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Abstract: The mitochondrial antiviral protein MAVS is a key player in the induction of antiviral
responses; however, human immunodeficiency virus 1 (HIV-1) is able to suppress these responses.
Two linked single nucleotide polymorphisms (SNPs) in the MAVS gene render MAVS insensitive
to HIV-1-dependent suppression, and have been shown to be associated with a lower viral load
at set point and delayed increase of viral load during disease progression. Here, we studied the
underlying mechanisms involved in the control of viral replication in individuals homozygous for
this MAVS genotype. We observed that individuals with the MAVS minor genotype had more stable
total CD4+ T cell counts during a 7-year follow up and had lower cell-associated proviral DNA loads.
Genetic variation in MAVS did not affect immune activation levels; however, a significantly lower
percentage of naïve CD4+ but not CD8+ T cells was observed in the MAVS minor genotype. In vitro
HIV-1 infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS
minor genotype resulted in decreased viral replication. Although the precise underlying mechanism
remains unclear, our data suggest that the protective effect of the MAVS minor genotype may be exerted
by the initiation of local innate responses affecting viral replication and CD4+ T cell susceptibility.

Keywords: human immunodeficiency virus 1; viral sensing; antiviral immunity; MAVS genetic
variation; HIV-1 replication; viral load; immune activation; T cell-induced immunity

1. Introduction

Human immunodeficiency virus 1 (HIV-1) infection is characterized by a lack of protective
immunity against the virus [1]. During HIV-1 infection, insufficient priming of naïve T cells occurs,
which is partially explained by suboptimal functioning of dendritic cells (DCs) crucial in the induction of
antiviral immunity [1–6]. DCs contain the ability to sense viral pathogen-associated molecular patterns
(PAMPs) with pattern recognition receptors (PRRs) [7]. Various PRRs have the ability to recognize
HIV-1-specific PAMPs such as carbohydrate structures (DC-SIGN), viral DNA (cGAS, IFI16) and viral
RNA (RIG-I, DEAD-box helicase DDX3) [8–15]. PRR triggering induces innate antiviral responses,
such as antiviral type I interferon (IFN) and cytokine responses, subsequently leading to induction of
adaptive immunity via DC activation [16–20]. Viral RNA is sensed by sensors such as MDA5, RIG-I,
and DDX3, of which the latter two play an important role in sensing of HIV-1 RNA [12,15,21,22].
RIG-I is responsible for sensing cytosolic genomic HIV-1 RNA, whereas DDX3 recognizes prematurely
aborted HIV-1 RNA produced during transcription initiation of the provirus [12,15]. The mitochondrial
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antiviral protein MAVS signals downstream of RIG-I and DDX3 and serves as a platform for TBK1/IKKE

activation, thus containing the potency to elicit antiviral type I IFN and cytokine responses needed to
combat HIV-1 infection [23,24].

For MAVS-dependent activation of IRF3 and NF-κB, the binding of TRAF3 to MAVS is crucial.
However, HIV-1 is able to block MAVS-dependent signaling via polo-like kinase 1 (PLK1) that
is able to anchor to MAVS. The MAVS-PLK1 interaction leads to ultimate impediment of the
recruitment of TRAF3 to MAVS and thus MAVS-induced type I IFN and cytokine responses [15,25,26].
We have previously identified two linked single nucleotide polymorphisms (SNPs) in the MAVS
gene (rs7262903 and rs7269320) which result in two amino acid substitutions Gln198Lys (Q198K) and
Ser409Phe (S409F) that render the protein insensitive to the PLK1-dependent suppression by HIV-1,
and result in robust antiviral type I IFN responses and a decrease of viral infection in DCs in vitro [15,27].
Individuals homozygous for the minor alleles rs7262903 and rs7269320 (minor genotype) are observed
at a frequency of 2% in the population [15]. Interestingly, genome-wide association (GWA) data from
the Amsterdam Cohort Studies strongly suggest that in untreated HIV-1-infected men who have sex
with men (MSM), this genotype is associated with lower viral load in plasma at set point. Moreover,
the minor genotype shows a delayed increase of viral load over the course of infection compared
to the major genotype [15]. These data indicate that the MAVS pathway is important in controlling
HIV-1 infection.

HIV-1 infection is characterized by continuous high levels of immune activation indicative of
tissue damage and cell death due to continuous HIV-1 replication, co-infections with other pathogens,
bacterial translocation or immune dysregulation [28–32]. HIV-1-specific cytotoxic T cell (CTL) responses
are a strong correlate of viral control during the asymptomatic period of HIV-1 infection [33–37].
Although the breadth and magnitude of these responses are limited, the antiviral activity of these
responses is associated with initial viral control and rapid selection of escape variants [38–40].
During the asymptomatic phase of infection, new T cell responses that target HIV escape variants
increase in breadth, but eventually, the control of viremia is lost due to T cell dysfunction and viral
escape [33,41–43].

Here, we investigated the underlying mechanism responsible for the effect of this MAVS genetic
variation on the control of HIV-1 infection. We determined whether immune activation and CTL activity
are associated with the protective effect of the MAVS minor genotype during the asymptomatic phase
of infection. In addition, we analyzed the effect of MAVS genetic variation during viral replication
in vitro.

