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Abstract: Enteroviruses are common causes of infections of the central nervous system (CNS) that in
temperate climates tend to peak in the summer. The aim of the study was to describe epidemiology,
drivers of seasonality, and types of enteroviruses causing infections of the CNS in children in
Northeastern Poland. We prospectively collected data on children hospitalized with infection of the
CNS attributed to enteroviruses in Bialystok, Poland, from January 2015 to December 2019. In total,
224 children were included. Nineteen different enterovirus types were identified in isolates collected
from 188 children. Coxsackie B5 (32%), echovirus 30 (20%), and echovirus 6 (14%) were the three most
common types. Enteroviruses were more prevalent during the summer–fall season. Infections caused
by echovirus 30 peaked early in June and coxsackievirus B5 in July, whereas echovirus 6 peaked
late in October. Phylogenetic analyses of these three enterovirus types showed multiple lineages
co-circulating in this region. Mean air temperatures and precipitation rates were independently
associated with monthly number of cases. Considering lack of effective treatment or vaccine, easy
transmission of enteroviruses between susceptible individuals, their high mutation rate and prolonged
time of viral shedding, continued monitoring and surveillance are imperative to recognize enteroviral
infections of the CNS and the changes in circulation of enteroviruses in Poland.
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1. Introduction

Enteroviruses (EVs) belong to the Picornaviridae family and originally were classified into four
groups: polioviruses, coxsackievirus A, coxsackievirus B, and echoviruses. According to the current
taxonomy based on virus genomic and biological properties, EVs are divided into 15 species, of which
EV species A-D and Rhinovirus species A-C infect humans [1]. Worldwide, enteroviruses are
responsible for nearly a billion infections in people annually [2]. Clinical syndromes include febrile
rash, hand-foot-and-mouth disease, acute respiratory syndrome, and infections of the central nervous
system (CNS). Enteroviral disease is reported year-round but exhibits a peak in the summer season.
The observed seasonality can be partially explained by climatic factors, but the drivers of temporal
patterns remain largely unknown [3].
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Enteroviruses, specifically polioviruses, have a well-defined pathogenicity in the human CNS.
Due to the success of the poliovirus eradication program, there has been near global eradication
of clinical poliomyelitis [4]. Infections of the CNS caused by non-polio EVs generally have a good
prognosis, but the outcome is determined by the type of the enterovirus causing the infection.
Non-polio EVs are monitored within the framework of the global WHO polio surveillance network [5].
Enterovirus A71, echovirus 13, and echovirus 11 were recently reported to be the most common
enterovirus types associated with acute flaccid myelitis cases similar to clinical poliomyelitis [6].
Continuous surveillance of EV circulation shows that different long-term circulation patterns for
individual types exist. For example, surveillance in the USA recorded large and periodic outbreaks
of echovirus 9, whilst coxsackievirus B4 and other types had endemic patterns with relatively stable
circulation [2]. Monitoring EV circulation is important because changes in predominant serotypes can
be accompanied by large-scale outbreaks or increase in cases of severe neurological disease [7].

A large outbreak of enteroviral meningitis caused by echovirus 30 was noted in Northeastern
Poland in 2014 with nearly 300 children hospitalized. The outbreak caused a 35-fold increase in
hospitalization rates in comparison to the previous year [8]. Acute flaccid paralysis associated with
enterovirus 71 was also previously reported in Poland [9]. Recently we have shown that enteroviruses
are the most frequently detected pathogens in children with infection of the CNS hospitalized in
Bialystok, Poland [10]. To date, however, data on epidemiology of enteroviral CNS disease in Poland
are limited. The objective of the study was to characterize molecular epidemiology of enterovirus
strains in children with meningitis and encephalitis in Poland. Additionally, to give insights into
drivers of seasonality of enteroviruses, we analyzed relationships between climatic factors and numbers
of hospitalized children.

2. Materials and Methods

2.1. Study Design and Participants

In this single-center, prospective, observational cohort study, children were recruited from the
Medical University of Bialystok Children’s Clinical Hospital in Poland between January 2015 and
December 2019. Bialystok is located in Northeastern Poland. The hospital provides care for all children
with infections of the CNS in the region, which is inhabited by approximately 1.2 million people,
including 206,000 children [11].

Meningitis was defined as the presence of symptoms consistent with meningitis and cerebrospinal
fluid pleocytosis (CSF) (5> cells per µL) [12]. Encephalitis was defined according to the International
Encephalitis Consortium [13] as altered mental status (defined as decreased or altered level of
consciousness, including change in personality, lethargy) for over 24 h with no alternative cause
identified and two of the following: seizures, focal neurologic findings, EEG (electroencephalography)
or MRI (magnetic resonance imaging) abnormalities suggestive of encephalitis, CSF pleocytosis
and fever.

Patients were eligible for study inclusion if they were younger than 18 years, had clinically
diagnosed meningitis or encephalitis, and had an enterovirus detected in CSF or stool specimens.
Children diagnosed with a CNS infection attributed to other or unknown pathogens were not included
in the study. Detection of EVs was made using the method described below.

2.2. EV Molecular Diagnosis

All collected CSF samples were tested with the diagnostic pan-enterovirus RT-PCR (EV PCR) or,
from August 2019 on, with the Xpert EV (Cepheid, Sunnyvale, CA, USA). All collected stool samples
were tested with the EV PCR. The Xpert EV assay was done according to the manufacturer’s instructions.
The EV PCR method involved viral RNA extraction from 140 µL of the sample using spin columns
(Qiagen, Venlo, Netherlands) following the manufacturer’s instructions. RT-PCR was carried out based
on the WHO manual [14], using pan-enterovirus primers specific for 5′UTR region, which is highly
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conserved among all human enteroviruses. Amplification products were analyzed in 2% agarose gels,
GelRed-stained, and examined under a UV DNA trans-illuminator.

Stool and CSF samples collected during the hospital stay were stored at −80 ◦C before viral typing.

