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Abstract: The Brazilian Cerrado fauna shows very wide diversity and can be a potential viral reservoir.
Therefore, the animal’s susceptibility to some virus can serve as early warning signs of potential
human virus diseases. Moreover, the wild animal virome of this biome is unknown. Based on this
scenario, high-throughput sequencing contributes a robust tool for the identification of known and
unknown virus species in this environment. In the present study, faeces samples from cerrado birds
(Psittacara leucophthalmus, Amazona aestiva, and Sicalis flaveola) and mammals (Didelphis albiventris,
Sapajus libidinosus, and Galictis cuja) were collected at the Veterinary Hospital, University of Brasilia.
Viral nucleic acid was extracted, submitted to random amplification, and sequenced by Illumina
HiSeq platform. The reads were de novo assembled, and the identities of the contigs were evaluated
by Blastn and tblastx searches. Most viral contigs analyzed were closely related to bacteriophages.
Novel archaeal viruses of the Smacoviridae family were detected. Moreover, sequences of members
of Adenoviridae, Anelloviridae, Circoviridae, Caliciviridae, and Parvoviridae families were identified.
Complete and nearly complete genomes of known anelloviruses, circoviruses, and parvoviruses were
obtained, as well as putative novel species. We demonstrate that the metagenomics approach applied
in this work was effective for identification of known and putative new viruses in faeces samples
from Brazilian Cerrado fauna.

Keywords: Beak and feather disease virus (BFDV); chicken anemia virus (CAV); Adenoviridae;
Psittacine adenovirus 3; Chapparvovirus; Gyrovirus; Norovirus; Smacoviridae

1. Introduction

Cerrado is a Brazilian savannah and one of the most diverse biomes in the world. However, it has
been threatened by livestock and agricultural crop production expansion. This fact endangers not just
local fauna but also adjacent biomes, such as the Amazon [1]. Associated with wildlife conservation,
environmental degradation is a problem for public health, since wild animals can serve as reservoirs or
intermediate hosts for new zoonotic pathogens such as viruses. Many zoonotic virus diseases have been
emerging or re-emerging, especially, those caused by alphaviruses (Chikungunya virus, Mayaro virus,
Madariaga virus) [2,3], bunyaviruses (Oropouche virus) [4], and flaviviruses (Zika, dengue, and yellow
fever viruses) [5]. In this scenario, the deforestation can increase the contact between humans and
animals, inclusively vectors, contributing to the emergence of diseases outbreaks in different regions of
the world [6,7].
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In Cerrado, the wildlife-livestock—-human relationship is a reality [1]. Consequently, zoonoses
surveillance is an important measure to control possible emerging diseases. In addition to livestock
production, urban expansion brings another concern: the presence of pets, which includes exotic
animals and domestic rodents, birds, and pigs. Local fauna has potential to become pathogen reservoirs,
especially birds and rodents, that can spread zoonotic and non-zoonotic pathogens to these pets
since their domestic counterparts are probably more susceptible to infection by these pathogens [7,8].
In addition, it is well reported the contribution of exotic animals to human diseases, with many
examples of pathogens transmission, such as Salmonella enterica, Francisella tularensis, Chlamydophila
psittaci, and Pasteurella multocida [8,9]. These animals can introduce new species or strains in nature
and can harbor local isolates.

Most emerging diseases are zoonotic [10], so minimizing the contact between wild and non-wild
animals is necessary. Epidemiological surveillance with focus in native fauna is a way to identify
possible threats to humans and non-human animals that are hidden in reservoirs or that are as
yet unknown. To achieve this goal, metagenomics is a powerful tool. It is estimated that there are
approximately 1.67 million unknown viruses of key zoonotic viral families in mammal and bird hosts
and that 631,000-827,000 of them are potential zoonotic [11]. Considering this information and the
occurrence of new zoonotic emerging diseases in Brazil, the aim of this study was to perform a virus
metagenomic investigation to identify known and unknown viruses of faecal virome of birds and
mammals of Brazilian Cerrado biome.

2. Materials and Methods

2.1. Sample Collection

Faecal samples from seven specimens of birds (n = 4 Amazona aestiva, n =1 Sicalis flaveola, and n = 2
Psittacara leucophthalmus) and three specimens of mammals (1 = 1 Didelphis albiventris, n = 1 Sapajus
libidinosus, and n = 1 Galictis cuja) were collected early morning from the ground of the animal enclosures
and individually placed in sterilized plastic recipients, in the Veterinary Hospital of the University of
Brasilia in 2016. The animals showed clinical signs of apathy and were monitored. The samples were
transported refrigerated to the Laboratory of Virology of the Cell Biology Department at University of
Brasilia and stored in a freezer at —80 °C.

2.2. Viral Enrichment and Nucleic Acid Extraction

Faecal samples were grouped in two pools—one (Pool 1) with only birds (1- A. aestiva and
S. flaveola), and another (Pool 2) with mammals and birds (2- P. leucophthalmus, D. albiventris, S. libidinosus,
and G. cuja). They were resuspended and homogenized vigorously in Hanks’s balanced solution and
centrifuged at 2500% g for 90 min at 4 °C. The supernatant was filtered using a 0.45 um syringe filter and
ultracentrifugated on a 25% sucrose cushion at 190,000 g for 4 h at 4 °C. The pellets were resuspended
in TE buffer (10 mM Tris pH 7.4; 1 mM EDTA pH 8.0) and treated with 100 U of DNase I (Invitrogen,
Carlsbad, EUA) and 20 U of RNase A (Invitrogen, Carlsbad, EUA) at 37 °C for 2 h. The putative viral
RNA and DNA present in the resulting sample were extracted using the commercial High Pure Viral
Nucleic Acid Kit (Roche, Basel, Switzerland) following the manufacturer’s instructions.

