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Abstract: The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic
efficacies of phage cocktails AB-SA01, AB-PAO1, which target Staphylococcus aureus and Pseudomonas
aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and
P. aeruginosa mixed-species planktonic and biofilm cultures. Green fluorescent protein (GFP)-labelled
P. aeruginosa PAO1 and mCherry-labelled S. aureus KUB7 laboratory strains and clinical isolates were
used as target bacteria. During real-time monitoring using fluorescence spectrophotometry, the density
of mCherry S. aureus KUB7 and GFP P. aeruginosa PAOL1 significantly decreased when treated by their
respective phage cocktail, a mixture of phage cocktails, and gentamicin. The decrease in bacterial
density measured by relative fluorescence strongly associated with the decline in bacterial cell counts.
This microplate-based mixed-species culture treatment monitoring through spectrophotometry
combine reproducibility, rapidity, and ease of management. It is amenable to high-throughput
screening for phage cocktail efficacy evaluation. Each phage cocktail, the combination of the two
phage cocktails, and tetracycline produced significant biofilm biomass reduction in mixed-species
biofilms. This study result shows that these phage cocktails lyse their hosts in the presence of
non-susceptible bacteria. These data support the use of phage cocktails therapy in infections with
multiple bacterial species.

Keywords: phage cocktail therapy; biofilm; planktonic culture; fluorescence; efficacy; mixed-species
culture; Staphylococcus aureus; Pseudomonas aeruginosa

1. Introduction

Wound infections, particularly chronic wounds such as occur in diabetic foot ulcers (DFUs),
are often polymicrobial and frequently involve multidrug-resistant (MDR) bacterial pathogens [1,2].
A recent study found that 50% of the bacterial isolates recovered from DFU infections were MDR [3].
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Polymicrobial wound infections have reportedly increased in the last decade and include MDR
S. aureus and P. aeruginosa, which are frequently isolated and therapeutically challenging bacteria [4,5].
Both S. aureus and P. aeruginosa are associated with severe wound infections, including orthopedic
infections [4,6], are often isolated together [5], and may occupy different parts of wounds [7].
Co-infections with S. aureus and P. aeruginosa usually result in worse patient outcomes than infections
due to either pathogen alone [8,9]. In addition to their high level of antibiotic resistance, S. aureus
and P. aeruginosa form in vivo biofilms that typically result in increased tolerance to antibiotics and
contribute to bacterial virulence [8] and immune evasion [10].

Most chronic wound infections involve biofilms, which render antibiotic treatment less effective.
Moreover, bacteria within biofilms exhibit altered metabolic properties as compared to planktonic
bacteria, which reduces the efficacy of antibiotics in this setting [1,9,11,12]. Phages represent a potential
alternative or adjunct therapy for infections with antibiotic-resistant bacteria [13]. However, the efficacy
of phages in mixed-species bacterial infections has been incompletely examined, and the limited
literature contains conflicting reports [14]. Lytic phages kill their bacterial host by lysis (bursting the
infected bacterial cell to release progeny phages) [15]. The process of phage infection and subsequent
self-replication in bacteria offers advantages over antibiotics: phages amplify themselves at the infection
site provided there are susceptible bacterial hosts [16]. Phages are highly specific to the bacterial species
they infect, an advantage over broadly active antimicrobials, as phages are not expected to disrupt a
patients” normal microflora. Phages are able to lyse biofilm forms of their host bacteria, such as those
typically found in infected DFUs [16,17]. Some studies also suggest that both of these antimicrobial
agents in combination are more effective in controlling pathogenic bacteria than either alone [18,19].