Our data demonstrated that untreated HIV-1-infected individuals carrying the MAVS minor
genotype had more stable CD4+ T cell counts during a 7-year follow up and a lower cell-associated
proviral DNA load, as compared to individuals with the MAVS major genotype. Although the MAVS
minor genotype was not associated with changes in immune activation levels, T cell exhaustion,
activation, senescence, or HIV-1-specific cytokine production, we found a decreased percentage of
naïve CD4+ T cells in individuals with the MAVS minor genotype. Furthermore, we observed that
in vitro infection of peripheral blood mononuclear cells (PBMCs) from healthy donors with the MAVS
minor genotype resulted in lower levels of HIV-1 replication. Although the underlying mechanism
remains unclear, our data suggest that the protective effect of the MAVS minor genotype is not due to
an intrinsic factor in CD4+ T cells that decreases HIV-1 replication, but might be due to factors released
in the PBMC culture that inhibit HIV-1 replication in CD4+ T cells.

2. Materials and Methods

2.1. Study Participants

Study subjects participated in the Amsterdam Cohort Studies (ACS) on HIV-1 infection and AIDS
among homosexual men and (injecting) drug users [44]. Untreated HIV-1 positive participants with
known date of HIV-1 seroconversion, genotyped for the rs7262903 and rs7269320 SNPs and with
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sample availability were selected for analysis. Study participants with a MAVS major genotype were
“typical” progressors and had a CD4+ T cell count <200/µL blood around 5–6 years post seroconversion.
Selected study participants were negative for HLA*B27, HLA*B57, and the 32-base-pair deletion
in CCR5. In this study, eight HIV-1-infected participants homozygous for the minor alleles rs7262903
and rs7269320 (MAVS minor genotype) and 37 HIV-1-infected individuals homozygous for the major
alleles (MAVS major genotype) participated.

2.2. Ethics Statement

Healthy controls were obtained from the Dutch national blood bank (Sanquin, Amsterdam,
The Netherlands). This study has been conducted in accordance with the ethical principles set out in
the declaration of Helsinki and was approved by the institutional review board of the Academic Medical
Center (AMC, Amsterdam, Netherlands) and the Ethics Advisory Body of the Sanquin Blood Supply
Foundation (Amsterdam, Netherlands, MEC 07/182, approved on 20 August 2007). Written informed
consent was obtained from all participants.

2.3. Quantification of Proviral DNA

CD4+ T cells of study participants were isolated using CD4 MACS Microbeads (Miltenyi Biotec,
Bergisch Gladbach, Germany). DNA was then isolated using the AllPrep DNA/RNA kit
(Qiagen, Hilden, Germany) and DNA concentrations were determined by nano-drop. The cell-associated
proviral DNA load in the CD4+ T cells was determined by qPCR using the following
primer set: HIV-pol-B (Fw) 5′-TAACCTGCCACCTGTAGTAGCAAAAGAAAT-3′ and Pol-E (Rev)
5′-ATGTGTACAATCTAGTTGCCA-3′. Reactions were carried out in 10 µL total volume containing
5 µL GoTaq qPCR Master Mix 2× (Promega, Madison, WI, USA); 2.5 µL DNA (10 ng/µL); 0.2 µL
each of (20 µM) Forward and Reverse primer and 2.1 µL water. Amplification conditions consisted
of a pre-incubation stage at 95 ◦C for 3 min, a pre-amplification stage consisting of two steps, 15 s
at 95 ◦C and 15 s at 49 ◦C (2 cycles), amplification stage consisting of 3 steps 10 s at 95 ◦C, 20 s
at 58 ◦C, 30 s at 72 ◦C (40 cycles), a melting curve stage consisting of 5 s at 95 ◦C and 1 min at
55 ◦C, and finally a cooling stage of 10 s at 40 ◦C. Reactions were performed using a LightCycler
480 (Roche, Basel, Switzerland). To quantify the HIV DNA copy number, the 8E5/LAV cell line was
used to generate a standard curve [45]. When the proviral load was below the detection limit of the
qPCR, a single genome amplification (SGA) detecting HIV-pol was performed using the following
primer sets: primary PCR HIV Pol-F (Fw) 5′- TTAGTCAGTGCTGGAATCAGG-3′ and Pol-D (Rev)
5′-GCTACATGAACTGCTACCAGG-3′, and nested PCR; Pol-B and Pol-E. At least 10 PCR reactions
using GoTaq polymerase (Promega, Madison, WI, USA) were performed per sample using an input
of 2.5–250 ng DNA. The PCR cycles for both primary and nested PCR reactions were as follows:
denaturation 5 min at 94 ◦C followed by 35 cycles of 15 s at 94 ◦C, 30 s at 50 ◦C, 45 s at 72 ◦C and finally
followed by 1 cycle of 5 min at 72 ◦C. Positive PCR reactions were visualized using a 1% agarose gel.
When at least one third of the PCR reactions was negative, it was assumed that each PCR reaction
contained no more than 1 copy of proviral DNA.

2.4. Multiplex Assay

Cytokine and chemokine levels in serum were analyzed for expression levels of TNF-α, IL-1β,
IL-2, IL-4, IL-6, IL-10, IP-10, MCP-1, Mip1α, and Mip1β using a Bio-Plex Pro Human Cytokine 10-plex
(Bio-rad, Hercules, CA, USA) according to manufacturer’s instructions. IFN-α, IFN-β, IFN-γ, IL-27p28,
and IL-12p70 levels were assessed using Bio-Plex Pro Human Inflammatory 5-plex (Bio-rad, Hercules,
CA, USA). Measurements were performed in duplicates and read using the Bio-Plex 200 system
(Bio-rad, Hercules, CA, USA).
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2.5. T Cell Phenotyping