2.3. Sequence-Independent Amplification of Viral Nucleic Acids

Random PCRs were performed prior to the metagenomic sequencing using a particle-associated
nucleic acid (PAN-PCR) approach [12]. For the extracted DNA, the first reaction was made in a final
volume of 50 pL, containing 5 pL (~500 ng) of template, 0.8 uM of the K-random-s primer (5’-GAC
CAT CTA GCG ACC TCC ACM NN MNM-3’), 0.2 mM of each dNTP, 1x PCR bulffer, 2.5 mM MgCl,,
and 1 U of Taq DNA polymerase (Invitrogen, Carlsbad, USA). Amplification PCR condition was: initial
denaturation cycle at 94 °C for 3 min, followed by 35 cycles at 94 °C for 50 s, 53 °C for 50 s, and 72 °C for
50 s, and final extension at 72 °C for 3 min. For generating products with the conserved region of the
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K-random-s primer, an extension reaction was performed using a Klenow fragment DNA polymerase
(New England Biolabs, NEB, Ipswich, USA) with 20 uL of template and 5 U of enzyme at 37 °C for 2 h.
A third reaction for the amplification of the products was done in a volume of 50 uL, containing 5 uL
of template, 0.4 uM of the K-s primer (5'-GAC CAT CTA GCG ACC TCC AC-3), 0.2 mM of each dNTP,
1 x PCR bulffer, 2.5 mM MgCl,, and 1 U of Tag DNA polymerase (Thermo-Fisher Scientific, Waltham,
EUA). Amplification condition was the same as above. For the extracted RNA, a cDNA synthesis was
carried out initially with 10 uL of RNA sample and 2.5 uM of the K-random-s primer incubated at
75 °C for 5 min, followed by a reaction with 200 U of M-MuLV (NEB, Ipswich, USA), 40 U of RNase
OUT (Thermo-Fisher Scientific, Waltham, EUA), 0.05 M of DTT, and 1 X M-MuLV buffer incubated at
90 °C for 10 min and at 42 °C for 1 h. Extension was also performed using a Klenow fragment DNA
polymerase (NEB, Ipswich, USA) at the same conditions as for the DNA products. Final PCR was
made in 50 pL final reaction volume containing 5 uL of cDNA, 0.4 uM of the K-s primer, 0.2 mM of
each dNTP, 1 x PCR bulffer, 2.5 mM MgCl,, and 1 U of Tag DNA polymerase (Thermo-Fisher Scientific,
Waltham, EUA). The amplified products were visualized by electrophoresis in a 1% agarose gel and
purified with the commercial Illustra GFX PCR DNA and Gel Band Purification Kit (SigmaAldrich,
San Luis, USA) following the manufacturer’s instructions.

2.4. Metagenomic Sequencing and Bioinformatics

The purified products were sheared and submitted to library construction using the TrueSeq
DNA Nano kit at Macrogen Inc. (Seoul, South Korea). High-throughput sequencing was performed
in Illumina HiSeq 2500 platform with 100 nt paired-end. Quality control of the reads was analyzed
in FastQC software [13]. Trimming quality and filtering were carried out with BBDuk tool [14] with
the removal of the adapters and primer sequences of right and left ends. The reads were de novo
assembled in Megahit v1.1.3 [15] and in SPAdes 3.13.0 [16]. The kmer sizes specified were 21, 41,
61, 81, and 99 bases, and 21, 33, 55, 77, and 99, respectively. The contigs were submitted to tblastx
search against to the RefSeq Virus database of the NCBI with E-value cutoff of 1e-10. False positives
were filtered using blastn search against to the non-redundant (nt) database with cutoff of 1e-20.
Reads sequences were deposited in SRA database with the accession number PRJNA556823.

2.5. Phylogenetic Analysis

Eukaryotic viral sequences obtained in this work were deposited in GenBank with
the following accession numbers—MN025529, MN025530, MN153802, MN175605, MN175606,
MN175607, MN175608, MN175609, MN175610, MN175611, MN175612, MN175613, MN175614,
and MN175615—and used to posterior phylogenetic analysis. Phylogenetics analysis was performed
for Adenoviridae, Anelloviridae, Circoviridae, Parvoviridae, and Smacoviridae families. Alignment
was carried out using the MUSCLE and ClustalW algorithm, and the trees were constructed by
Neighbor-Joining (NJ) and Maximum-likelihood (ML) methods in MEGA?7 [17], RAXML v8.2 [18] and
IQ-TREE v1.6.10 [19] software. The jModelTest v2.1.10 and ProtTest v3.0 tools were used to estimate
the best substitution models. Bootstrap was performed with 1000 replicates.

3. Results

3.1. Pool Information

Samples were divided into two pools. Pool 1 was composed by faecal samples of A. aestiva
and S. flaveola and pool 2 with P. leucophthalmus, D. albiventris, S. libidinosus, and G. cuja samples.
A. aestiva is a psittacine species that has a wide distribution in Brazil and can be found in different
natural habitats or as a pet. It occurs also in Argentina, Paraguay, and Bolivia. P. leucophthalmus,
a psittacine species, extends widely over South America and is common in some urban areas [20].
S. flaveola is a passerine found naturally in South America [21]. D. albiventris is a marsupial found in
Brazil, Paraguay, and Argentina, including urban areas [22]. S. libidinosus is a New World monkey
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endemic to Brazil that was recently found infected with Zika virus. It is found in Cerrado and Caatinga
biomes [23,24]. G. cuja, a carnivore, is a mustelid with broad distribution over South America [25].

3.2. Pool 1

Ilumina sequencing generated 22,586,752 and 25,049,662 paired-end reads for DNA and RNA
samples, respectively. Reads were concatenated in a single archive. Final number of trimmed reads
was 47,226,100. The contigs were de novo assembled using Megahit v1.1.3 and SPAdes 3.13.0 [15,16].
Megahit generated 22,986 contigs with average length of 813 nt and standard deviation of 2043.
Minimum and maximum contig lengths were 200 nt and 222,414 nt. SPAdes produced 27,311 contigs
with average length of 674 nt and standard deviation of 1003. Minimum and maximum contig lengths
were 100 nt and 59,423 nt. Contigs of both assemblers were concatenated and submitted to tblastx
search against RefSeq virus database and later to Blastn search against to the nt database. Contig with
blast search hits with animal viruses is represented in Figures 1A and 2A,B. A list of eukaryotic viral
contigs with significant tblastx hits and their GenBank accession numbers are shown in Table S1.