2.3. Virus Isolation in Cells

Stool samples, both positive and negative in EV PCR and positive in EV PCR CSF samples
(if available), were cultured for virus isolation using human rhabdomyosarcoma (RD) and a mouse cell
line carrying the poliovirus receptor (L20B). For organizational reasons, CSF samples that were positive
in Xpert EV were not cultured, but stool samples collected from those patients were used instead. Stool
samples were processed according to the standard procedure recommended by WHO [14]. RD and
L20B cells were cultivated in minimal essential medium (MEM) supplemented with 10% fetal bovine
serum. A volume of 200 µL of sample was inoculated into tubes with RD and L20B cells. The tubes
were incubated at 36 ◦C and were examined daily. After 5 days, the tubes were frozen and thawed and
re-passaged, and another 5-day examination was performed. Each specimen underwent two passages
in RD and L20B cells. All detected enteroviruses were identified by sequencing.

2.4. Enterovirus Identification

To identify the enterovirus type in positive cell cultures, RT-PCR specific for a sequence of the
viral protein 1 (VP1) region for species A and B was performed. Viral RNA was extracted from
NPEV-positive cell culture supernatant using QIAamp Viral RNA Mini Kit (Qiagen) following the
manufacturer’s instructions. The complete VP1 coding region for species B and 684 base pair region
of VP1 gene for species A was amplified with nested reverse transcription PCRs using Superscript
III (Invitrogen, Waltham, MA, USA), specific primers and PCR cycling times and temperature as
previously described [15]. Amplified products were analyzed in 1.5% agarose gels, GelRed-stained,
and examined under a UV DNA transilluminator. The resulting DNA templates were processed
in a cycle sequencing reaction with a BigDye 3.1 according to manufacturer’s protocol using inner
primers to read the sequence between positions 2385–3016 for species A and 2392–3477 for species B.
The product of sequencing reaction was run in an automated genetic analyzer (Applied Biosystems,
Waltham, MA, USA).

2.5. Sequence Analysis

The resulting sequences were manually edited using the BioEdit program and examined in terms
of the closest homologue sequence using BLAST software. The sequences of isolated strains were
aligned with the reference strains. The complete capsid sequences of the three most frequently detected
enterovirus types were analyzed. A phylogenetic tree was computed using the neighbor-joining method
with bootstrap 1000 replicates. Molecular and phylogenetic analyses were conducted using MEGA
version 10.0.5 [16]. Sequences have been assigned GenBank accession numbers MT347641-MT347677,
MT350720-MT350780, MT385498-MT385502, MT385504-MT385525.

2.6. Meteorological Data

Daily mean temperature, relative humidity, precipitation rate and duration, sunshine duration
and wind speed data in Bialystok for the same period were obtained from the Institute of Meteorology
and Water Management—National Research Institute (Warsaw, Poland).

2.7. Statistical Analysis

The summary statistics for continuous variables are presented as a median with interquartile range
(IQR), categorical variables are presented as frequencies. Differences between groups were analyzed
by the Wilcoxon or Kruskal-Wallis test. To assess the strength of the potential association between the
incidence of enteroviral infections of the CNS and the environmental factors, the Pearson’s correlation
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coefficient was calculated. The association between the incidence of infections and the meteorological
factors has also been studied by the generalized linear mixed effects model (GLMM) with the Poisson
distribution. GLMM is a class of models that enable the modeling of longitudinal non-normal data
of many kinds of response variables. The Poisson distribution is used for modeling of continuous
variables—in our case the number of EV cases. The meteorological factors have been included in the
model as covariates and the number of EV cases (Y) as the dependent variable. The year of observation
was included in the model as the random effects term (u) in order to account for potential variation
between years. The results of the estimation of the model are reported as relative risk (risk ratio) (RR)
with 95% confidence intervals. Relative risk is the ratio of the probability of the outcome (probability
of the EV infection) in the group exposed to the change in a climatic factor to the probability of the
outcome in an unexposed group.

First, the associations between the number of EV cases and the considered environmental factors
was modelled for each meteorological factor separately (univariable models). Subsequently the model
with multiple factors was created (multivariable model), where, initially, all considered meteorological
factors (temperature (Temp), relative humidity (Hum), wind speed (Wind), precipitation (Prec), sunshine
duration (Sun) and precipitation duration (PrecD)) were included in the model as covariates:

log Y = Temp + Prec + Sun + Hum + Wind + Prec + Sun + PrecD + u

Then, to select meteorological factors independently associated with the incidence of infections,
the backward elimination feature selection procedure was applied, and the non-significant climatic
factors were skipped from the model. The results were considered statistically significant when the
p-value was less than 0.05. The statistical analysis was performed with the use of TIBCO Software Inc.
(2017) Statistica, version 13 (Palo Alto, CA, USA), and the R-software, version 3.6.2, packages lme4,
gls and r2glm (The R Foundation for Statistical Computing, Vienna, Austria).

2.8. Ethical Considerations

The study was conducted in accordance with the Guidelines for Good Clinical Practice. Ethical
approval was given by The Bioethical Commission of The Medical University of Bialystok (decisions
no. APK.002.186.2020, approved 30-04-2020, and R-I-002/260/2015 approved 06-01-2015). Written
informed consent was obtained from parents or carers.