Cryopreserved peripheral blood mononuclear cells (PBMCs) were stained with monoclonal antibodies
for 30 min at 4 ◦C to perform T cell phenotyping using flow cytometry. For this study monoclonal
and directly conjugated antibodies were used: CD3 (V500, 561416, BD Biosciences, San Jose, CA, USA),
CD4 (BV650, 563875, BD Biosciences, San Jose, CA, USA), CD8 (BV785, 301046, Biolegend, San Diego,
CA, USA), CD45 (APC, 304150, Biolegend, San Diego, CA, USA), PD1 (BB515, 564494, BD Biosciences,
San Jose, CA, USA), LAG-3 (PE, 12-2239-42, Thermo Fisher, Waltham, MA, USA), CD27 (APC-FIRE 750,
302846, Biolegend, San Diego, CA, USA), CD28 (APC-R700, 565181, BD Biosciences, San Jose, CA, USA),
CD38 (BV421, 303526, Biolegend, San Diego, CA, USA), HLA-DR (BB700, 745782, BD Biosciences, San Jose,
CA, USA), CD134 (PE-Cy7, 563663, BD Biosciences, San Jose, CA, USA), and CCR7 (BUV395, 563977,
BD Biosciences, San Jose, CA, USA), and cell viability was assessed (LIVE/DEAD Fixable Red Dead Cell
Stain Kit, L34972, Thermo Fisher, Waltham, MA, USA). Cells were fixed using Cell fix (BD Biosciences,
San Jose, CA, USA) and flow cytometric analysis was performed on a BD LSR II/Fortessa flow cytometer
(BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo software v10 (TreeStar, Ashland, OR, USA).
The percentage of PD1+LAG-3+ cells, CD27−CD28− cells and HLA-DR+CD38+ and/or CD134+ cells
within CD4+ and CD8+ T cell populations was assessed and indicative of T cell exhaustion, senescence
and activation, respectively. T cell differentiation was characterized within live CD4+ and CD8+ T cells
and comprised naïve (Tn; CD45RA+CD27+CCR7+), effector memory (EM; CD45RA−CCR7−CD27−),
transitional memory (TM; CD45RA−CCR7−CD27+), central memory (CM; CD45RA−CCR7+CD27+),
and terminally differentiated effector memory (TEMRA; CD45RA+CCR7−CD27−).

2.6. Intracellular Cytokine Production of HIV-1-Specific T Cells

Cryopreserved PBMCs were thawed, treated with 20 U RQ1 RNAse-free DNAse (Promega, Madison,
WI, USA) and kept at 37 ◦C 10% CO2. After O/N resting, PBMCs were washed, seeded in RPMI 1640
(Thermo Fisher, Waltham, MA, USA) supplemented with 10% FCS (Sigma Aldrich, St. Louis, MO, USA),
10 U/mL penicillin (Thermo Fisher, Waltham, MA, USA), 10 mg/mL streptomycin (Thermo Fisher, Waltham,
MA, USA) and 2 mM l-glutamine (Lonza, Basel, Switzerland) and stimulated with 2 µg/mL anti-CD28
and 1 µg/mL anti-CD29 (both obtained from Sanquin, Amsterdam, The Netherlands) for co-stimulation.
Stimulations occurred in the presence or absence of HIV-1 consensus B Gag peptide pool (2 µg/mL, 12425,
NIH AIDS reagents, Germantown, MD, USA) to activate HIV-1 specific T cells or in the presence of
Staphylococcus aureus enterotoxin B (SEB, 10 pg/mL, Sigma Aldrich, St. Louis, MO, USA), as a positive
control. Furthermore, cells were treated with Brefeldin A and GolgiStop (BD Biosciences, San Jose,
CA, USA), according to manufacturer’s instructions and incubated in the presence of an antibody directed
against CD107a to detect degranulation (FITC, 11-1079-42, Thermo Fisher, Waltham, MA, USA), for 6 h.
After 6 h, cells were washed and stained with monoclonal antibodies for 30 min at 4 ◦C to assess expression
levels of surface markers CD3 (V500, 561416, BD Biosciences, San Jose, CA, USA), CD4 (BUV395, 563550,
BD Biosciences, San Jose, CA, USA), CD8 (Pacific Blue, 301023, Biolegend, San Diego, CA, USA) and
CD137 (BV650, 564092, BD Biosciences, San Jose, CA, USA), and viability was assessed (LIVE/DEAD
Fixable Red Dead Cell Stain Kit, L34972, Thermo Fisher, Waltham, MA, USA). Then, cells were washed,
permeabilized using a Cytofix/Cytoperm kit (BD Biosciences, San Jose, CA, USA) and stained for 30 min
at 4 ◦C to determine the expression levels of intracellular cytokines IL-2 (PE, 340450, BD Biosciences,
San Jose, CA, USA), TNF-α (Alexa Fluor 700, 557996, BD Biosciences, San Jose, CA, USA), Mip-1β (PE-Cy7,
560687, BD Biosciences, San Jose, CA, USA), and IFN-γ (APC-Alexa Fluor 750, MHCIFG27, Thermo Fisher,
Waltham, MA, USA). Cells were fixed using Cell fix (BD Biosciences, San Jose, CA, USA) and intracellular
cytokine levels were assessed in viable CD3+, CD4+, and CD8+ T cells using flow cytometric analysis on
a BD LSR II/Fortessa flow cytometer (BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo
software v10 (TreeStar, Ashland, OR, USA).
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2.7. Cell Isolation and Infection