3.3. Pool 2

[lumina sequencing generated 22,992,728 and 28,478,188 paired-end reads for DNA and RNA
samples. Reads were concatenated in a single archive. Final number of trimmed reads was 51,332,426.
The contigs were de novo assembled using Megahit v1.1.3 and SPAdes 3.13.0 [15,16]. Megahit generated
2642 contigs with average length of 2113 nt and standard deviation of 5683. Minimum and maximum
contig lengths were 200 nt and 80,761 nt. SPAdes produced 4139 contigs with average length of 1450 nt
and standard deviation of 3785. Minimum and maximum contig lengths were 100 nt and 62,492 nt.
The concatenated contigs were submitted to tblastx search against RefSeq virus database and later to
Blastn search against to the Nucleotide database. Viral contigs classification is represented in Figures 1B
and 2C,D. A list of eukaryotic viral contigs with significant tblastx hits, and their GenBank accession
numbers are shown in Table S2.

Anelloviridae 17% Adenoviridade 60%

Adenoviridade 23%
Caliciviridae 2%

Circoviridae 12%

Poxviridae 9%

Caliciviridae 2%

Circoviridae 6%
Herpesviridae 4%

Herpesiridae 18% Parvoviridae 28%

. Parvoviridae 16%
Iridoviridae 3%

A) B)

Figure 1. Percentage of the contigs with blast search hits with animal viruses classified in families of
pool 1 (A) and pool 2 (B) assembled using Megahit v1.1.3 and SPAdes 3.13.0 and filtrated by final tblastx.
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Viruses n=1417 Viruses n=1573

Viruses n=492 Viruses n=512

Eukaryotic and archaeal viruses

B Bacteriophages

Figure 2. Viral contigs classification (bacteriophages, eukaryotic and archaeal viruses) represented by
pie charts. A: contigs of pool 1 assembled using Megahit v1.1.3 and obtained by final tblastx filtration
(cutoff: 10e-10). B: contigs of pool 1 assembled using SPAdes 3.13.0 and obtained by final tblastx
filtration (cutoff: 10e-10). C: contigs of pool 2 assembled using Megahit v1.1.3 and obtained by final
tblastx filtration (cutoff: 10e-10). D: contigs of pool 2 assembled using SPAdes 3.13.0 and obtained by
final tblastx filtration (cutoff: 10e-10).

3.4. Adenoviridae

Adenoviridae is a family of non-enveloped dsDNA viruses with non-segmented linear genome of
2648 kilo-base pair (kb or kbp) in size. It is currently divided into five genera [26]. They are involved
in many respiratory and gastrointestinal animal diseases and are included in surveillance programs
given their importance in public health [27,28]. Adenovirus-like sequences close to Aviadenovirus
and Atadenovirus genera were detected in pool 1. The same genera were detected in pool 2 besides
Mastedonovirus. It is the viral family from both samples with the greatest number of viral contigs
obtained. Amino acid identity ranges from 32.9% to 92.7% for pool 1, with contig length varying
from 266 to 2606 nt, and 42.1% to 100% for pool 2, with contig length varying from 115 to 20,267 nt.
Phylogenetic analyses were performed using DNA polymerase and hexon amino acid sequences
of aviadenoviruses and atadenoviruses obtained from pool 2, including the most closely related
sequences identified by tblastx search (Figures 3 and 4). For hexon amino acid sequence, pairwise
identity between contig NODE 39 and Northern Aplomado falcon adenovirus (AAV90966.1) was
73.9%. For contig k119 2350 and psittacine adenovirus 3 (Psittacine atadenovirus A) (YP_009112724.1),
97.6%. For contig k119 1050 and Duck atadenovirus A (NP_044710.1), 64.5%. DNA polymerase amino
acid sequence pairwise shows identity of 90.2% between contig k119 2155 and psittacine adenovirus 3
(YP009112716.1). For contig k119 380 and Fow! aviadenovirus A (AP_000410.1), 61.7% of amino acid
identity. For contig k119 1050 and Duck atadenovirus A (NP_044710.1), 49.1% (Table 1). Schematic
genome representation of three novel putative adenovirus species is shown (Figure 5).
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Figure 3. Neighbor-joining tree based on hexon protein amino acid sequence of (~900 aa)

25 aviadenovirus and atadenovirus sequences. The tree is midpoint rooted and was built in MEGA7

software using Jones-Taylor-Thornton (JTT) substitution-rate matrix with gamma distribution (+G)

in accordance to ProtTest v3.0 analysis. Alpha shape parameter was estimated, and bootstrap was

performed with 1000 replicates. Adenovirus sequences identified in this study are labeled in bold type.

GenBank accession numbers of the viral sequences are shown in parentheses.

100 Psiftacine atadenoviras A (MN025529)

Fiffacine atadenovirus ACYP_009112716.13
100

Duck atadenovirus ACHP_044702.1)

58 100 Lizard atadenovirus A (YP_009051654.1)

Swake atadenovirus A (YP_001552247 1y

74

Chiine atadenovirus D (HP_659515.1)
Bovine atadenovirus D (HP_077389.13

Deer atadenovirus A(YP_009414573.1)

100 Figeon aviadenovirus B (YP_009310420.1)

Figeon aviadenovirus A(YF_009047004.1y

5] Sowihern psi al Hihal i irus (MIN153802)
Fsiffacine aviadenovirus B(YP_009502600.1)

41 Turkey aviadenovirus B(YP_003933581.1)
Tirkey aviadenovires D(VP_008719853.1)

-Fowl aviadenovirus ACAP_000410.1)

10a Fowl aviadenovirus C (YP_004346921 1)

’7Turkey aviadencvirus O (YP_O08719820.1)
N Fowl aviadenovirus E (YP_004191813.10
Fowl aviadenovirus D (MP_050281.1)
Fow! aviadenovirus BE(YP_00T985646.1)
Dueck aviadenovirus B (YP_009047155.1)
100 Goose aviadenovirus A (YP_006383556.1)

0&

Afadenovirus

Aviadenovirus

Figure 4. Maximume-likelihood tree based on DNA polymerase protein amino acid sequence (~1300 aa)

of 22 aviadenovirus and atadenovirus sequences. The tree is midpoint rooted and was built in RAXML

v8.2 software using Le and Gascuel (LG) substitution-rate matrix with gamma distribution (+G) and

invariant sites (+I) in accordance to ProtTest analysis. Bootstrap was performed with 1000 replicates.

Adenovirus sequences identified in this study are labeled in bold type. GenBank accession numbers of

the viral sequences are shown in parentheses.



Viruses 2019, 11, 803

Table 1. Adenovirus-like contig ID identified from pool 2 and used for phylogenetic analyses with their respective pairwise identities.