3. Results

3.1. Virus Isolation and Typing

Between 1 January 2015 and 31 December 2019, 246 stool and 301 CSF samples collected from 345
children with meningitis or encephalitis presenting to the Medical University of Bialystok Children’s
Clinical Hospital were tested for enteroviruses. A total of 186 (62%) CSF and 170 (69%) stool samples
were positive. That includes 171 (63%) of 271 CSF samples that were positive in EV PCR and 15 (50%)
of 30 positive in Xpert EV (Figure 1). Based on the detection of EVs in those samples, a total of 224
children were diagnosed with CNS infection associated with enteroviruses. The remaining 121 children
were diagnosed with tick-borne encephalitis, Lyme neuroborreliosis, or infection of the CNS caused by
other or unknown pathogens. In 184 (82%) of children with enteroviral CNS disease, the diagnosis was
made after detecting enteroviruses in CSF samples. That includes 130 (58%) children with both the
CSF and stool samples positive, and 54 (24%) children with positive CSF only, in whom stool samples
were not tested with EV PCR. In 38 (17%) the CSF was negative, but EVs were detected by EV PCR in
stool samples. In 2 (1%) children the diagnosis was made after the detection of enteroviruses in the cell
culture isolation only. Two stool samples and two CSF samples collected from three children were
positive in EV PCR, but those children were finally excluded from the analysis as they were diagnosed
with tick-borne encephalitis or Lyme neuroborreliosis.
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Figure 1. The flowchart representing the process of selecting children for the study. A total of 345 
children with signs of meningitis of encephalitis were tested for enteroviruses. Of those, 224 were 
diagnosed with central nervous system (CNS) infection caused by enteroviruses. Abbreviations: EV 
PCR, diagnostic pan-enterovirus RT-PCR; virus isolation, virus isolation in cell cultures; CSF, 
cerebrospinal fluid; LNB, Lyme neuroborreliosis; TBE, tick-borne encephalitis; NA, not available for 
EV PCR. 

Virus isolation in cell cultures was done in 261 stool samples and in 13 CSF samples. Of those 
261 samples, 76 (29%) stool samples were negative in EV PCR, 170 (65%) were positive in EV PCR, 
and 15 (6%) samples were collected from children who tested positive in Xpert EV. All 13 CSF 
samples tested positive in EV PCR. Virus isolation was successful in 184 (70%) stool samples, 
including 167 with positive detection of EVs in EV PCR, 2 with negative EV PCR, and 15 collected 
from children diagnosed with Xpert EV. Enteroviruses were isolated in 4 (30%) CSF samples only. 

Considering children diagnosed with enteroviral infection of the CNS only, the isolation was 
done in 195 (87%) children and was successful in 188 (96%) of them. Cell culture isolation was not 
done in samples collected from 29 (13%) children and failed in 7 (3%) children. Of those 7, virus 
isolation failed in six CSF samples and in one stool sample. Virus typing was successful for all positive 
cell cultures. Overall, a total of 19 different types of enteroviruses were detected (Table 1). The 
majority of identified enteroviruses belonged to the enterovirus group B (EV-B) with 178 (95%) 
viruses distributed among 15 types. Ten viruses (5%) belonged to 4 types within the group A (EV-A). 

Figure 1. The flowchart representing the process of selecting children for the study. A total of 345 children
with signs of meningitis of encephalitis were tested for enteroviruses. Of those, 224 were diagnosed with
central nervous system (CNS) infection caused by enteroviruses. Abbreviations: EV PCR, diagnostic
pan-enterovirus RT-PCR; virus isolation, virus isolation in cell cultures; CSF, cerebrospinal fluid; LNB,
Lyme neuroborreliosis; TBE, tick-borne encephalitis; NA, not available for EV PCR.

Virus isolation in cell cultures was done in 261 stool samples and in 13 CSF samples. Of those 261
samples, 76 (29%) stool samples were negative in EV PCR, 170 (65%) were positive in EV PCR, and
15 (6%) samples were collected from children who tested positive in Xpert EV. All 13 CSF samples
tested positive in EV PCR. Virus isolation was successful in 184 (70%) stool samples, including 167
with positive detection of EVs in EV PCR, 2 with negative EV PCR, and 15 collected from children
diagnosed with Xpert EV. Enteroviruses were isolated in 4 (30%) CSF samples only.

Considering children diagnosed with enteroviral infection of the CNS only, the isolation was done
in 195 (87%) children and was successful in 188 (96%) of them. Cell culture isolation was not done in
samples collected from 29 (13%) children and failed in 7 (3%) children. Of those 7, virus isolation failed
in six CSF samples and in one stool sample. Virus typing was successful for all positive cell cultures.
Overall, a total of 19 different types of enteroviruses were detected (Table 1). The majority of identified
enteroviruses belonged to the enterovirus group B (EV-B) with 178 (95%) viruses distributed among
15 types. Ten viruses (5%) belonged to 4 types within the group A (EV-A).
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Table 1. Enterovirus types identified between 2015 and 2019 in children with infection of the CNS attributed to enteroviruses in Bialystok, Poland divided by year.

EV-A EV-B

Year EVs Typed n (%) CVA2 CVA4 CVA9 EV-A71 CVB1 CVB2 CVB3 CVB4 CVB5 E3 E6 E7 E9 E11 E13 E14 E18 E25 E30

2015 28/54 (52%) 1 2 22 2 1

2016 14/22 (64%) 1 1 1 2 8 1

2017 33/35 (94%) 1 1 1 4 2 18 1 1 2 1 1

2018 38/38 (100%) 2 4 3 6 1 2 5 3 12

2019 75/75 (100%) 1 1 1 2 5 1 39 1 24

Total 188/224 (84%) 1 1 2 6 1 1 10 5 61 1 27 8 10 3 1 2 7 4 37

Abbreviations: EVs, enteroviruses; EV-A, enterovirus A species; EV-B, enterovirus B species; CV, coxsackievirus; E, echovirus.
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Coxsackievirus B5 (CVB5) was the most commonly identified enterovirus type detected in 61
(32%) samples, followed by echovirus 30 (E30) detected in 37 (20%) cases, and echovirus 6 (E6) in 27
(14%) cases. Enterovirus A71 (EV-A71) was detected in 6 children (Figure 2).
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Figure 2. Enterovirus types detected in children with infection of the CNS attributed to enteroviruses.
Abbreviations: EV-A, enterovirus A species; EV-B, enterovirus B species; CV, coxsackievirus;
E, echovirus.