PBMCs were obtained from buffy coats of healthy blood donors (Sanquin, Amsterdam, The Netherlands)
by Ficoll-Isopaque density gradient centrifugation. MAVS genetic variation was assessed by screening
for SNPs rs7262903 and rs7269320 using TaqMan genotyping Assays (ID C_25623847 and C_25623845,
Thermo Fisher, Waltham, MA, USA), according to the manufacturer’s instructions. Monocytes were isolated
from PBMCs using an additional percoll density gradient. Monocyte-derived DCs (mDCs) were
generated as previously described [46]. On day 6, mDCs were treated with 90% methanol and stained
using an anti-MAVS antibody (3993S, Cell Signaling, Danvers, MA, USA) followed by PE-conjugated
donkey anti-rabbit (Jackson Immuno Research, West Grove, PA, USA). MAVS expression was measured
with flow cytometry using the FACS Canto II (BD Biosciences, San Jose, CA, USA) and analyzed with
FlowJo software v10 (TreeStar, Ashland, OR, USA). CD4+ T cells were isolated from PBMCs using CD4
MACS Microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany), according to the manufacturer’s
instructions. PBMCs or CD4+ T cells were stimulated for 3 days in Iscove’s modified Dulbecco’s
medium (IMDM, Thermo Fisher, Waltham, MA, USA) supplemented with 10% fetal bovine serum,
penicillin (100 U/mL, Thermo Fisher, Waltham, MA, USA), streptomycin (100 U/mL, Thermo Fisher,
Waltham, MA, USA), and recombinant IL-2 (20 U/mL; Novartis, Basel, Switzerland) in the presence
or absence of phorbol myristate acetate (PMA, 10 ng/mL, Sigma Aldrich, St. Louis, MO, USA) and
ionomycin (1 mg/mL, Sigma Aldrich, St. Louis, MO, USA) at a cell density of 5 × 106/mL (PBMCs) and
1 × 106/mL (CD4+ T cells). After 3 days, PBMCs and CD4+ T cells were infected with a single round
VSV-G-pseudotyped HIV-1 containing a fire-fly luciferase gene [47] at a multiplicity of infection (MOI)
of 0.5 or with R5-tropic strain NL4.3 BaL (MOI 0.1) or X4-tropic strain NL4.3 (MOI 0.1), and cultured
for 3 and 8 days at a cell density of 1 × 106/mL. Viral replication was determined using different
assays: Infection by single round VSV-G-pseudotyped HIV-1 containing a fire-fly luciferase gene was
determined after 72 h, by measuring luciferase activity (luminescence in relative light units (RLUs))
using a luciferase substrate (0.83 mM ATP, 0.83 mM d-luciferin (Duchefa, Haarlem, The Netherlands),
18.7 mM MgCl2, 0.78 µM Na2H2P2O7, 38.9 mM Tris pH 7.8, 0.39% (v/v) glycerol, 0.03% (v/v) Triton
X-100, and 2.6 µM dithiothreitol). Viral replication of NL4.3 BaL and NL4.3 was determined after
8 days by Gag p24 production in the PBMC culture supernatant using a quantitative in-house p24
ELISA or by intracellular staining. In brief, cells were fixed with 4% paraformaldehyde (PFA) and stained
intracellularly using a directly conjugated anti-p24 (PE, KC57 RD-1, Beckman Coulter, Brea, CA, USA).
Intracellular Gag p24 levels were assessed using flow cytometry and analyzed using the FACS Canto II
(BD Biosciences, San Jose, CA, USA) and FlowJo software v10 (TreeStar, Ashland, OR, USA).

2.8. Statistical Analysis

Statistics were performed using a Mann–Whitney test for unpaired observations and a Wilcoxon
test for paired observations, as indicated, using GraphPad version 8 (San Diego, CA, USA).
Statistical significance was set at p < 0.05.

3. Results

3.1. MAVS Minor Genotype Is Associated with Sustained CD4+ T Cell Counts and a Reduced Proviral DNA
Load during HIV-1 Infection

Individuals carrying a MAVS minor genotype have lower viral loads in plasma at set point and
show a delayed increase of viral load as compared with individuals with the MAVS major genotype [15].
Here, we examined the levels of CD4+ and CD8+ T cells in individuals with a MAVS minor (n = 6)
and MAVS major (n = 7) genotype, at 3, 5, and 7 years post seroconversion (p. SC). Individuals with
the MAVS major genotype showed significantly lower CD4+ T cell counts 7 years p.SC compared
with 3 years p.SC, whereas in individuals with the MAVS minor genotype no significant change in
CD4+ T cell counts was observed over time (Figure 1a). CD8+ T cell counts remained similar over
time in both MAVS genotype groups (Figure 1b). We next determined the cell-associated viral DNA
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levels in CD4+ T cells in individuals carrying a MAVS minor or MAVS major genotype at a time point
with similar CD4+ T cell counts (3.5–8.5 years p.SC; n = 7) (Figure 1c). We observed that CD4+ T cells
obtained from individuals carrying the MAVS minor genotype contained significantly lower levels
of cell-associated proviral DNA compared with those with a MAVS major genotype (Figure 1d).
These data strongly suggest that the protective effect of the MAVS minor genotype is associated with
more stable CD4+ T cell counts and lower levels of HIV-1-infected CD4+ T cells during the course
of disease.
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Figure 1. MAVS minor genotype is associated with sustained CD4+ T cell counts and a decreased
level of cell-associated proviral DNA load during human immunodeficiency virus 1 (HIV-1) infection.
(a) CD4+ T cell counts were assessed at 3, 5, and 7 years post seroconversion (p.SC) in untreated
HIV-1-infected individuals carrying a MAVS minor or MAVS major genotype. (b) CD8+ T cell counts
were assessed at 3, 5, and 7 years p.SC in individuals carrying a MAVS minor or MAVS major genotype.
(c) CD4+ T cell counts and (d) the number of HIV-1 DNA copies per 5000 CD4+ T cells using qPCR
were obtained from untreated HIV-1-infected individuals carrying the MAVS minor or MAVS major
genotype 3.5–8.5 years p.SC. Each square or dot represents a different study participant (median ± IQR).
All significant differences are indicated: * p < 0.05, ** p < 0.01, paired Wilcoxon test (a) and unpaired
Mann–Whitney test (d).