. GenBank . . Pairwise Identity Pairwise Identity
Pool Number Contig ID Accession Number Virus Name Closely Related Virus Type (Hexon aa) (DNA Polymerase aa)
. . Duck atadenovirus A o o

2 k119 1050 MNO025530 Amniota adenovirus 1 (NP_044710.1) 64.5 %. 41.9 %
. . Psittacine adenovirus 3 o

2 k119 2350 MNO025529 Psittacine adenovirus 3 (YP_009112724.1) 97.6 % —
. . Psittacine adenovirus 3 o

2 k119 2155 MNO025529 Psittacine adenovirus 3 (YP009112716.1) — 90.2 %
Southern psittacara Fowl aviadenovirus A

2 k119 380 MN153802 leu§ophtha%mus (AP_000410.1) — 61.7 %

aviadenovirus

Southern psittacara

2 NODE 39 MN153802 leucophthalmus Ao i/l e 73.9 % —

aviadenovirus

adenovirus (AAV90966.1)

7 of 23
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Figure 5. Schematic genome representation of three adenoviruses. A:inblue, a possible new adenovirus,
the proposed southern psittacara leucophthalmus aviadenovirus with nearly complete genome obtained
(~35 kb). B: in green, nearly complete viral genome sequence of the proposed psittacine adenovirus 3
isolate BR_DF (~30 kb). C: in red, a putative new species with partial genome, the proposed amniota
adenovirus 1 (~18 kb).

3.5. Anelloviridae

Anelloviruses are non-enveloped viruses with negative sense and circular ssDNA genome with
2.1-3.9 kb in size. They have a wide distribution in human population and were found in different
vertebrate species, including birds and mammals [29]. Anellovirus-like sequences are present only
in pool 1. Most contigs were related to ORF1 of Seal anellovirus 4 after tblastx search. Their amino
acid identity varied from 33.3% to 52.5% and sequence length from 425 to 2659 nt. Contig sequences
closer to giant panda anellovirus, Torque teno canis virus and Torque teno sus virus k2b, showed amino
acid identities of 34.4%, 36.0% to 39.8%, and 52.5%, with lengths of 882 nt, 962 to 1250 nt, and 555 nt,
respectively. Chicken anemia virus, avian gyrovirus 2, and gyrovirus GyV3 species were also detected
(Figure 6A). ORF1 nucleotide sequence was used for phylogenetic analyses since it is used as species
demarcation criteria (Figures 7 and 8). Between chicken anemia virus isolate (contig k199 16753)
and closely related isolate strain CL37 (JQ308213.1), nucleotide identity was 98.8%. Nucleotide
identity between contig k119 6992 and most closely related avian gyrovirus 2 isolate (KX708510.1)
was 98.8%. Between contig k119 6843 and most closely related gyrovirus GyV3 (MG366592.1) was
99.4%. For contigs NODE 177, NODE 986 and NODE 1090, identity with giant panda anellovirus
(MF327552.1) was 54.6%, 50.7% and 51.7% respectively (Figure 6B) (Table 2). A phylogenetic tree was
constructed including just gyroviruses sequences. Another phylogenetic tree was built with the main
genera of Anelloviridae family and unclassified closely related anelloviruses.
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Brazilian bird anellovirus type 3

CAV isolate BR_DF

Chicken anemia
Virls

(~2.3 kb)

Ciant panda
anellovirus VP
(-2 kb)

Avian gyrovirus 2 isolate BR_DF
and ..
Gyrovirus Gyd3 isolate BR_DF Brazilian bird anellovirus type |

and

A) B) Brazilian bird anellovirus type 2

Figure 6. Genome representation of known and novel anelloviruses. A: In blue, ORFs VP1, VP2 and
VP3 of the prototypic gyrovirus, chicken anemia virus (CAV), and, in brown, the proposed CAV isolate
BR_DF (contig k199 16753), avian gyrovirus 2 isolate BR_DF (contig k119 6992) and gyrovirus GyV3
isolate BR_DF (contig k119 6843). B: In brown, the proposed Brazilian bird anellovirus type 1, type 2
and type 3 (contigs NODE 177, NODE 986 and NODE 1090, respectively) and, in blue, ORFs VP1, VP2,
and VP3 of the closely related giant panda anellovirus.

Eyvian gyrovirus 2 isolate 1506 1 (KET708503.1)

a1 Avian gyrovirs 2 isolate HLT1506-1 (K 708506.1)
62

L Livian gyrovirus 2 strain G17 (RI452213.1)
61 bsdan gyrovime 2 (NCO15306.1)

‘(Avian gyrovins 2 strain BS/BRA 525 (M3346492 1)

i Avian gyrovirus 2

[ fovian gyrovins 2 isolate HLT1508 (KX 708510.1)

Avian gyrovirus 2 (MIN1T5606)

i ﬂrm'an gyrovires 2 HLI1510 (KET08507.1)
]

Avian gyrovirus 2 isolate 5531 (KX168250.1)

Gyrovirms GwW3 strain G19 (KMW343009.1)

100

‘ Gyrovirus GyV3 (MIN173607)

100 Gyrovirus Gv3

Hi‘rywvims GyV3 isolate SDAT-1 (MG366592.1)
a5

Chyrorvirns GyW3 (JQ302210.1)

0.2

Figure 7. Maximum-likelihood tree based on ORF 1 nucleotide sequence (~1.4 kb) of 13 avian gyrovirus
2 and gyrovirus GyV3 sequences. The tree is midpoint rooted and was built in RAXML v8.2 software
using general time-reversible (GTR) substitution model with gamma distribution (+G) in accordance to
jModelTest v2.1.10 analysis. Bootstrap was performed with 1000 replicates. Anellovirus sequences
identified in this study are labeled in bold type. GenBank accession numbers of the viral sequences are
shown in parentheses.
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Figure 8. Maximum-likelihood tree based on ORF 1 nucleotide sequence (~2.3 kb) of 32 anellovirus.
The tree is unrooted and was built in IQ-TREE v1.6.10 software using transversion substitution model
(TVM) with gamma distribution (+G) and invariant sites (+I) in accordance to jModelTest v2.1.10
analysis. Bootstrap was performed with 1000 replicates, and values equal to 70 or more are represented
by asterisks. GenBank accession numbers of the anellovirus sequences identified in this study are
shown. Details about the sequences of the phylogenetic tree are shown in Table S3.