3.2. Clinical Features of the Study Population

Clinical features are shown in Table 2. The median age of hospitalized children was 8.1 years
(range 4 months–17 years). Ninety-five (42%) children were under 7, and 89 (40%) between 7 and 14
years old. One hundred-forty-seven (66%) children were boys. The male-to-female ratio in the entire
cohort was 1.91. There were, however, slight differences in the male-to-female ratio between children
infected with CVB5, E30, E6, and other EVs (1.90, 1.64, 1.25, 2.30, respectively).

The most common signs of the infection were headaches and fever, followed by vomiting and neck
stiffness. Photophobia was a rarely reported symptom, observed in 42 (19%) children only. Fever was
slightly more common and lasted longer in children infected with CVB5 when compared to other EV
types. Children with CVB5 also showed lower serum concentrations of CRP and higher numbers of
leukocytes in the CSF, in comparison with other types of EV (Table 2). The percentage of lymphocytes
in the CSF in children with CVB5 was slightly higher than in other groups. When absolute numbers
of lymphocytes in the CSF were compared, the CVB5 group had significantly higher numbers of
CSF lymphocytes in comparison to all other groups (p < 0.01 for all comparisons). Children with
CVB5 were more likely to have negative PCR for enteroviruses in CSF samples as compared to E30.
Importantly, the median time from symptoms onset to lumbar puncture was longer in those children,
when compared to the E30, but not to other groups.
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Table 2. Clinical features of the study population by type of enteroviruses.

Enteroviruses—All Coxsackie B5 Echovirus 30 Echovirus 6 Other EV Types

Sex

Female; n (%) 77 (100%) 21 (27%) 14 (18%) 12 (16%) 30 (39%)

Male; n (%) 147 (100%) 40/61 (27%) 23 (16%) 15 (10%) 69 (47%)

Male-to-female ratio 1.91 1.90 1.64 1.25 2.3

Age (years) 8.1 (5.4–12.7) 8.6 (5.7–12.8) 12.6 (8.3–15.1) 4 7.2 (5.4–13.7) 7.5 (5.0–11.0)

Age groups

<1; n (%) 3 (100%) 0 (0%) 0 (0%) 0 (0%) 3 (100%)

1–3; n (%) 18 (100%) 6 (33%) 0 (0%) 1 (6%) 11 (61%)

4–6; n (%) 74 (100%) 22 (30%) 8 (11%) 12 (16%) 32 (43%)

7–13; n (%) 89 (100%) 19 (21%) 16 (18%) 9 (10%) 45 (51%)

14–17; n (%) 40 (100%) 14 (35%) 13 (33%) 5 (12%) 8 (20%)

Clinical presentation

Meningitis; n (%) 219 (100%) 60 (27%) 37 (17%) 27 (12%) 95 (44%)

Encephalitis; n (%) 5 (2%) 1 (20%) 0 (0%) 0 (0%) 4 (80%)

Symptoms onset to CSF collection (days) 2 (1–4) 2 (1–4) 2 1 (1–2) 1,3,4 2 (1–6) 2 2 (1–4) 2

Length of hospital stay (days) 7 (7–9) 8 (7–10) 2 7 (6–7) 1,4 7 (6–10) 7 (7–9) 2

Only stool PCR positive; n (%) 40/224 (18%) 21/61 (34%) 2 0/37 (0%) 1 6/27 (22%) 13/99 (13%)

Signs and symptoms

Headaches; n (%) 221/224 (99%) 59/61 (97%) 37/37 (100%) 27/27 (100%) 98/99 (99%)

Headaches (days) 2.5 (2–4) 3 (2–5) 2 (2–3) 2 (1–3) 2 (2–4)

Fever; n (%) 203/224 (91%) 61/61 (100%) 29/37 (85%) 23/27 (85%) 90/99 (91%)

Fever (days) 2 (1–3) 3 (1–5) 2,3,4 1 (1–2) 1 1 (1–2) 1 2 (1–2) 1

Vomiting; n (%) 170/224 (76%) 47/61 (77%) 28/37 (76%) 19/27 (70%) 76/99 (77%)

Vomiting (days) 1 (1–1) 1 (1–2) 1 (1–2) 1 (0–1) 1 (1–1)

Photophobia; n (%) 42/224 (19%) 5/61 (8%) 9/37 (24%) 7/27 (26%) 21/99 (21%)

Neck stiffness; n (%) 164/224 (73%) 37/61 (61%) 24/37 (65%) 21/27 (78%) 82/99 (83%)

Tremor; n (%) 3/224 (1%) 1/61 (2%) 0/37 (0%) 0/27 (0%) 2/99 (2%)

Seizures; n (%) 2/224 (<1%) 1/61 (2%) 0/37 (0%) 0/27 (0%) 1/99 (1%)

Altered level of consciousness; n (%) 8/224 (4%) 1/61 (2%) 0/37 (0%) 2/27 (7%) 5/99 (5%)

CRP (mg/L) 3.0 (1.0–11.0) 1.2 (0.5–2.9) 2,3,4 7.7 (2.2–16.0) 1 6.0 (1.5–12.5) 1 5.2 (2.5–12.7) 1

CRP > 10 mg/L; n (%) 57/223 (26%) 5/61 (8%) 2 15/36 (42%) 1 7/27 (26%) 30/99 (30%)

ALT (IU/mL) 11 (9–14) 10 (9–13) 4 11 (9–14) 12 (10–14) 12 (10–14.5) 1

AST (IU/mL) 22 (17–26) 20 (16–24) 4 20 (14–25) 4 25 (19–28) 23.5 (19–27) 1,2

WBC (×109 cells/L) 8.8 (6.9–11.1) 8.2 (6.9–11.0) 8.7 (6.3–10.9) 10.3 (7.9–13.3) 8.7 (7.0–11.5)

Blood lymphocytes (%) 28 (18–37) 33 (25–43) 3 26 (18–31) 16 (12–21) 1,4 27 (20–40) 4