3.2. MAVS Genetic Variation Does Not Affect Immune Activation Levels

Subsequently, we studied the level of immune activation in serum of individuals carrying a
MAVS minor or MAVS major genotype, using a multiplex assay. Immune activation levels were
measured at two different time points during infection: early p.SC (2.5–3.5 years) and late p.SC
(4.5–5.5 years). The levels of IFN and interferon-stimulated genes (ISGs) measured by protein levels of
IFN-α, IFN-β, IFN-γ and IL-27p28 did not significantly change over time in the minor (n = 8) as well
as the major genotype (n = 8) and no differences were observed between MAVS genotypes (Figure 2a).
The IFN-γ-inducible protein IP-10 (CXCL-10) was significantly increased in MAVS minor individuals
(n = 8) over time, and a similar trend was observed in MAVS major individuals (n = 8 MAVS minors;
n = 37 MAVS majors). Furthermore, the levels of several pro-inflammatory cytokines (TNF-α, IL-1β,
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IL-12p70, IL-6), regulatory cytokines (IL-2, IL-4), anti-inflammatory cytokines (IL-10) and chemokines
(MCP-1, Mip-1α and Mip-1β, or known as CCL2, CCL3 and CCL4, respectively) did not differ between
the different MAVS genotypes early p.SC (n = 8) and late p.SC (n = 8 MAVS minors; n = 37 MAVS
majors for all proteins except IL-12p70) (Figure 2b,c). These data indicate that MAVS genetic variation
does not affect immune activation levels in serum.
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Figure 2. MAVS genetic variation does not affect immune activation levels. (a) Concentrations of
interferon (IFN) and IFN-induced molecules in serum samples obtained 2.5–3.5 and 4.5–5.5 years p.SC of
untreated HIV-1-infected individuals containing MAVS minor or MAVS major genotype were measured
using a multiplex assay. (b) Concentrations of pro-inflammatory, regulatory, and anti-inflammatory
molecules and (c) chemokines in serum samples obtained 2.5–3.5 and 4.5–5.5 years p.SC of untreated
HIV-1-infected individuals containing MAVS minor or MAVS major genotype were measured using
a multiplex assay. Each square or dot represents a different study participant (median ± IQR.).
All significant differences are indicated: * p < 0.05, paired Wilcoxon test.
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3.3. MAVS Minor Genotype Contains a Decreased Percentage of Naïve CD4+ T Cells

Next, we analyzed the percentage of CD4+ and CD8+ T cells positive for the activation and
exhaustion markers PD-1, LAG-3, CD38, HLA-DR and CD134 (OX40) of individuals carrying the MAVS
minor and MAVS major genotypes (2.5–3.5 years p.SC; n = 4), using flow cytometry. No differences
were observed between the different cell populations between MAVS genotypes (Figure 3a). Then,
we investigated immune senescence by measuring percentages of CD27−CD28− CD4+ T cells and
observed that no difference was detected in the percentage of senescent CD4+ T cells between the
different MAVS genotypes (Figure 3a). In the CD8+ T cell population, the percentage of PD-1+,
LAG-3+, PD-1+LAG3+, CD38+, HLA-DR+, CD38+HLA-DR+, CD134+, or senescence (CD27−CD28−)
did not differ between MAVS genotypes (Figure 3b). Next, we examined whether MAVS genetic
variation affects T cell differentiation as reflected by the percentages of different CD4+ T cell populations
comprised of naïve T cells (Tn; CD45RA+CD27+CCR7+) and differentiated phenotypes defined as
terminally differentiated effector memory cells (TEMRA; CD45RA+CCR7−CD27−), central memory
(CM; CD45RA−CCR7+CD27+), transitional memory (TM; CD45RA−CCR7−CD27+) and effector
memory (EM; CD45RA−CCR7−CD27−) T cells (n = 4). We observed that individuals carrying the MAVS
minor genotype contained a significantly lower percentage of naïve CD4+ T cells. Although the MAVS
minor genotype showed an increased percentage of effector/memory CD4+ T cells, the individual
percentages of CD4+ TEMRA, CM, TM and EM populations did not differ between MAVS genotypes
(Figure 4a). In contrast, the percentage of CD8+ naïve, TEMRA, CM, TM and EM did not differ between
MAVS genotypes (Figure 4a). In addition, absolute CD4+ T cell counts showed a trend towards
decreased naïve CD4+ T cells (p = 0.057), which was not observed in naïve CD8+ T cells (Figure 4b).
The individual CD4+ T cell subsets did not significantly differ in number between the different MAVS
genotypes (Figure 4b). Furthermore, the percentages of exhausted and activated T cells within the
different T cell subpopulations did not differ between MAVS genotypes (Figure 4c,d). Although MAVS
genetic variation did not affect CD4+ and CD8+ T cell exhaustion, activation and senescence, our data
suggest that individuals carrying the MAVS minor genotype contain lower percentages of naïve
CD4+ T cells.