Difficulties in growing different bacterial species together in vitro, as in the case of S. aureus and
P. aeruginosa, make the study of bacterial interactions and efficacy of antibiotic agents complicated [20,21].
P. aeruginosa mostly kills or outcompetes S. aureus in in vitro co-cultures [22,23]. Medium containing
bovine serum albumin (BSA) is recommended to allow better growth of S. aureus in the presence of
P. aeruginosa [24,25]. In this study, we used fluorescence spectrophotometry to evaluate the effectiveness
of phage cocktails of S. aureus and P. aeruginosa under mixed-species planktonic cultures. The use of
different fluorescent proteins-labelled bacterial species in mixed-species culture allows monitoring, in
real-time, of phage treatment effects based on the detection of a decrease in fluorescence relative to
the untreated controls. Fluorescence spectrophotometry is easy to handle, reproducible, and a rapid
technique to evaluate treatment efficacy [26,27]. To confirm the spectrophotometry results, we carried
out bacterial counts post-treatment, using selective agars. The efficacy of these phage cocktails was
also examined in mixed-species biofilms using bacterial counts.

2. Materials and Methods

2.1. Bacterial Species

Clinical isolates of S. aureus (n = 4) and P. aeruginosa (n = 4) were randomly selected from
isolates obtained from South Australia Pathology. These were among the isolates that showed strong
susceptibility in spot test and 73-88% biofilm biomass reduction on single-species biofilm experiments
because of the phage cocktail and its components treatment (data provided as Supplementary Table S1).
Laboratory strains mCherry-labelled S. aureus KUB7 [28] and GFP-labelled P. aeruginosa PAO1 were
generously donated by A/Prof. Heather Jordan of Mississippi State University, USA, and Dr. Nicky
Thomas of University of South Australia, Australia, respectively. The fluorescent proteins in the
laboratory strains are driven by constitutive promoters and do not need antibiotics to maintain
fluorescence expression. Both strains were susceptible to all antibiotics they were exposed during the
VITEK® 2 test.
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2.2. Phage Cocktails

The phage cocktails AB-SA01 and AB-PAO1 were provided by AmpliPhi Biosciences Corporation
(now Armata Pharmaceuticals, Inc.) (Los Angeles, CA, USA). AB-SA01 is a combination of three
Myoviridae staphylococcal phages designated J-Sa-36, Sa-83, and Sa-87. The mean titer, presented
in plaque-forming unit/millilitre—PFU/mL, was 9.3 logy9 (PFU/mL) for J-Sa-36 and Sa-83, 9.0 log1g
(PFU/mL) for Sa-87, and 9.1 logo (PFU/mL) for the combined product AB-SA01 on S. aureus laboratory
strains RN4220 and SA6538. AB-PA01 is a combination of Pa-193 and Pa-204 from Myoviridae, and
Pa-222 and Pa-223 from Podoviridae. The titer was 10.5 logjo (PFU/mL) for Pa-193, Pa-204, and Pa-222,
9.5logy (PFU/mL) for Pa-223, and 10.3 log1g (PFU/mL) for AB-PA01 on P. aeruginosa laboratory strains
PAOL1 and PA10145. The phage titre was determined using plaque assay, as described [29,30]. None of
these phage components encode any known bacterial virulence or antibiotic resistance genes, and all
phages were considered to be strictly lytic [29,30]. The phages were produced following the current
good manufacturing practice standard (cGMP) and approved by the US Food and Drug Administration
as investigational new drugs [30,31].

2.3. Bacterial Identification

The isolates were identified using standard microbiology methods and confirmed by
matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS)
biotyping (BRUKER Pty. LTD., Melbourne, Victoria, Australia). Antibiotic susceptibility patterns were
determined by VITEK® 2 (bioMérieux Australia Pty Ltd., Sydney, New South wales, Australia).