Table 2. Anellovirus-like contig ID identified from pool 1 and used for phylogenetic analyses with
their respective pairwise identities.

Pool Number  Contig ID Acceiie:r?ﬁfmber Virus Name Closely I;;ll::ed Virus Pairrgi:;if;‘ tity
1 k119 16753 MN175605 ChiCksir;lj‘S“emia Chiczgszgggij)" irus 98.8%.
1 k119 6992 MN175606 Avian gyrovirus 2 A"(ili;;gggglvéfll‘)s 2 98.8%.
1 k119 6843 MN175607 Gyrovirus GyV3 G({f[‘g;zg;giyl\)/ 3 99.4%
1 NODE 177 MN175608 anﬁfﬁﬁ‘rﬁ; ';’;;il Gia“taf\’/?;‘%@;g‘;lﬁ"irus 54.6%,
1 NODE 986 MN175609 anifﬁ)zvlﬁir; lt’;i ) Gianta{’/?;‘?i‘;;?;ﬂ‘)“’irus 50.7%
1 NODE 1090 MN175610 angfﬁ)zvlilrf; kt’;;‘i s Gia“t(ﬁj;‘;@;;ﬂ‘)"’ims 51.7%

3.6. Caliciviridae

Caliciviridae is a viral family composed of 11 genera of small non-enveloped viruses with
non-segmented, linear, positive-sense ssSRNA genome that ranges in size from 7.3-8.3 kb. Important
animal pathogens that cause enteric and respiratory diseases are included in this family [30,31].
Few calicivirus-like sequences were identified in pools 1 and 2. All the contigs were closely related to
Norovirus genus, specifically to norovirus GII and GI for pool 1 and norovirus GI for pool 2. Amino
acid identity ranged from 70.1% to 96.3 % and 79.7% to 80.3%, with small contigs length of 419 to
501 and 441 to 447 nt, respectively (Figure 9). VP1 and VP2 amino acid sequences were not included in
the phylogenetic analyses given the small contig length obtained.



Viruses 2019, 11, 803 11 of 23

MNODE_13126

MODE 15337

Figure 9. Norovirus genome representation with contigs NODE 15387 (MN175617) and NODE
13126 (MN175616) of pool 1 aligned to ORF1 and ORF2, that encode a polyprotein and capsid
protein, respectively.

3.7. Circoviridae

Recently submitted to taxonomic revision, circoviruses are small, non-enveloped viruses with
circular ssDNA genome ranging between 1.7-2.3 kb in size that belong to the circular rep-encoding
single-strand (CRESS) DNA virus group [32]. Vertebrate and invertebrate hosts have been described
for these viruses, affecting especially avian and swine with the smallest known animal viral pathogens
included in this group [33,34]. Circovirus-like sequences were detected in both pools and are closely
related to Circovirus genus, specifically to beak and feather disease virus (BFDV). Partial and complete
genome sequences were obtained. Amino acid identity ranged from 73.1% to 96.5% and contigs length
between 308 and 1999 nt. Phylogenetic analyses were performed considering genome-wide pairwise
identities as demarcation threshold in the group. Nucleotide identity between the isolate BR_DF
(contig k199 22721), from the present study, and closest isolate, BFDV-U_PL-543_2008 (JX221029.1),
was 94.9 % (Figure 10).

KPATIST51

AY5212351

BY¥521234.1
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FIaa59285.1

4

KP&TI574.1

AF311206.1

AF3112051

AVA50442 1
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Beak and feather disease = G — KCog0609.1
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Figure 10. Maximum-likelihood tree based on whole genome nucleotide sequence (~2 kb) of 15 BFDV
sequences. The tree is midpoint rooted and was built in IQ-TREE v1.6.10 software using Tamura-Nei
nucleotide substitution model (TrN) with gamma distribution (+G) and invariant sites (+I) in accordance
to jModelTest v2.1.10 analysis. Bootstrap was performed with 1000 replicates. Circovirus sequence
identified in this study are labeled in bold type. GenBank accession numbers of the viral sequences are
shown. In light green, the first complete genome sequence of a BFDV Brazilian isolate (MN175611),
with capsid and replication proteins represented.
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3.8. Parvoviridae

Parvoviridae is a viral family of small non-enveloped ssDNA viruses with non-segmented and linear
genome of 4-6.3 kb in size, involved in many clinical and subclinical animal infections. Itis divided into
subfamilies Densovirinae, found infecting arthropods, and Parvovirinae, that infect vertebrates [35,36].
For pool 1, the contigs length ranged from 319 to 4116 nt, showing amino acid identity from 28.9%
to 84.5% with other parvoviruses. For pool 2, length varied from 120 to 4425 nt and amino acid
identity from 44.0% to 84.8%. Viruses related to both subfamilies were present in pool 1 and are
closely related to Ambidensovirus, Iteradensovirus, Dependoparvovirus, and Chapparvovirus genera.
For pool 2, just viruses closely related to Parvovirinae (Dependoparvovirus and Chapparvovirus) were
detected. Three nearly complete genome sequences were obtained (Figure 11). The conserved NS1
protein amino acid sequence is a demarcation criterion for the group and was used for phylogenetic
analyses (Figure 12). The contigs k119 1463 and k119 15398 showed amino acid identity of 45.3%
and 44.9% to turkey parvovirus TP1-2012/HUN (AHF54687.1), respectively. The contig k119 1997
and adeno-associated virus (YP_009552823.1) showed 42.7% amino acid identity. On the other hand,
NS1 amino acid identity between k199 1463 and k119 15398 was 56.0% (Table 3).