Blood neutrophils (%) 61 (51–73) 55 (45–63) 3 62 (56–71) 78 (69–82) 1,4 60 (47–73) 3

Blood monocytes (%) 9 (7–12) 9 (8–11) 9 (7–12) 8 (6–9) 10 (7–12)

CSF protein (g/L) 0.33 (0.25–0.44) 0.39 (0.30–0.55) 4 0.31 (0.24–0.38) 0.31 (0.28–0.40) 0.29 (0.24–0.43) 1

CSF cells (/µL) 137 (47–364) 249 (136–618) 2,3,4 73 (37–190) 1 124 (48–170) 1 86 (26–290) 1

CSF lymphocytes (%) 60 (32–80) 73 (48–83) 2 46 (30–68) 1 55 (21–68) 55 (30–80)

CSF neutrophils (%) 26 (9–57) 16 (6–43) 3 26 (14–64) 35 (22–76) 1 29 (24–43)

CSF monocytes (%) 7 (2–13) 7 (3–13) 9 (5–15) 4 (1–10) 7 (2–12)

CSF neutrophils >50%; n (%) 62/203 (31%) 11/58 (29%) 12/34 (35%) 10/24 (42%) 29/87 (33%)

Abbreviations: WBC, White blood cell count; CSF, cerebrospinal fluid; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; p < 0.05: 1 vs. CVB5; 2 vs. E30; 3 vs. E6; 4 vs. other EV types.

The age distribution by the type of enterovirus is shown in Figure 3. Enterovirus species A,
CVB5 and E6 were more prevalent in children aged 6 years or younger. E30 was commonly isolated in
children over the age of six. The majority (98%) of children were diagnosed with meningitis. Five (2%)
of 224 children presented with signs of encephalitis. Virus typing was performed in 2 of those 5
detecting CVB5 in a 3-year-old girl and coxsackie A2 in a 5-year-old boy. No deaths associated with
enteroviruses were recorded during the study period.
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3.3. Sequence Analysis

In order to further characterize the isolates from Poland and examine them in a global context,
a phylogenetic analysis was done for the three most frequently detected types. A total of 125 complete
VP1 sequences of E30, CVB5 and E6 (E30 = 61, CVB5 = 37 and E6 = 27) were analyzed. All analyzed
sequences were submitted to the GenBank sequence database. Closely related sequences available
in GenBank and archival Polish sequences were added to the analysis for comparison. International
sequences were selected on the basis of their genetic relationships, and archival Polish sequences were
selected to represent different clads. We did not analyze recombination events, as for this purpose an
analysis of the non-structural genome region is crucial. Phylogenetic trees were constructed applying
the neighbor-joining method using the Kimura 2-parameter model in the MEGA program.

3.3.1. E30

In general, nucleotide sequence divergence in pairwise comparisons among Polish E30 isolates
ranged from 0.0% to 22.5% (0.0–9.9% aa divergence). It depended on the year of detections, varying
in 2018 from 0.0% to 21.9% (0.0–7.8% aa divergence), and in 2019 from 0.0% to 2.8% (0.0–2.4%
aa divergence).

Nucleotide sequence analysis has shown that Polish E30 sequences segregated into three distinct
major groups. Group 1 represented one isolate from 2017, group 2 comprised three strains from 2018
(0.0–0.1% nt; 0.0% aa divergence), and group 3 included 33 isolates from the outbreak in 2018–2019
(0.0–3.5% nt; 0.0–2.4% aa divergence).

The phylogenetic tree was constructed in order to specify the genetic relationships between the
Polish strains and to elucidate the genetic relationship with other strains isolated worldwide in the last
decades. Sixty-three sequences used in the analysis were all complete VP1 sequences of E30 available
in GenBank. Strains from Poland had the closest genetic relationship with isolates previously identified
in European countries (Germany, Turkey, France) but also in other parts of the world (China, USA,
Malaysia, South Korea) (Figure 4a). Sequences of outbreak isolates from 2018–2019 grouped together
with those from Germany and Turkey from 2017–2018. The one Polish strain from 2017 clustered
together with Chinese isolates (2012–2016) and Polish strains (2013–2014) isolated during a previous
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outbreak [17]. Three strains from 2018 (group 2) had the closest genetic relationship with isolates
previously identified in Malaysia and South Korea (2003–2004).
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Figure 4. Phylogenetic trees depicting the relationships between a complete VP1 coding region of
Polish E30 (a), CVB5 (b), and E6 strains (c) isolated from 2015 to 2019 and sequences from the GenBank.
Each strain is referenced by its geographical origin and its accession number. The tree was constructed
by the neighbor-joining method and evaluated with 1000 bootstrap pseudoreplicates. Only bootstrap
values ≥80% are indicated. In the analyses, genetic distances were calculated with Kimura 2-parameter
algorithm. Analyses were conducted in MEGA 10.0.5.
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The complete VP1 coding sequence consisted of 295 aa; 86.4% (255 of 295) of aa sites were conserved
between Polish strains. A significant number of aa substitutions was observed, with 40 sites of 295
aa residues had been changed among the isolates. In most of the polymorphic sites, amino-acid
substitutions were associated with the clustering.

3.3.2. CVB5

CVB5 isolates from 2017 to 2019 were genetically homogenous, presenting 0.0% to 10.4% nucleotide
divergence (0.0–0.7% aa divergence). The genetic diversity varied in 2017 from 0.0% to 1.2% (0.0%
aa divergence), in 2018 from 0.7% to 10.4% (0.0–0.4% aa divergence), and in 2019 from 0.0% to 2.6%
(0.0–0.7% aa divergence).

Nucleotide sequence analysis showed the Polish CVB5 sequences were classified into genogroup
B according to nomenclature proposed by Henquell et al. [18].