2.4. Mixed-Species Planktonic Cultures and Phage Cocktail Treatment

Mixed-species planktonic cultures were performed following an established protocol [32] with few
modifications indicated as follows. In the case of fluorescently-labelled laboratory strains, 2-3 colonies
from 18 h selective agar culture plates were suspended in sterile PBS and adjusted to 1.0 McFarland
equivalence turbidity standard, containing approximately 8.5 log;o (CFU/mL). Each bacterial species
suspension was diluted at 1:100 v/v with nutrient broth (Sigma-Aldrich, Sydney, New South wales,
Australia) supplemented with 5% BSA (Sigma-Aldrich, Sydney, New South wales, Australia) and
incubated for 2 h at 37 °C. The two bacterial suspensions were then mixed at the ratio of 1:3 v/v
of GFP P. aeruginosa PAO1 to mCherry S. aureus KUB7 in a sterile 10 mL test tube. Two hundred
microlitre triplicates of each mixture were transferred to a clear 96-well flat-bottom Greiner CELLSTAR®
polystyrene tissue culture plate (Sigma-Aldrich, Sydney, New South wales, Australia), and respective
treatments were applied.

Mixed-species planktonic cultures were treated with one of (i) S. aureus phage cocktail AB-SA01;
(ii) P. aeruginosa phage cocktail AB-PAOQ1; (iii) a mixture of the two phage cocktails, AB-SA01+AB-PA01;
(iv) gentamicin (positive control); or (v) PBS (negative control). The effect of each phage cocktail and
the combination of the two phage cocktails was compared to the gentamicin- and PBS-treated groups.

AB-SA01, AB-PAO1, or AB-SA01+AB-PAO1 phage cocktails were applied at a multiplicity of
infection (MOI) of one to fluorescently labelled S. aureus-P. aeruginosa mixed-species culture. Gentamicin
was used as a positive control at 16 pg/mL as the minimum inhibitory concentration (MIC) to these
isolates was < 8 ug/mL. An equal volume of PBS to phage solutions was applied to negative control
groups. A plate cover was applied, and the plate was wrapped with aluminium foil from the top
and sides. The plate was incubated in a CLARIOstar Omega plate reader (BMG LABTECH Pty. Ltd.,
Melbourne, Victoria, Australia) for 24 h at 37 °C with 100 rpm constant double orbital shaking between
measurements as described [33] for fluorescent protein-labelled strains. Fluorescence of mCherry and
GFP was measured (in relative fluorescence unit, RFU) every 30 min in each well. The excitation
and emission wavelengths were set at 570-15 and 620-20 nm for mCherry, and 470-15 and 515-20 nm
for GFP detection, respectively. Signals from triplicate wells were averaged and corrected for blank
wells containing only nutrient broth. After 24 h incubation, bacterial colony counts were performed
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using serial dilution on selective agars for each species, vancomycin-supplemented MacConkey for
P. aeruginosa, and mannitol salt agar (MSA) for S. aureus. The experiment was repeated three times
with the same protocol on different days. A similar protocol was followed for clinical isolates, except
that incubation was in a standard incubator.

2.5. In Vitro Mixed-Species Biofilm Development and Phage Cocktail Treatment

Mixed-species biofilm development and treatment was conducted using a previously described
procedure [34,35] with few modifications. Briefly, 2-3 colonies of 18 h culture of each isolate
were independently suspended in sterile PBS and adjusted to 1.0 McFarland turbidity standard.
These suspensions were pooled at 1:3 v/v ratio of P. aeruginosa to S. aureus, and 100 pL of the mixed
suspension was transferred to 10 mL 5% BSA-nutrient broth. The final suspension was supplemented
with 1% sterile glucose to facilitate biofilm development. Two hundred microlitres of the suspension was
transferred in triplicate into a tissue culture plate and incubated for 48 h at 37 °C with 70 rpm agitation.