A)
]
B)
T ]
Q)

v
w

Figure 11. Genome representation of three putative novel parvoviruses identified. A: Proposed
avian chapparvovirus (contig k119 1463) with conserved NS1 and VP1 sequences, and putative NP
(4425 nt). B: Proposed psittacara leucophthalmus chapparvovirus (contig k119 15398) species (4116 nt).
C: Proposed avian adeno-associated virus isolate BR_DF (contig k119 1997) with non- and structural
protein sequences (4642 nt).
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1D Muscovy duck adeno-associated virus

2D Goose parvovinus

Ambidensoviris 3D Adeno-associated virus £
Amdaparvevirus @ 4D Adero-associated vims
Aveparvovirns . SD Avian adeno-associated vims ATCC VR-865
Brevidensovirus 0 1C Turkey parvovirus TPL-2012/HUN
Bocaparvovirus 2C Tasmanian cevil-associated chapparvovirus 6
Copiparvovirus 3C Tasmamian devil-associated chapparvovirus 4
Ervihroparvevirus 4C Tasmatian devil-associated chapparvovins 5
Tieradensovirns 5C Chicken chapparvovims 2
Pensstyldensovirus . 6C Chicken chapparvovirus 1
Protoparvevirus . 7C Parvovirus partridge/PA147TTA/2008
Tetraparvovivis 8C Mouse kidrey parvovims

oc cevil happarvovims 2
10C Eidolon helvam parvovirus 2

11C Desmodus Tolumdus parvovirs

12C Rat parvovirs 2

13C Poreine parvovims 7

14C Tasmanian devil-associated chapparvovirzs 1

Figure 12. Maximume-likelihood tree based on non-structural protein 1 (NS1) amino acid sequence
(~800 aa) of 44 parvoviruses. The tree is unrooted and was built in IQ-TREE v1.6.10 software using
rtREV substitution-rate matrix with gamma distribution (+G), invariant sites (+I) and empirical amino
acid frequency (+F) in accordance to ProtTest analysis. Bootstrap was performed with 1000 replicates
and values equal to 70 or more are represented by asterisks. Chapparvoviruses are in darker grey.
Densovirinae and Parvovirinae subfamilies in light and less dark grey respectively. GenBank accession
numbers of the parvovirus sequences identified in this study are shown. Details about the sequences of
the phylogenetic tree are shown in Table S3.

Table 3. Parvovirus-like contig ID identified from pool 1 and 2 used for phylogenetic analyses with
their respective pairwise identities.

. GenBank . Closely Related Virus ~ Pairwise Identit
Pool Number  Contig ID Accession Number Virus Name y Type (NS1 aa) y
Avian Turkey parvovirus
1 k119 1463 MN175612 h . TP1-2012/HUN 45.3%
chapparvovirus (AHF54687.1)
Psittacara Turkey parvovirus
2 k119 15398 MN175613 leucophthalmus TP1-2012/HUN 44.9%
chapparvovirus (AHF54687.1)
Avian

1 K119 1997 MN175614 el SO SERESTRLSEl vl 42.70%

virus isolate BR_DF (LSS, )

3.9. Smacoviridae

Accepted very recently by ICTV, smacoviruses are a group of CRESS viruses with genomes
ranging from 2.3-2.9 kb. They were identified by metagenomics in vertebrate faeces and insects and,
so far, are not related to any animal disease. At present, the family Smacoviridae is divided into six
genera [37]. Smacovirus-like sequences were found just in pool 1. All of them were closely related to
Porprismacovirus genus, in which possible hosts include mammals and birds. Contigs length varied
from 620 to 3091 nt and replication-associated protein (rep) amino acid identity with other smacoviruses
ranged from 57.8% to 90.3%. Genome-wide identity between contig NODE 726 (MN175615) and the
closest smacovirus, Lemur associated porprismacovirus 1 isolate SF5 (NC_026320.1), was 67.3% (Figure 13).
Phylogenetic analyses were performed using genome-wide and rep amino acid sequence, since the
capsid protein (CP) and the replication protein have different evolutionary histories due recombination
in the family (Figure 14).
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Figure 13. Novel smacovirus, the proposed Avian associated porprismacovirus (MN175615),
represented in grey with Human feces smacovirus 2 as prototype for comparison.

1P Camel associated porprismacovirus |
2P Porcine associated porprismacovirus 5
3P Porcine associated porprismacovirus 4
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Figure 14. Maximum-likelihood tree based on replication-associated protein (rep) amino acid sequence
(~306 aa) of 28 smacovirus sequences. The tree is midpoint rooted and was built in RAXML v8.2
software using Le and Gascuel (LG) substitution-rate matrix with gamma distribution (+G), invariant
sites (+I), and empirical amino acid frequency (+F) in accordance to ProtTest analysis. Bootstrap was
performed with 1,000 replicates and values equal to 70 or more are represented by asterisks. Nodes
in grey area belongs to Porprismacovirus genus. GenBank accession number of the proposed Avian
associated porprismacovirus identified in this study is shown. Details about the sequences of the
phylogenetic tree are shown in Table S3.

4. Discussion

We applied a high-throughput sequencing method to investigate the faecal virome of specimens of
wild animals of Cerrado biome, birds (Amazona aestiva, Psittacara leucophthalmus, and Sicalis flaveola) and
mammals (Didelphis albiventris, Sapajus libidinosus, and Galictis cuja). Birds are considered important
reservoir hosts of emerging viruses. At least, new 73 viruses were discovered between 2012 and 2014
in this group of animals [38]. Until 2017, these novel described viruses were documented mainly in
wild birds, with Poxviridae, Herpesviridae, and Adenoviridae as the most reported DNA virus families
with veterinary importance [39]. Regarding to mammals, many investigations focus mainly on bats
species [40,41]. Canids [42] and rodents [43] are other groups commonly investigated. In the present
study, members of Adenoviridae, Anelloviridae, Circoviridae, Caliciviridae, and Parvoviridae families were
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identified. Aviadenovirus and Atadenovirus sequences were detected in pool 2. Phylogenetic distance of
DNA polymerase amino acid sequences greater than 5-15% is one of the several species demarcation
criteria in these genera [44]. Considering those criteria, some of our newly identified viruses may
merit establishing a novel species for them. By phylogenetic analyses, contig k199 2155 was grouped
with psittacine adenovirus 3 (Psittacine atadenovirus A) (Figure 4), showing 90.2% of amino acid
identity. Hexon sequence in contig k119 2350 also showed high amino acid identity (97.2%) with
psittacine adenovirus 3 and was also grouped together (Figure 3). Therefore, these sequences, contigs
k199 2155 and k199 2350, represent a new isolate of this virus, with nearly complete genome from
P. leucophthalmus (Figure 5B). The first description of psittacine adenovirus 3 was in 2014 in an outbreak
of avian chlamydiosis and human psittacosis in Hong Kong. In this occasion, it was supposed that this
adenovirus caused an immunosuppression that favored Chlamydophila psittaci infection in Amazona
farinosa parrots, resulting in transmission to humans [45]. No other identification was documented
since then.