3.4. MAVS Genetic Variation Does Not Affect Intracellular Cytokine Responses of HIV-1-Specific T Cells

To determine the effect of MAVS genetic variation on HIV-1-specific T cell cytokine responses,
we assessed the intracellular expression levels of pro-inflammatory and regulatory cytokines in CD4+

and CD8+ T cells of individuals carrying a MAVS minor or major genotype (n = 4 and n = 3, respectively).
Peripheral blood mononuclear cells (PBMCs) obtained 2.5–3.5 years p.SC were stimulated with an
HIV-1 consensus B Gag peptide pool to achieve activation of HIV-1-specific T cells. Staphylococcal
enterotoxin B (SEB) was used as a positive control. The percentages of CD4+ and CD8+ T cells positive
for TNF receptor family member CD137, CD107a, and intracellular cytokines were analyzed using
flow cytometry. CD137 functions as a costimulatory molecule important for activation of virus-specific
memory T cell responses and CD107a is indicative of T cell degranulation [48,49]. Here, the percentages
of CD137 and CD107a on CD4+ T cells were not affected by Gag stimulation, whereas SEB-treatment
resulted in enhanced CD137 expression and degranulation (Figure 5a). Furthermore, MAVS genetic
variation did not affect the percentage of CD137+ and CD107a+ CD4+ T cells. Next, we examined
percentages of CD4+ T cells positive for intracellular cytokines IFN-γ, IL-2, Mip-1β and TNF-α.
We observed that the percentages of IFN-γ+ and TNF-α+ CD4+ T cells were not enhanced upon Gag
stimulation, irrespective of MAVS genetic variation (Figure 5a), whereas, as expected, SEB-treated
CD4+ T cells showed enhanced cytokine responses. Upon Gag stimulation, the percentage of Mip-1β+

CD4+ T cells increased, albeit to a similar extent in both MAVS genotypes. The intracellular cytokine
levels did not differ between the different MAVS genotypes (Figure 5a). Similar flow cytometric
analyses were performed in CD8+ T cells (Figure 5b). The percentage of CD137+ and CD107a+

CD8+ T cells and intracellular cytokines was similar between different MAVS genotypes. Our results
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imply that MAVS genetic variation does not affect intracellular cytokine production of CD4+ and CD8+

HIV-1-specific T cells upon in vitro stimulation.
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Figure 3. MAVS genetic variation does not affect T cell exhaustion, activation, and senescence.
(a) Percentages of PD-1+, LAG-3+, CD38+, HLA-DR+, CD134+, exhausted (PD-1+LAG-3+),
activated (CD38+HLA-DR+), and senescent (CD27−CD28−) cells within CD4+ and (b) CD8+ T cells
of untreated HIV-1-infected individuals with a MAVS minor or MAVS major genotype 2.5–3.5 years
p.SC were analyzed using flow cytometry. Each square or dot represents a different study participant
(median ± IQR). No significant differences between HIV-1-infected individuals with a MAVS minor or
MAVS major genotype were observed.
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Figure 4. MAVS minor genotype is associated with a decreased percentage of naïve CD4+ T cells.
(a) Percentages and (b) cell counts of naïve (Tnaive; CD45RA+CD27+CCR7+), terminally differentiated
effector memory (TEMRA; CD45RA+CCR7−CD27−), central memory (CM; CD45RA−CCR7+CD27+),
transitional memory (TM; CD45RA−CCR7−CD27+), and effector memory (EM; CD45RA−CCR7−CD27−)
cells within CD4+ and CD8+ T cells were analyzed using flow cytometry. (c) Percentages of exhausted
(PD-1+LAG-3+) and activated (CD38+HLA-DR+) CD4+ T cells and (d) CD8+ T cells within Tnaive,
TEMRA, CM, TM, and EM populations were analyzed using flow cytometry. Each square or dot
represents a different study participant (median ± IQR). All significant differences are indicated:
* p < 0.05, unpaired Mann–Whitney test.
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Figure 5. MAVS genetic variation does not affect intracellular cytokine levels of HIV-1-specific T cells.
(a) PBMCs of individuals carrying a MAVS minor or MAVS major genotype obtained 2.5–3.5 years
p.SC were left unstimulated (-), or were treated with HIV-1 consensus B Gag peptide pool (Gag) or
staphylococcal enterotoxin B (SEB). After 6 h, the percentages of surface molecules expressing CD137+

and CD107a+ and intracellular expression of IFN-γ+, IL-2+, Mip-1β+, and TNF-α+ CD4+ T cells and
(b) CD8+ T cells were analyzed using flow cytometry. Each square or dot represents a different study
participant (median ± IQR). No significant differences between HIV-1-infected individuals with a
MAVS minor or MAVS major genotype were observed.