The phylogenetic tree was constructed for a total of 110 sequences: 61 Polish and 49 complete VP1
sequences of CVB5 available in GenBank. Strains from Poland had the closest genetic relationship with
isolates previously identified in European countries (France, Turkey, UK) but also in other parts of the
world (China, USA, Australia) (Figure 4b). Sequences of the 2017 outbreak isolates grouped together
with those from France and Great Britain from 2015. Isolates from the outbreak in 2019 clustered
together with Chinese, Australian and American isolates from 2017–2019.

The complete VP1 coding sequence consisted of 283 aa, with 97.9% (277 of 283) of aa sites were
conserved between Polish strains. A very limited number of aa substitution was observed. Only 6 sites
of 283 aa residues had been changed among the isolates. In most of the polymorphic sites, amino-acid
substitutions were detected in only few strains and substitution pattern had no association with the
clustering. Only one site showed the aa conservation specific for genetic clustering. It was the I248V
substitution found in all isolates from 2017.

3.3.3. E6

Homologous comparison among Polish E6 isolates revealed 0.0–18.9% VP1 nucleotide sequence
divergence (0.0–3.8% aa divergence). The genetic diversity of Polish E6 varied greatly from year to year,
in 2015 ranged from 0.0% to 17.3% (0.0–3.8% aa divergence), and in 2018 from 0.2% to 3.1% (0.4–1.0%
aa divergence).

Nucleotide sequence analysis showed that Polish E6 sequences segregated into three distinct
major groups. Group 1 included 20 isolates from the outbreak in 2015–2016 (0.0–0.8% nt; 0.0–0.4%
aa divergence), group 2 comprised 6 strains from 2015–2018 (0.0–5.1% nt; 0.0–1.4% aa divergence),
and group 3 represented one isolate from 2017.

The phylogenetic tree was constructed for 27 Polish strains and 72 complete VP1 sequences of E6
available in GenBank. Strains from Poland had the closest genetic relationship with isolates previously
identified in European countries (France, Netherlands, UK, Russia) but also in other parts of the world
(China, Brazil) (Figure 4c). The 2015–2016 outbreak isolates (group 1) grouped together with those from
the Netherlands from 2011, but also with previously isolated Polish and French strains (2006–2011).
One Polish strain from 2017 clustered together with strains isolated during previous outbreaks in
Poland (2012–2014) [19], but also with Chinese (2008–2017), and Russian isolates (2016). Six strains
from 2015–2018 (group 2) had the closest genetic relationship with isolates previously identified in
France, UK, Brazil (2014–2017), and Polish environmental isolates from 2011.

The complete VP1 coding sequence consisted of 289 aa, and 95.5% (276 of 289) of aa sites were
conserved between Polish strains. A very limited number of aa substitutions was observed; 13 sites
of 289 aa residues were changed among the isolates. In most of the polymorphic sites, amino-acid
substitutions were associated with the clustering. Eight sites showed the aa conservation specific for
genetic groups.
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3.4. Epidemiology and Meteorological Data

The temporal distribution of different EV types is shown in Figure 5. Most cases were reported in
the summer season. Number of cases caused by E30 peaked in June, whereas CVB5 peaked in July,
and E6 in October.
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Figure 5. The heatmap showing the temporal distribution of different EV types isolated from samples
collected from children, who were hospitalized with aseptic meningitis and encephalitis in Bialystok,
Poland from 2015 to 2019. Abbreviations: CV, coxsackievirus; E, echovirus.

The analysis of climatic factors revealed that monthly number of cases correlated with mean
air temperature, sunshine duration, precipitation (positive association), wind speed, duration of
precipitation and relative humidity (negative association) (Figure 6).
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Figure 6. The scatterplots illustrating the associations between mean air temperatures (a), relative
humidity (b), wind speed (c), precipitation rates (d), sunshine duration (e), precipitation duration (f),
and monthly number of cases of pediatric EV central nervous system infections with the linear regression
curves; r-Person’s correlation coefficient.

In order to select independent climatic factors associated with the incidence of enteroviral disease
of the CNS, the GLMM was applied for data analysis. First, the variables were analyzed with univariable
GLMM, i.e., the associations between the meteorological factors and the monthly number of EV cases
were modeled for each factor separately (Table 3). The univariable models showed that the increase in
mean air temperatures, sunshine duration and precipitation rates are associated with the increase in
hospitalization rates for enteroviral CNS disease, while the increase in mean wind speed, mean relative
humidity and duration of precipitation are associated with the decrease of hospitalization rates.
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Table 3. Predictive factors of the number of cases of pediatric enteroviral infections of the CNS by uni-
and multivariable generalized linear mixed models (GLMM). The coefficient of determination (R2) of
the multivariable model was 49.4%.

Univariable Analysis Multivariable Analysis

RR (95% CI) p RR (95% CI) p

Temperature (◦C) 1.17 (1.15–1.2) <0.001 1.17 (1.14–1.2) <0.001

Sunshine duration (hours) 1.26 (1.21–1.31) <0.001

Wind speed (m/s] 0.25 (0.18–0.34) <0.001

Relative humidity (%) 0.95 (0.94–0.96) <0.001

Precipitation (mm) 1.45 (1.32–1.6) <0.001 1.11 (1.00–1.23) 0.043

Precipitation duration (hours) 0.58 (0.52–0.65) <0.001

Abbreviations: RR, Relative Risk; 95%CI, 95% confidence interval.

Then, a model with multiple variables was built. The results of the multivariable analysis are
shown in Table 3. Among all analyzed climatic factors, only mean air temperatures and precipitation
rates appeared significant in the multivariable model. This indicates that these two environmental
factors are independently associated with the number of pediatric enteroviral infections of the CNS in
Northeastern Poland. The obtained estimates indicate that in a given month the 1 ◦C increase in the
mean daily temperatures is associated with a 17% (95% CI, 14–20%) increase in the risk of EV infection,
while the 1 mm increase in the mean daily precipitation rates is associated with 11% (95% CI, 0–23%)
increase in that risk.