Low amino acid identity of one hexon sequence in contig k119 1050 indicates a putative novel
adenovirus species more closely related to duck adenovirus 1 (DAdV-1) (Figures 3 and 5C), the proposed
amniota adenovirus 1. DAdV-1, is the etiologic agent of egg drop syndrome in gallinaceous birds,
a disease of great economic importance [46]. DNA polymerase amino acid pairwise identity of contig
k119 380 with the closest adenovirus identified, Fow! aviadenovirus A (FAdV-1) strain CELO, suggests
the presence of a novel species in P. leucophthalmus that we tentatively named southern psittacara
leucophthalmus adenovirus. Probably this species is closer to Falcon adenovirus 1 (FaAdV-1) analyzing
hexon amino acid sequence (contig NODE 39), however no DNA polymerase sequence of FaAdV-1
is available. This virus, first detected in Falco femoralis septentrionalis, is involved in severe infectious
disease in falcons, characterized by hepatitis, splenomegaly, and enteritis [47]. Further investigation is
necessary to evaluate pathogenic potential of this new virus [48,49].

Anellovirus-like sequences were also detected. Species and genus demarcation criteria in
Anelloviridae are based on ORF1 nucleotide sequence identity with cut-off values, respectively, of the
35% and 56% [50]. Three known anellovirus species were detected in pool 1, specifically belonging to
the genus Gyrovirus. This genus was recently reassigned from Circoviridae to Anelloviridae considering
genomic features of this group [51]. Until 2011, chicken anemia virus (CAV) was the only Gyrovirus
member identified. From that moment, several novel gyroviruses were characterized in humans
and birds [52-54]. Partial genome of CAV was found in the present study. This virus is responsible
for economic losses in poultry industry since it has tropism for bone marrow-derived cells, causing
anemia and immunosuppression [55]. It was thought that CAV has chickens as only natural host,
although antibodies in Coturnix japonica were detected [56]. Thus far, no other domestic or wild bird
was associated to this virus [57]. This is the first report to characterize the presence of CAV in wild
birds. By maximum-likelihood and neighbor joining analyses, this novel isolate is most closely related
to Brazilian isolates (personal observation). CAV is also reported in mouse, dog, cat, and human
faeces, besides human blood [58,59]. However, pathogenesis was not determined for these species.
Nearly complete genome of avian gyrovirus 2 (AGV2) was obtained. AGV2 was the second member of
Guyrovirus described and was first found in sick chickens in the south region of Brazil [60]. It was also
identified in chickens with neurologic symptoms in South Africa and involved in infections of healthy
people and transplant and HIV-positive patients [61,62]. This is a virus with worldwide distribution
and with potential pathogenic importance [61-63]. The present isolate belongs to group A and is more
closely related to the Chinese isolate HL]J1508 than Brazilian isolates, suggesting different origins of
AGV2 in Brazil (Figure 7) [63]. AGV2 was also identified in chickens, ferrets and humans [60,62,64].
This is the first description of this virus in wild birds. Nearly complete genome of gyrovirus GyV3
was obtained (Figure 6A). This species was described in humans in Chile, in chickens in China and in
ferrets in Hungary, all showing signs of disease [52,64,65]. This is the first report of GyV3 in Brazil.
The present isolate is phylogenetically closer to the Chinese isolate SDAU-1. A possible association is
supposed between this virus and the transmissible viral proventriculitis (TVP) disease in chickens and
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diarrhea in children [52,64,65]. Additionally, ORF1 nucleotide sequence of contigs NODE 117, NODE
986 and NODE 1090 showed low identity to the closest viral species, giant panda anellovirus (GpAV),
and between them. Therefore, three probable novel anelloviruses species were identified in this study,
the proposed brazilian bird anellovirus type 1, brazilian bird anellovirus type 2, and brazilian bird
anellovirus type 3, respectively. Considering the expected genome size of the group, it is probably
that contigs NODE 117 and NODE 986 sequences represents nearly complete genomes (Figure 6B).
These viruses are related to a clade of unassigned members that includes GpAV, and feline anellovirus
strain FelineAV621 [66-68] (Figure 8). Since the contigs were obtained from pooll, all the anellovirus
sequences have origin in a neognath bird.

Circoviridade was other viral family identified. The cut-off criterium for species demarcation
in this family is 80 % complete genome nucleotide sequence identity [44]. BFDV was identified
in pool 1, with A. aestiva as probable host. BFDV is responsible for a common and fatal disease
in psittacines characterized by symmetric and progressive feather dystrophy and beak deformities,
with no commercial vaccine available [69,70]. In its acute state, it has a high mortality rate, and,
in chronic form, birds usually die by secondary infection caused by viral immunosuppression [71].
It has worldwide distribution and is a threat to psittacine conservation and the market of wild birds,
especially in Brazil, that harbors great biodiversity of these species [72]. Although the first report in
the country dates to 1998, there is few epidemiologic information about circulating viral isolates in the
country [73]. Besides, BFDV shows higher mutation rate than other DNA viruses, which rate is similar
to RNA viruses. In addition, the recombination is frequent in this species, specifically in the 3" end of
the Cap gene and intergenic region. These mechanisms can explain host diversity and help to support
that probably all psittacines can be infected [33]. The present study describes the first complete genome
sequence of a BFDV isolate in Brazil. Phylogenetic analysis, performed by clusters using CD-HIT
4.8.1 [74], indicates that the Brazilian isolate is closer to the Poland isolate, BFDV-U_PL-543_2008,
with no recombination event detected using RDP4 v.4.96 (Figure 10) [75]. Additionally, a point mutation
was observed that changes a cytosine (C) to a thymine (T) and drives an ochre stop codon, producing
a truncated capsid protein. Further investigation is necessary to explain the evolutionary history of
BFDV in A. aestiva host.