3.5. MAVS Minor Genotype Affects HIV-1 Replication In Vitro

Next, we investigated whether MAVS genetic variation affects HIV-1 replication in vitro. First,
we assessed the effect of the SNP in MAVS on MAVS protein expression levels. Intracellular MAVS
protein expression levels were analyzed in monocyte-derived DCs from healthy donors using flow
cytometry and did not differ between the genotypes (Figure 6a). Next, PBMCs from healthy blood
donors with different MAVS genotypes were infected with single round VSV-G-pseudotyped HIV-1
containing a fire-fly luciferase gene to quantify viral protein production. Even though virus replication
in PBMCs with a MAVS major and heterozygous genotype was similar, viral replication levels
were decreased in PBMCs of individuals with the MAVS minor genotype (Figure 6b). Furthermore,
PBMCs were infected with R5-tropic strain NL4.3 BaL. Notably, viral replication levels in PBMCs from
individuals with the MAVS minor genotype were significantly lower than observed in PBMCs from
the MAVS major and MAVS heterozygous genotype (Figure 6c). To examine whether the difference in
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HIV-1 replication levels in PBMCs is due to an intrinsic factor in CD4+ T cells with the MAVS minor
genotype, CD4+ T cells from healthy donors with the different MAVS genotypes were infected with
R5-tropic strain NL4.3 BaL or X4-tropic strain NL4.3. Although infection levels were low, no significant
difference in intracellular p24 levels between the genotypes was observed (Figure 6d). Moreover, no
differences in viral replication levels between the genotypes were observed when phorbol myristate
acetate (PMA)-ionomycin-activated CD4+ T cells were infected with NL4.3 (Figure 6e). In addition,
CD4+ T cells were infected with VSV-G-pseudotyped HIV-1 and viral replication as determined by
luciferase activity was assessed and did not differ between the different MAVS genotypes (Figure 6f).
These data indicate that MAVS genetic variation affects HIV-1 replication in vitro in the PBMC culture,
while no intrinsic restriction to infection was observed in CD4+ T cells.

4. Discussion

HIV-1 has developed various ways to evade immune surveillance, one of which is illustrated
by PLK1-dependent evasion of MAVS-mediated induction of antiviral type I IFN and cytokine
responses [15]. We previously identified two linked SNPs in the MAVS gene that render the MAVS
protein insensitive to the PLK1-dependent HIV-1 evasion mechanism and it was shown that untreated
HIV-1-infected individuals homozygous for the minor alleles (MAVS minor genotype) contained a
decreased viral load at set point and prolonged control of viral replication during the course of HIV-1
infection [15]. Here, we investigated whether innate and adaptive immune responses contribute
to the protective effect of the MAVS minor genotype by comparing the immune activation levels
and T cell phenotype and function with responses induced in individuals carrying the MAVS major
genotype. We observed that individuals with the MAVS minor genotype showed no significant
decrease of CD4+ T cells counts during a 7-year follow up. Moreover, individuals homozygous for
the MAVS minor genotype had lower levels of CD4+ T cell-associated proviral DNA, as compared
with individuals with the MAVS major genotype with comparable CD4+ T cell counts. The levels of
immune activation, T cell exhaustion, activation, senescence, and intracellular cytokine responses of
HIV-1-specific T cells did not differ between individuals with the different MAVS genotypes. However,
we did observe a significantly lower percentage of naïve CD4+ T cells in HIV-1-infected individuals with the
MAVS minor genotype. Furthermore, in vitro infection of PBMCs but not CD4+ T cells of healthy donors
carrying the MAVS minor genotype resulted in decreased levels of viral replication. Our data suggest
that the protective effect of the MAVS minor genotype is associated with control of HIV-1 infection in
CD4+ T cells in the PBMC culture, rather than by an intrinsic restriction in CD4+ T cells.

Immune activation levels are a strong correlate of HIV-1 disease progression [30–32]. Here,
we analyzed whether the protective effect of the MAVS minor genotype could attribute to changes in the
level of immune activation analyzed by cytokine/chemokine levels and T cell activation. Cytokine and
chemokine levels in serum as well as the expression of CD38 and HLA-DR on CD4+ and CD8+ T cells
did not significantly differ between the different MAVS genotypes early and late after seroconversion.
Moreover, no differences in T cell exhaustion and senescence were observed between the genotypes.
It should be noted that our study population consisted of typical progressors, in which HIV-1-infected
individuals with rapid progression and CD4+ T cell counts below 200 cell/µL before 5 years after
seroconversion were not analyzed. Strikingly, we observed that the IFN-γ-induced chemokine IP-10,
which functions as a chemoattractant for NK cells, monocytes and T cells [50], was slightly increased in
serum of MAVS minor individuals both early and late after seroconversion. IP-10 is considered one of
the most important biomarkers for disease progression in (untreated) HIV-1 infection and macrophages
in the gut are considered as the main source of circulating IP-10 [51–53]. However, IP-10 can also
be produced by other cell types including T cells, monocytes, and monocyte-derived dendritic cells
(mDCs) in the circulation and lymph nodes [54,55]. Here, the observed slight elevation of IP-10 in
MAVS minor individuals who control HIV-1 infection, may be a reflection of the induction of an
antiviral type I IFN and proper innate immune response.
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Figure 6. MAVS genotype affects viral replication in vitro. (a) Relative mean fluorescent intensity
(MFI) of intracellular MAVS protein expression in monocyte-derived dendritic cells determined by
flow cytometry. (b) PBMCs of healthy donors with either a MAVS minor, MAVS heterozygous (HZ),
or MAVS major genotype were infected with single round VSV-G-pseudotyped HIV-1 containing
a fire-fly luciferase gene. After 72 h, luminescence was measured by relative light units (RLUs).
(c) PBMCs of healthy donors with the different MAVS genotypes were infected with R5 tropic strain
NL4.3 BaL. After 8 days, virus production was determined by the detection of Gag p24 in the supernatant
using ELISA. (d) CD4+ T cells of healthy donors with the different MAVS genotypes were not infected,
infected with R5-tropic strain NL4.3 BaL or X4-tropic strain NL4.3 or (e) pre-treated with phorbol
myristate acetate (PMA) and ionomycin followed by NL4.3 infection. After 8 days, virus replication was
determined by the detection of intracellular Gag p24 using flow cytometry. (f) CD4+ T cells of healthy
donors with the different MAVS genotypes were pre-treated with or without PMA and ionomycin
followed by infection with single round VSV-G-pseudotyped HIV-1 containing a fire-fly luciferase
gene. After 72 h, luminescence was measured and results are given as relative light units (RLUs).
Data are representative of four (a), 25 (b), 24 (c) or three (d–f) MAVS major individuals, five (b,c)
MAVS heterozygous individuals and four (a), two (b–f) MAVS minor individuals (median ± IQR).
All significant differences are indicated: * p < 0.05, unpaired Mann–Whitney test.
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To determine whether the protective effect of MAVS genetic variation could be explained by
divergent T cell differentiation levels, we analyzed the percentages of naïve, TEMRA, CM, TM and EM
CD4+, and CD8+ T cells. Interestingly, we found that individuals with the MAVS minor genotype
contained lower percentages of naïve CD4+ T cells, and thus an increased total memory/effector
CD4+ T cell population. The CD4+ memory T cells are the main population infected by HIV-1 [56,57],
and depletion of this population during HIV-1 infection is instigated either directly via productive
infection leading to caspase-3-dependent apoptosis or indirectly, via non-productive infection of
bystander CD4+ T cells, resulting in caspase-1-dependent pyroptosis [58,59]. The observation that
CD4+ T cells of individuals with the MAVS minor genotype harbored low levels of cell-associated
proviral DNA may be indicative of lower virus-induced cell death and preservation of the memory
CD4+ T cell population in the individuals with the MAVS minor genotype. Loss of the naïve
CD4+ T cells in individuals during progressive HIV infection is caused by increased immune activation,
high T cell turnover rates, and emergence of CXCR4-using HIV-1 variants [30,56]. In this study,
individuals with the MAVS minor genotype showed no increase in immune activation, as compared
with individuals with the MAVS major genotype, moreover no CXCR4-using HIV-1 variants have been
detected in this group. It is therefore more likely that the observed decrease of the naïve CD4+ T cell
population is the result of the preservation of the total memory/effector CD4+ T cell population.