The treatment categories of mixed-species biofilms were (i) S. aureus phage cocktail AB-SA01;
(i) P. aeruginosa phage cocktail AB-PAQ1; (iii) a mixture of the two phage cocktails, AB-SA01+AB-PA01;
(iv) tetracycline (positive control); and (v) PBS (negative control). The effect of each phage cocktail and
a combination of the two phage cocktails was compared to the tetracycline- and PBS-treated groups.
Tetracycline (Sigma-Aldrich Corporation, Sydney, New South wales, Australia) was used as a positive
control in mixed-species biofilm treatment as it was strongly effective (p < 0.001), compared with
PBS treatment, in biofilm biomass reduction on single-species biofilm treatment of both S. aureus and
P. aeruginosa isolates. However, gentamicin did not produce significant biofilm biomass reduction
(p > 0.05), compared with PBS treatment (Unpublished data). Tetracycline was not used as a positive
control in mixed-species planktonic culture treatment experiments to avoid exaggerated fluorescence
detection because of its color and fluorescent nature [36].

Next, the liquid culture was removed, and plates were washed gently twice using sterile deionized
water. Then, 225 uL of AB-SA(01, AB-PA01, or AB-SA01+AB-PAO1 in the nutrient broth was applied
to the respective treatment group biofilms. An equivalent volume of tetracycline and PBS to phage
solution in nutrient broth were also applied as controls. The concentration of tetracycline was 128 pug/mL
because P. aeruginosa isolates are susceptible to a higher concentration of tetracycline [37,38]. The MIC
of tetracycline for S. aureus was < 8 pg/mL during VITEK® 2 antimicrobial susceptibility test. Treated
biofilms were incubated for 12 h at 37 °C with no agitation. The biofilm was washed twice using 250 uL
sterile PBS through careful pipetting. The biofilm-associated cells attached to the well surface were
collected with 225 uL nutrient broth by pipetting after scraping the surface with a loop as described
earlier [39,40]. After homogenization with a vortex mixer, the cell suspension was serially diluted,
1071-1078, in filter-sterilized 10 mM ferrous ammonium sulphate (FAS) supplemented nutrient broth
to inactivate free phage [41] and incubated at room temperature for 15 min.

2.6. Viable Bacterial Cell Count

One hundred microlitres of the bacterial suspension from each serial dilution was then mixed
with 3 mL nutrient soft agar warmed at 42 °C and dispensed over 37 °C pre-warmed MSA and
vancomycin-supplemented MacConkey agar in triplicate and incubated at 37 °C for 24 h. Plates with
approximately 30-300 colonies were taken from one of the dilutions, and colony count was carried out
as previously described [42]. The bacterial cell count was calculated using the formula B = N/d where
B = number of bacteria; N = average number of colonies counted on three plates; d = dilution factor as
described earlier [43]. The results are expressed as logarithm-transformed values (log (CFU/mL)).

2.7. Statistical Analysis

STATA version 16 software was used for statistical analysis. Data are reported in terms of the
mean. A comparison of experimental groups was performed using a one-way analysis of variance
(two-tailed) or paired “t-test’. A p < 0.05 value was considered statistically significant.
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3. Results

3.1. Effect of Phage Cocktails on Fluorescently Labelled Mixed-Species Planktonic Cultures

The fluorescence of each species alone or together was confirmed under a confocal microscope,
as shown in Figure 1.

10pm

Figure 1. Fluorescence strain under confocal microscopy: (A) mCherry-labelled S. aureus KUB7, (B)
GFP-labelled P. aeruginosa PAO1, and (C) mCherry-labelled S. aureus KUB7 mixed with GFP-labelled
P. aeruginosa PAOL.