Noroviruses-like sequences were found. Members of genus Norovirus are especially known to
cause gastroenteritis in humans and other hosts. Based on VP1 amino acid sequence, this genus is
divided in seven genogroups [76]. GI, GII, GIV, and GVI infect humans, with just GI infecting solely
this group [77,78]. In GII, there are viruses able to infect pigs [79]. In GIV, dogs, cats, and lions are
hosts [80-82]. In GVI, dogs are infected [83]. Another genogroups, GIII, GV, and GVI], are thus far only
associated to non-human animals, specifically ruminants (bovines and ovines), murines, and dogs,
respectively [84]. Identification of noroviruses in animals raises concern about their zoonotic potential.
However, cross-transmission between animals and humans has not been documented. Some evidences
support human norovirus (HuNoV) infection in dogs based on the ability of virus attachment to the
histo-blood group antigens (HBGAs) receptor and the presence of HuNoV-specific antibodies in these
animals, although it was not assigned any clinical disease. Recently, HuNoV GII was identified in wild
birds, raising the possibility of these animals being involved in virus transmission [31]. Contigs of
small length in pool 1 showed identity to norovirus GII and norovirus GI (Figure 9). However, due to
their small size, we could not confirm which viral genogroups were present in our samples. This is
the second report of putative noroviruses in birds documented, suggesting these animals as potential
reservoirs [31].

Contigs with nearly complete or complete genome sequences from three putative novel species of
the family Parvoviridae were obtained. Two of them belongs to Chapparvovirus, a novel genus but
not recognized by ICTV, so far. The first species of this group identified, Eidolon helvum parvovirus
2 (EhPV-2), was found in throat swabs of Eidolon helvum fruit bats in Africa in 2013, but the genus
was proposed just in 2017 with Porcine parvovirus 7 (PPV7) identification in lung tissues of pigs in
China [85,86]. Chapparvoviruses were also found in turkey, rat, Tasmanian devil, chicken, red-crowned
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crane, and mice faeces, rectal swab of pigs, in grey partridges, in Desmodus rotundus kidneys, and in
faeces of animals of the present study [87-94]. Screening whole-genome shotgun (WGS) sequences
assemblies, chapparvovirus endogenous viral elements (EVE) were identified in vertebrates and more
recently in invertebrates [94,95]. This shows that Chapparvovirus has a wide range of host species
and supports that vertebrate parvoviruses are not monophyletic as was commonly thought. Besides,
this genus includes potential pathogens such as the mouse kidney parvovirus (MKPV), which was
associated to chronic nephropathy, raising concern about the involvement of other chapparvoviruses in
diseases [96]. NS1 amino acid sequence identity is used as demarcation criteria for genus and species in
Parvoviridae family, with 30% identity as threshold to novel genus and 95.0% to species [44]. Thus, in the
present study, contigs k119 15398 and k119 1463 represent sequences from putative novel viral species,
with the proposed names for psittacara leucophthalmus chapparvovirus and avian chapparvovirus,
respectively (Figure 11). Contig k119 1463 was found in pool 1, therefore it is associated to a neognath
bird host. Contig k119 15398 was identified in pool 2 and, by phylogenetics analyses, was grouped
more closely to k119 1463, suggesting that a bird host, probably P. leucophthalmus, harbors this species.
Basal position of bird infecting chapparvoviruses can mean that a possible transmission between
vertebrates and arthropods occurred initially in this group. The other putative novel parvovirus,
the avian adeno-associated virus isolate BR_DF species (contig k119 1997), identified in pool 1,
belongs to Dependoparvovirus genus, that includes viruses that infect vertebrates, but replication in
the cell usually depends on another virus, called helper, commonly adenoviruses, herpesviruses or
papillomaviruses [97]. In the absence of the helper virus, the cell is nonpermissive and latent infection
is established with viral genome integration. Generally, dependoparvoviruses are not pathogenic and
are used as vectors for gene therapy (Figure 12) [98]. This novel species is closer to adeno-associated
viruses of birds supporting that a neognath bird is the host. Also, some contigs closely related to viral
sequences of Densovirinae subfamily were obtained due to the feeding habits of these animals.

CRESS viruses are a group of circular ssDNA viruses with a common origin that encode a replication
initiator protein (rep). Smacoviridae is one of the new families of the group that was recognized by
ICTV in 2018 and were thought until recently to have animals as possible hosts since all isolates were
identified in faeces or in abdominal of dragonflies by metagenomics analyses [37]. However, CRISPR
analysis of Candidatus Methanomassiliicoccus intestinalis identified smacovirus originated sequences,
which suggests that the host of smacoviruses are most likely archaea [99]. Analyses considering amber
codon usage also support this hypothesis. Species and genus criteria demarcation of Smacoviridae are
based on genome-wide and rep amino acid sequences with cut-off of 77.0% and 40.0%, respectively.
The low nearly complete genome sequence identity of contig NODE 726 with the closest smacovirus
identified (67.3%), Lemur associated porprismacovirus 1 isolate SF5 suggests the presence of a novel
species in pool 1, which belongs to the Porprismacovirus genus also analyzing pairwise amino acid
identity of rep (97.2%), the proposed avian associated porprismacovirus, that has a neognath bird as
probable host (Figures 13 and 14).

Brazilian fauna has wide diversity, but the animal virome is little explored. The present study was
able to identify known animal adenoviruses, anelloviruses, and circovirus. Also, novel putative species
of adenovirus, anellovirus, parvovirus, and smacovirus were found. Most sequences obtained belong
to non-enveloped ssDNA viruses with small genome (Anelloviridae, Circoviridae, and Parvoviridae).
This is in accordance to other metagenomic investigations of faecal viromes [100-102]. Additionally,
high-throughput sequencing using Illumina HiSeq 2500 platform with 100 nt paired-end allowed
the identification of not only complete or nearly complete small genomes but also relatively bigger
genomes, as observed for Adenoviridade. Some genomes were obtained in singles contigs. However,
regarding to RNA viruses, only calicivirus-like sequences were detected. This viral diversity was
characterized despite of the small number of animals sampled and shows how wild animals have
a complexity and little-known viral microbiome. Other studies support this scenario where small
sample sizes where applied, as the 201 CRESS DNA viruses isolates found associated to faeces of
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two capybaras (Hydrochoerus hydrochaeris) [100] and the potentially novel virus genomes described in
10 specimens of fur seals in Brazil (Arctocephalus sp.) [102].

Although the nucleotide sequences reported in this study do not comprise full genomes, this initial
characterization contributes to the knowledge of the viral populations that occur in wild animals from
South America and has identified potential novel viruses that may be of interest for future studies.
This is the first study to use high-throughput sequencing to explore the viral diversity of southern
hemisphere wild animals. The findings presented here are expected to help to understand how viral
infections in wild animals may impact the health of birds” population and its potential as sources of
viruses which may potentially infect other animal species.
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