HIV-1 specific CTL responses are a strong correlate of viral control during HIV-1 infection [34,60].
Studies have convincingly described the role of CTLs in the control of viremia in SIV infections of
rhesus macaques, as well as in humans [60–63]. Although HIV-1 is able to escape immune pressure
due to the occurrence of escape mutations in CTL epitopes [40,64,65], several studies imply that some
escape mutations contain the ability to elicit continuous immune pressure on the virus, which can lead
to virus attenuation [66–68]. Furthermore, disease progression is associated with HLA types and it has
been demonstrated that HLA types that have been shown to correlate to low viremia favored responses
targeting the conserved Gag protein [69–74]. Here, we examined functionality of HIV-1-specific CD4+

and CD8+ T cells, by using a Gag peptide pool to stimulate PBMCs. We did not observe an effect
of MAVS genetic variation on the production of antigen-specific CD4+ and CD8+-induced cytokine
and chemokine production. These data suggest that the protective effect of MAVS is not elicited by
antigen-specific T cell functionality.

Interestingly, while MAVS protein levels were unaffected by MAVS genetic variation, in vitro
infection of PBMCs from healthy individuals with a MAVS minor genotype resulted in decreased viral
replication levels, indicating that these cells are less susceptible to HIV-1 infection and replication.
Of note, MAVS genetic variation did not affect viral replication levels in purified CD4+ T cells.
Considering the different ways of viral entry exploited by VSV-G-pseudotyped HIV-1 and R5-tropic
virus NL4.3 BaL, viral replication in PBMCs with the MAVS minor genotype is restricted at a
post-entry level. Whether this decreased viral replication in PBMCs is caused by, for instance,
triggering of an antiviral response in these cultures remains to be determined. Indeed, macrophages
and DCs present in PBMCs from MAVS minor donors may exert a DDX3-induced MAVS-mediated
type I IFN response upon in vitro HIV-1 infection, which can interfere with virus replication in the
CD4+ T cells. Besides functioning as cytoplasmic sensors of viral RNA, DDX3 and RIG-I have the
ability to sense viral RNA in the nucleus [75–77]. It is unknown whether MAVS genetic variation affects
intracellular localization of DDX3 and RIG-I and subsequent antiviral type I IFN responses. However,
direct infection levels of CD4+ T cells did not differ between MAVS genotypes, suggesting that the
decreased infection of CD4+ T cells in the PBMC culture is not due to intrinsic CD4+ T cell factors.
These data suggest that the protective effect of the MAVS minor genotype is associated with the
induction of a local antiviral response in DC and monocyte/macrophages, which results in decreased
susceptibility of CD4+ T cells to HIV-1 infection and, thus, leading to the observed decrease in
CD4+ T cell-associated proviral DNA in vivo.

In conclusion, individuals carrying the MAVS minor genotype show no significant decrease of
CD4+ T cell counts during a 7-year follow up, and harbored significantly lower levels of infected
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CD4+ T cells, whereas no differences in the level of immune activation and virus-specific immune
responses were observed. In vitro infection assays demonstrated that PBMCs obtained from donors
carrying the MAVS minor genotype were less susceptible to HIV-1 replication. Although the precise
underlying mechanism remains unclear, our data suggest that the protective effect of the MAVS minor
genotype may be exerted by the initiation of local innate responses affecting viral replication and
CD4+ T cell susceptibility.
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