The growth of fluorescently-labelled S. aureus and P. aeruginosa in single- and mixed-species
planktonic cultures in the presence and absence of phages is shown in Figure 2A-G. Compared
to the phosphate-buffered saline (PBS) treatment, AB-SA01 and AB-PAO1 treatments effectively
halted the growth of their host throughout the 24 h follow-up period. In the single-species cultures
treated with PBS, there was a marked increase in fluorescence of mCherry S. aureus KUB7 and GFP
P. aeruginosa PAO]1, as shown in Figure 2A,B, indicating bacterial growth. In the mixed-species cultures
without phages, the magnitude of fluorescence slowly increased with time (Figure 2C). However,
the maximum red and green fluorescence obtained was much lower than the fluorescence detected
during single-species PBS-treated cultures (Figure 2A,B), suggesting that the mixed-species exhibited
competition for nutrients or co-inhibitory effects. In mixed-species cultures treated with a single phage
cocktail, the fluorescence of the target host was almost eliminated, while the non-target host was
unaffected, as shown in Figure 2D,E, with fluorescence similar to PBS-treated single-species control.
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Figure 2. A-G: effect of phage cocktails on mCherry S. aureus KUB7 (red data points) and
GFP P. aeruginosa PAO1 (green data points) single- and mixed-species planktonic cultures. RFU
represents relative fluorescence unit. (A) PBS-treated mCherry S. aureus KUB7 (in red) single-species
culture; the green graph is due to background detection since the machine was set for mCherry
and GFP detection. (B) PBS-treated GFP P. aeruginosa PAO1 (in green) single-species culture;
the red graph is due to background detection since the machine was set for mCherry and GFP
detection. (C) PBS-treated mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 mixed-species
culture. (D) AB-SA01-treated mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 mixed-species
culture. (E) AB-PAO1-treated mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 mixed-species
culture. (F) AB-PA01+AB-SAOQ1-treated mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1
mixed-species culture. (G) Gentamicin-treated mCherry S. aureus KUB7 and GFP P. aeruginosa
PAO1 mixed-species culture.

When both phage cocktails were added to the mixed-species cultures, there was low fluorescence
of both bacterial species, as shown in Figure 2F, similar to the inhibitory effect of gentamicin (Figure 2G),
indicating that phage efficacy is not affected by the presence of non-host bacteria or other phages.
The highest magnitude of red fluorescence in mCherry S. aureus KUB7 was detected from the untreated
single-species culture (Figure 2A). In the case of GFP P. aeruginosa PAO]1, the highest green fluorescence
was detected from mixed-species culture treated with S. aureus phage cocktail, AB-SA01 (Figure 2D).
The lowest magnitude of fluorescence from the target host in the mixed-species culture was observed
when treated with each phage cocktail, as shown in Figure 2D,E. As expected, AB-SA(01 and AB-PA01
exhibited no lytic effect on non-susceptible hosts (Figure 2D,E). While the fluorescence detected from a
non-susceptible host showed an increase through time, the fluorescence obtained from the susceptible
host remained low.

The decreases in fluorescence from each phage cocktail-, combinations of the two phage
cocktails-, and gentamicin-treated groups were significantly lower compared to the PBS-treated
group. The corresponding colony count results for each treatment group after 24 h are shown in Table 1
and confirm the results obtained with the fluorescence detection methodology.
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Table 1. Bacteria cell count (logyg (CFU/mL)) of S. aureus and P. aeruginosa in mixed-species planktonic
culture after 24 h phage cocktails, gentamicin, or PBS treatment.

Bacterial Cell Counts after Treatment

Isolates

. Evaluated Isolate AB-SA01+
Combination _ . .
PBS AB-SA01 AB-PAO1 AB-PAOL Gentamicin

S. aureus KUB7 S S. aureus KUB7 5 55 3.6 8.7 3.0 0
and GFP PAO1 P GFP PAO1 T 7.9 8.9 0 3.7 0
63-6538 S and 63-6538 5 5.6 1.5 7.9 0 0
63-6598 P 63-6598 ¥ 5.3 6.0 0 0 0
63-2498 S and 63-2498 5 6.2 0 6.6 0 0
63-5497 © 63-5497 F 7.5 8.0 35 4.0 0
63-5656 S and 63-5656 5 4.8 3.6 6.1 0 0
63-6036 7 63-6036 T 6.6 8.1 33 42 0
Summarized treatment effect

S. aureus mean 55 2.2 7.3 0.8 0

S. aureus reduction — 33 +1.8 4.7 55

P. aeruginosa mean 6.8 7.8 1.7 3.0 0

P. aeruginosa — +1.0 5.1 3.8 6.8

reduction

S S. aureus isolates, ¥ P. aeruginosa isolates, + indicates an increase in bacterial count compared to PBS treatment.