The calculated coefficient of determination of the fitted model (R2) was 49.4%. This indicates
that about 50% of the variation in the number of enteroviral CNS infections can be explained by the
variation in the mean air temperatures and precipitation rates.

The model with the two variables, the temperature and precipitation, was used for the prediction
of hospitalization rates in the considered time period. The comparison of the hospitalization rates that
were observed in the study and predicted by the model are shown in Figure 7.
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4. Discussion

The present study provides an analysis of enteroviruses detected in children hospitalized with
infections of the CNS in Northeastern Poland over the period of five years, from 2015 to 2019.
Enterovirus surveillance is important because different types can be associated with varying clinical
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manifestations and outcomes. Changes in predominant types can be accompanied by large-scale
outbreaks of enteroviral infections [20]. Here we show that, consistent with other studies, EV-B are
the major cause of neurological disease associated with enteroviruses in Northeastern Poland [21].
Enteroviruses belonging to species A were rarely detected. We found that six meningitis cases were
caused by endemic circulation of EV-A71, which is an important global infectious disease threat due to
its potential to cause outbreaks and severe neurologic disease [22]. Since 2014, a growing number of
enterovirus D68 outbreaks associated with severe respiratory diseases and neurological complications
have been occurring in different countries. Enterovirus D68 has also been detected in children with
aseptic meningitis [23]. We did not use primers to detect VP1 sequences of EV-D species. However,
viral culture and typing successfully identified a viral type in 188 of 195 children implying that, even if
missed, EV-D are not a common cause of meningitis in Poland.

Coxsackievirus B5 was the most frequently detected enterovirus type, followed by E30 and
E6. All three types showed epidemic patterns with outbreaks in 2015 (E6), 2017 (CVB5) and 2019
(CVB5 and E30). Outbreaks of meningitis associated with E30 [21,24–27] and E6 [28–31] were
frequently reported in many parts of the world. Similarly, outbreaks of CVB5 meningitis were reported
previously [32–34]. However, according to a recent review, CVB5 is implicated in only a small
proportion of neurological disease caused by enteroviruses globally [6].

Population immunity to a particular EV type determines the potential extent of the virus
spread. Periodic increases in levels of EV circulation are probably caused by accumulation of a
susceptible population during the years of virus quiescence [2]. However, sharp increases in the
number of enteroviral infections might also be caused by the emergence of an immune escape mutant.
Enteroviruses are among the most rapidly changing RNA viruses. Viral RNA polymerases frequently
introduce substitutions to the synthesized genome. Consequently, enterovirus populations exist
as quasispecies, or collections of closely related viral genomes that differ by only one or a few
substitutions [20]. Existence of a swarm of viral variants has been shown to determine neuropathology
and immune evasion through cooperative interactions in a viral population [35]. The volume of global
travel is expanding exponentially. The increased number of travelers allows mixing of microorganisms
from different regions, resulting in an increase in their genetic variability [36]. Enteroviruses identified
in our study were related to other strains previously detected in many other parts of the world. The
majority of the E30 outbreak isolates from 2018–2019 clustered together with strains isolated 1–2 years
before in Germany and Turkey, which can be explained by travel preferences of people in Poland.
According to the Polish Ministry of Sport and Tourism, Germany was the most popular destination for
Polish travelers in recent years [37]. Similarly, the 2017 outbreak of CVB5 and 2015 outbreak of E6
infections could be associated with travel to the UK, France or the Netherlands, which are also visited
by Polish travelers frequently. There was, however, an interesting difference in temporal patterns of
those viruses. The emergence of CVB5 strains in Poland in 2017 was preceded by the detection of
closely related viruses in Europe just two years before. Echovirus 6 on the other hand was circulating
in Europe from 2006, before causing an outbreak in Bialystok, Poland in 2015.

VP1 genotyping by phylogenetic analysis can differentiate lineages within a particular type in
order to identify emerging variants or types. Isolates of E30 and E6 had a surprisingly high genetic
diversity in this study. VP1 sequences corresponded closely with those obtained from many parts of the
world, suggesting co-circulation of multiple transmission chains. This provides a reservoir from which
novel variants may potentially emerge, perhaps as another outbreak event. In fact, waves of echovirus
30 activity were reported to be caused by new genomic lineages, which replaced previously circulating
ones [2]. In contrast to E30 and E6, CVB5 isolates had low genetic diversity in this study. Still, CVB5
was the most commonly isolated EV type. Coxsackievirus B5 isolates from the 2019 outbreak were
related to isolates from China, Australia and the USA from 2017–2019. Those countries are not among
the top travel destinations of Polish travelers. This huge geographical distance and a short time interval
between detection of closely related strains in Poland, China, Australia and the USA indicate that CVB5
outbreaks can originate from a new genetic strain introduced from a distant part of the world. Frequent
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travel might increase importation of other CVB5 lineages resulting in another outbreak. Previously,
increased activity of CVB5 has been associated with the emergence of new genetic lineages with high
levels of nucleotide identity between isolates from the same outbreak [38].

