

hi Hospitalization rate among severe 
cases by age 

h1=0.005-0.1, 
h2=0.01-0.2,  
h3=0.01-0.3, h4=0.01-
0.5 

Fit Monthly 
(see table 
S2) 

h∗ Hospitalization rate among 
symptomatic and diagnosed cases 

= (hf )h  Calculated 

r1 Recovery rate of asymptomatic 
cases  

1/id Fixed 

r∗ Recovery rate of the symptomatic 
and diagnosed cases 

= (1 − hfi) ∗  r  Calculated 

r3 Recovery rate of the hospitalized 
cases 

1/14 Fixed 

hd Time from hospitalization to death 
before and after April 15th  

11.2 days/ 20 days fixed 

nhd Time from diagnosis to death based 
on non-hospitalized COVID deaths  

24 days fixed 

f Fatality rate by age among 
hospitalized (overall mortality when 
hospitalized/time to death) 

=cfri /(hfi)/hd Fit Monthly 
(see table 
S2) 

nf Fatality rate by age among 
symptomatically infected, not 
hospitalized (overall mortality when 
hospitalized/time to death) 



Supplementary Table S2. Monthly Parameter Fits. The columns represent the distribution 
of each parameter across the 4 age groups for each calibrated month: 
Parameter Age(y) Lockdown May June July Aug Sept Oct* Nov* Dec* 
ρ i*

(held constant 

during Oct-Dec)

0-19
20-49
50-69
70+

0.018 
0.004 
0.003 
0.001 

0.007 
0.007 
0.017 
0.009 

0.004 
0.003 
0.093 
0.153 

0.012 
0.006 
0.014 
0.02 

0.01 
0.006 
0.011 
0.025 

0.009 
0.007 
0.011 
0.075 

0.009 
0.007 
0.011 
0.075 

0.009 
0.007 
0.011 
0.075 

0.009 
0.007 
0.011 
0.075 

R i 0-19
20-49
50-69
70+

0.5 
0.7 
0.7 
0.9 

0.52 
0.6 
0.6 
0.8 

0.13 
0.3 
0.44 
0.77 

0.4 
0.54 
0.55 
0.79 

0.42 
0.57 
0.56 
0.79 

0.11 
0.31 
0.46 
0.77 

0.6 
0.27 
0.6 
0.76 

0.1 
0.1 
0.1 
0.1 

0.6 
0.6 
0.6 
0.8 

hi 0-19
20-49
50-69
70+

0.014 
0.05 
0.068 
0.106 

0.015 
0.053 
0.045 
0.071 

0.079 
0.16 
0.17 
0.038 

0.027 
0.085 
0.056 
0.032 

0.02 
0.09 
0.07 
0.04 

0.076 
0.067 
0.067 
0.045 

0.044 
0.094 
0.036 
0.032 

0.076 
0.169 
0.118 
0.088 

0.032 
0.042 
0.026 
0.024 

cfri 0-19
20-49
50-69
70+

0 
0.001 
0.017 
0.268 

0 
0.001 
0.026 
0.249 

0 
0 
0.006 
0.121 

0 
0 
0.005 
0.105 

0 
0 
0.003 
0.088 

0 
0 
0.005 
0.067 

0 
0 
0.003 
0.119 

0 
0 
0.002 
0.16 

0 
0 
0.002 
0.149 



Supplementary Table S3. Monthly Hospital Admission Fractions from the Washington 
Department of Health. The rows represent the distribution of each input across the 4 age groups 
for each input period: 

Period\Input Hosp fraction (hf): 
0-19,  20-49,  50-69,  70+

Lockdown 
(Feb/Mar) 

0.017, 0.07, 0.2, 0.58 

April 0.018, 0.093, 0.234, 0.53 
May 0.015, 0.068, 0.198, 0.43 
June 0.011, 0.03, 0.126, 0.375 
July 0.006, 0.029, 0.12, 0.315 
August 0.0026, 0.027, 0.12, 0.364 
September 0.01, 0.025, 0.102, 0.333 
October 0.008, 0.015, 0.082, 0.385 
November 0.005, 0.018, 0.074, 0.296 
December 0.008, 0.023, 0.088, 0.296 



Supplementary Table S4. Contact matrix. The columns represent the distribution of 
contacts of a person from given age group across all age groups: 

Supplementary Table S5. King County age pyramid based on data from 2017 

Proportion 
contacts with 

0-19 y 20-49 y 50-69 y 70+ y 

0-19 y 0.56 0.24 0.15 0.18 
20-49 y 0.34 0.57 0.49 0.34 
50-69 y 0.08 0.16 0.29 0.28 
70+ y 0.01 0.03 0.07 0.20 

Proportion of 
the population 

0-19 y 20-49 y 50-69 y 70+ y 

22.93% 45.52% 23.50% 8.05% 
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