3.2. Efficacy of Phage Cocktails on Laboratory and Clinical Isolates Mixed-Species Planktonic Cultures

The population of each bacterial species in mixed-species planktonic cultures at the end of 24 h of
treatment was assessed. Compared to PBS-treated samples, AB-SA01- and AB-PAO1-treated samples
produced 3.3 log1o (CFU/mL) and 5.1 log;¢ (CFU/mL) reduction on their hosts, respectively, as shown in
Table 1. These reductions in bacterial cell count were associated with the susceptibility of each bacterial
isolates to the specific phage cocktail and its component phages during spot test (see complementary
data, Table S1). When the same samples were treated with the combination of the two phage cocktails,
AB-SA01+AB-PA01, the mean cell count of S. aureus and P. aeruginosa reduced by 4.7 logyg (CFU/mL)
and 3.8 logyg (CFU/mL), respectively. The cell counts of one bacterial species showed an increase when
the culture was treated with only a phage cocktail of the other species in the mixed-species culture. All
planktonic cultures treated with gentamicin yielded no viable bacterial cells.

3.3. Effect of Phage Cocktails Treatment on Mixed-Species Biofilms

The findings of this study demonstrate that phage cocktails AB-SA01, AB-PA01, and a mixture of
AB-SA01 and AB-PAO1 successfully lysed their hosts in the presence of biofilms of non-susceptible
species. These phage cocktails applied to S. aureus and P. aeruginosa mixed-species biofilms caused
a statistically significant (p < 0.05; Table 2) reduction in the host cell population compared to the
PBS-treated group, as shown in Table 2. However, the reduction of the cell population in S. aureus and
P. aeruginosa was less than half of the decrease observed in planktonic culture treatment. Most of the
tetracycline-treated cultures produced no or the lowest number of bacterial cells.

Compared to PBS treatment, the application of AB-SA01 or AB-PAQ1 alone did not produce a
statistically significant effect on the cell count of the non-host bacterial species population (p > 0.05;
6.9 vs. 6.8 for AB-SA(1 and 6.2 vs. 5.8 for AB-PAO1, Table 2). The mean bacterial cell population
of each species remained unaffected when treated with the other species’ phage cocktail alone.
Treatment of mixed-species biofilms using the mixture of the two phage cocktails, AB-SA01+AB-PA01,
produced similar cell reduction on both S. aureus and P. aeruginosa isolates as each phage cocktail
treatment. The effect of tetracycline treatment caused a significant reduction in the population of both
bacterial species.
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Table 2. Bacteria count (log1y (CFU/mL)) of S. aureus and P. aeruginosa in mixed-species biofilms after
24 h phage cocktails, tetracycline, and PBS treatment.

Bacterial Cell Counts after Treatment

Isolates

. .. Evaluated Isolate -
Combination PBS AB-SA01 AB-PAO1 1;%_%2?; Tetracycline
S. aureus KUB7 S S. aureus KUB7 S 6.2 4.5 74 55 3.8
and PAO1 GFP P PAO1 GFP P 6.4 6.3 3.8 4.0 3.9
63-6538 S and 63-6538 5 52 44 4.7 3.6 3.0
63-6598 © 63-6598 ¥ 5.5 5.6 3.6 3.7 0
63-2498 S and 63-2498 S 6.3 44 52 5.5 0
63-5497 © 63-5497 F 7.1 6.2 5.5 5.2 0
63-56565 and 63-5656 5 7 49 5.9 5.3 0
63-6036" 63-6036 © 8.5 8.9 4.7 6.3 0
Summarized treatment effect
S. aureus mean 6.2 4.6 5.8 5.0 1.7
S. aureus reduction — 1.6 04 1.2 45
P. aeruginosa mean 6.9 6.8 4.4 4.8 1.0

P. aeruginosa

reduction - 01 2.5 2.1 5.9

S S. aureus isolates, ¥ P aeruginosa isolates.