Animal models and clinical observations have revealed different host immune responses to
infections with different enteroviruses [39]. In this study infections caused by CVB5 were characterized
by more common and longer duration of fever, higher CSF pleocytosis secondary to lymphocytosis
and lower CRP concentrations, when compared to other EV types. High levels of white blood cells in
the CSF with a predominance of lymphocytes were detected previously in patients with fatal or severe
infections caused by EV-A71 [40,41]. It was hypothesized that lymphocytes play a central role in the
immunopathology of those infections. We have previously shown that in children with enteroviral
meningitis, lymphocytes in the CSF correlate with CSF concentrations of total tau protein, which is a
marker of brain parenchymal damage [42]. However, the detrimental role of lymphocytes has been
questioned, as these lymphocytes now are suggested to be protective. In animal models, lymphocytes
in the CNS function to reduce the mortality and tissue viral loads [43]. Moreover, intravenous
immunoglobulins, which are produced by B lymphocytes, have been shown to be effective in treatment
for patients with neurological symptoms infected with enteroviruses [44,45]. The importance of
humoral immune responses in clearing enteroviral infection was also demonstrated by the chronic
or life-threatening disease that is observed in patients with agammaglobulinemia [46]. High CSF
lymphocytosis concurrent with longer duration of fever in children infected with CVB5 in our study
might be a reflection of higher virulence of this EV type in comparison to other EVs. However, we found
slight differences in the time interval from symptoms onset to lumbar puncture between the groups
that could have affected those observations. It has been shown previously that neutrophils in the
CSF predominate in the early phase of viral meningitis, with lymphocyte influx occurring over the
following 6–48 h [47]. Nevertheless, our data confirm the notion that non-polio EVs should not be
considered as a homogenous group, but rather a collection of viral agents having differing degrees of
tissue tropism and virulence.

Enteroviruses were detected year-round in this study. Consistent with the seasonality of EV
infections in temperate climates, we have shown that EV-associated infections of the CNS were more
prevalent during the summer-fall season [26,48–51]. We have also noted small differences in the peak
months by different EV types. Infections caused by E30 peaked early in June, CVB5 in July, whereas
E6 late in October. The causes of enterovirus types circulating earlier than others remains unclear.
Pons-Salort et al. [3] hypothesized that a later peak of historical poliomyelitis when compared with the
peak of enterovirus cases was caused by the longer survival of the virus in the environment than in
droplets or aerosols. That allowed for longer periods of fecal-oral transmission compared with the
respiratory route. The explanation for the later peak month of E6 observed in our study could be
that fecal-oral transmission for the E6 accounts for more transmission compared with E30 and CVB5,
in which respiratory routes possibly play a relatively larger role.

We attempted to identify drivers of EV seasonality by analyzing climatic factors and monthly
numbers of hospitalizations for all-type EV infections of the CNS. The Pearson’s correlation coefficient
revealed that multiple climatic factors correlate with the number of cases. In the analysis of grouped
data in the mixed-effect model, mean air temperatures and precipitation rates were the two climatic
variables that explained nearly 50% of the variation in the number of hospitalizations. The recent
analysis of spaciotemporal distribution of enteroviral disease in the USA gave important insights
into drivers of enterovirus epidemiology. Intensity of enterovirus transmission was found to be
affected by the dew point temperature, which is a measure of humidity [3]. Since enteroviruses can be
transmitted by droplets, virus survival in aerosols is important. According to laboratory experiments,
it can be positively affected by relative humidity [52]. We did not find independent relations with
relative humidity, but we found positive associations with precipitation rates, which have an impact
on humidity.
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There are several limitations to this study. First, stool samples are best for EVs detection and seem
to be a reliable alternative to CSF testing in CNS infections caused by enteroviruses [53]. However,
the presence of virus in these samples was questioned as an evidence of etiology because viral shedding
is common and may occur asymptomatically [54]. Second, in the study we enrolled children from
Northeastern Poland only. These results might not be representative of enterovirus circulation in
the entire Poland. Third, we analyzed climatic factors recorded in Bialystok only, whereas some of
the children recruited in the study lived outside Bialystok and could have been affected by slightly
different weather conditions. Nevertheless, this is the first study describing molecular epidemiology of
infections of the CNS caused by enteroviruses in Polish children.

5. Conclusions

This study demonstrates that CVB5, E30 and E6 are predominant enterovirus types in children
with infections of the CNS in Northeastern Poland. Phylogenetic analyses of these three EV types
show multiple lineages co-circulating in this region. From this swarm, more pathogenic or neurotropic
variants may emerge, perhaps as another outbreak event. Outbreaks can also originate from a new virus
type introduced from a distant part of the world. The potential extent of the virus spread is affected
not only by the population immunity, but also by climatic factors, of which mean air temperatures and
precipitation rates were of large importance in this study. Continued monitoring and surveillance of
enteroviral infections of the CNS are therefore imperative.
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the Management of Bacterial Infections of the Central Nervous System; National Medicines Institute: Warsaw,
Poland, 2011; p. 38.

13. Venkatesan, A.; Tunkel, A.R.; Bloch, K.C.; Lauring, A.S.; Sejvar, J.; Bitnun, A.; Stahl, J.-P.; Mailles, A.;
Drebot, M.; Rupprecht, C.E.; et al. Case definitions, diagnostic algorithms, and priorities in encephalitis:
Consensus statement of the international encephalitis consortium. Clin. Infect. Dis. 2013, 57, 1114–1128.
[CrossRef]

14. World Health Organization. Polio Laboratory Manual, 4th ed.; World Health Organization: Geneva,
Switzerland, 2004.

15. Leitch, E.C.M.; Harvala, H.; Robertson, I.; Ubillos, I.; Templeton, K.; Simmonds, P. Direct identification of
human enterovirus serotypes in cerebrospinal fluid by amplification and sequencing of the VP1 region.
J. Clin. Virol. 2009, 44, 119–124. [CrossRef] [PubMed]

16. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis
across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef] [PubMed]

17. Wieczorek, M.; Krzysztoszek, A.; Figas, A. Molecular characterization of echovirus 30 isolates from Poland,
1995–2015. Virus Genes 2016, 52, 400–404. [CrossRef] [PubMed]

18. Henquell, C.; Mirand, A.; Richter, J.; Schuffenecker, I.; Böttiger, B.; Diedrich, S.; Terletskaia-Ladwig, E.;
Christodoulou, C.; Peigue-Lafeuille, H.; Bailly, J.-L. Phylogenetic patterns of human coxsackievirus B5 arise
from population dynamics between two genogroups and reveal evolutionary factors of molecular adaptation
and transmission. J. Virol. 2013, 87, 12249–12259. [CrossRef] [PubMed]
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