4. Discussion

The rationale to examine the effect of phage treatment on mixed-species planktonic and biofilm
cultures was that many wound infections are polymicrobial and contain bacteria in biofilm forms [44]
and that there is a paucity of data on the action of phages under such circumstances. In polymicrobial
infections, there exist interspecies interactions, ranging from antagonism to cooperation, that can
significantly impact the pathogenicity of microbes and clinical outcomes of infections [45]. Examination
of the bacterial population using fluorescence detection and CFU count results suggest that phage
cocktail treatment is effective both in planktonic and biofilm states of the host bacteria under
mixed-species cultures.

Multiple fluorescent proteins can be simultaneously applied to examine different microbial
populations in real-time [46,47]. The use of mCherry in combination with GFP is suitable as the
excitation and emission spectra of these proteins are well separated [46,48]. The advantages of using
mCherry and GFP as markers include ease of detection, no exogenous substrate is required that may
perturb biological samples, no need for cell processing for visualization, and they are suitable for
real-time monitoring of cells in mixed cultures [49,50]. In this study, the high magnitude of fluorescence
detected and the bacterial cell population obtained during single species culture without treatment
show bacterial growth and fitness capability for the model while fluorescing [26,49-51]. Hence, we
used mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 to distinguish them in mixed-species culture.
In the current study, loss of mCherry or GFP fluorescence was considered an indication of bacterial
death due to phage-induced lysis, which was supported by decreased or no CFU. Previous studies also
showed that the decrease in fluorescence is due to cell death, suggesting it to be an early and sensitive
marker of viability [26,52].

There was a strong association between the final bacterial density reading through fluorescence
detection and bacterial cell population data as measured by colony count. For both mCherry S. aureus
KUBY? and GFP P. aeruginosa PAO1, the fluorescence signal increased for PBS-treated or bacterial species
unaffected by the treatment. The higher green fluorescence detected in AB-SA01-treated mixed-species
culture than in GFP P. aeruginosa PAOL1 single-species PBS-treated culture might be attributed to
more pronounced P. aeruginosa population growth in the absence of competing organism or enhanced
growth because of accessibility to more nutrients such as iron from the dead S. aureus cells [53].
The magnitude of fluorescence of mCherry or GFP obtained was minimal when the mixed-species
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bacterial cultures were treated with each phage cocktail alone. The fluorescence magnitude and
bacterial cell population obtained during AB-SA01+AB-PA01 and gentamicin treatments were similar;
the fluorescence records are low; the fluorescence graphs are overlapped and remained at their
lower levels throughout the experiment period, and bacterial population recovered at the end of the
experiment is minimal or none. This finding shows that treatment with each phage cocktails separately
or in combination produced a similar effect to gentamicin treatment in planktonic mixed-species culture.
Our experiments also demonstrated that bacterial density could be estimated, and the treatment
effect evaluated in mixed-species cultures through fluorescence spectrophotometry using different
fluorescent proteins-labelled bacterial species.

The magnitude of fluorescence detected in the untreated mixed-species culture was lower
compared to untreated single-species cultures, which might be attributable to competition between the
two bacterial species [21-23]. All these decreased or increased fluorescence detected were strongly
associated with the decreased or increased colony count results, respectively. Our observations support
previous reports that show the magnitude of fluorescence, absorbance, and colony count results are
supplementary to one another in characterizing bacterial growth [54,55].

The magnitudes of fluorescence obtained from the three replica wells across the three independent
experiments on different days with the same protocol were similar, demonstrating reliability of the
method and reproducibility of results. The decrease in fluorescence of treated samples is consistent
with efficient bacterial cell lysis by the host-specific phage cocktail as measured through colony
count. This result agrees with a study that compared the fluorescence with a CFU count method
in single-species culture [26]. In the mixed-species planktonic cultures of clinical isolates, treatment
with each phage cocktail alone caused a significant (p < 0.001) decline of the target bacterial host
population. Treatment with a combination of AB-SA(01 and AB-PAO1 also resulted in a significant
(p < 0.05) decrease in cell density of both bacterial species. Our findings are similar to a study that
showed planktonic E. coli grown in co-culture with Salmonella enterica did not survive attack from
E. coli specific phages [56].

Mixed-species biofilms are complex communities that affect the physiological state of host
bacterial cells and the availability of phage receptors, possibly due to competition with other bacterial
species [14,39]. Our findings of mixed-species biofilm treatment show that the effect of both phage
cocktails separately and in combination, AB-SA01+AB-PA01, significantly (p < 0.05) reduced the
target bacterial host population. The effect of these phage cocktails was lower in biofilm than in
planktonic states of their hosts, which agrees with previous reports [35,39,57-59]. Possible explanations
include: the complex extracellular biofilm matrix may reduce the efficacy of phages because of
entrapment of phage particles [57], reduced multiplication of phages due to the large proportion of
metabolically inactive host cells in biofilms [60], or shedding of phage receptors from the host bacteria
in biofilms [61]. It might also be partly explained by the fact that dead cells resulting from phage
attack might support surviving bacteria through serving as a nutrient reservoir and providing a shield
from phage attack by phage binding to receptors on dead bacteria [62]. Tetracycline treatment showed
superior bacterial population reduction, on both bacterial species, compared to the phage cocktail
formulations used in this study. Our finding is consistent with a previous report that showed the
application of philPLA-RODI, philPLA-C1C, and the combination of the two phages is more efficient
in the planktonic phase than that in biofilms phase during S. aureus IPLA16 and S. epidermidis LO5081
mixed-species cultures [39].

In this study, we noted that phage cocktails applied to mixed-species biofilms could effectively
reduce bacterial host populations. We did not observe the protection of susceptible bacterial hosts from
phage attack in mixed-species biofilms by non-susceptible bacteria. This observation is consistent with
some studies [34,40]. However, it is in contrast with a previous phage treatment study that concluded
the structural heterogeneity of the biofilm from mixed-species produced pockets of unreachable
susceptible bacteria [63]. Because we found significant bacterial host cell reduction during each
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phage cocktail treatment in mixed-species biofilm, protection from lysis for the target bacteria by the
non-susceptible bacterial host cannot be assumed [40].

Our bacterial count data are in line with previous findings of biofilms infected with phages
for 24 h and more extended periods [63,64]. Overall, our results confirm that lytic phages can be
efficient in mixed-species planktonic and biofilm states. This study also demonstrates the feasibility of
in vitro real-time monitoring of the efficacy of phage treatments using fluorescently labelled bacteria in
mixed-species cultures through spectrophotometry, which is a simple, rapid, and reliable procedure.

5. Conclusions

Our findings suggest that the use of phage cocktails in mixed-species planktonic or biofilm
state could provide practical alternatives to antibiotics in combating antibiotic-resistant infections.
The association between the decrease or loss of fluorescence during real-time monitoring of the effect of
phage cocktails with the decrease in numbers of bacterial cells as measured by colony counts, across the
three replicas and three experiments in different days with the same protocol, shows the effectiveness of
the phage cocktail treatments in vitro and repeatability of the results. The present study findings show
that phages can reduce the host bacterial cell population significantly from planktonic and biofilm
states. The lytic efficacy of AB-SA01, AB-PA01, and their combination on antibiotic-resistant bacterial
hosts in mixed-species planktonic and biofilm phases is a clear indication of the potential of phages to
mitigate antibiotic-resistant infections.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/5/559/s1,
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cocktail treatment of the selected bacterial isolates
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