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Abstract: The clinical severity and observed case fatality ratio of influenza A/H1N1pdm09 in India,
particularly in 2015 and 2017 far exceeds current global estimates. Reasons for these frequent and
severe epidemic waves remain unclear. We used Bayesian phylodynamic methods to uncover possible
genetic explanations for this, while also identifying the transmission dynamics of A/H1N1pdm09
between 2009 and 2017 to inform future public health interventions. We reveal a disproportionate
selection at haemagglutinin residue positions associated with increased morbidity and mortality
in India such as position 222 and clade 6B characteristic residues, relative to equivalent isolates
circulating globally. We also identify for the first time, increased selection at position 186 as
potentially explaining the severity of recent A/H1N1pdm09 epidemics in India. We reveal national
routes of A/H1N1pdm09 transmission, identifying Maharashtra as the most important state for the
spread throughout India, while quantifying climactic, ecological, and transport factors as drivers
of within-country transmission. Together these results have important implications for future
A/H1N1pdm09 surveillance and control within India, but also for epidemic and pandemic risk
prediction around the world.
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1. Introduction

In early 2009, a novel influenza A H1N1 (A/H1N1pdm09) virus emerged in Veracruz, Mexico
and California, USA and was responsible for the first influenza pandemic of the 21st century [1].
As a triple-reassortant influenza virus antigenically distinct from the former seasonal A/H1N1 [2],
the virus quickly spread around the world causing severe perturbations to health and surveillance
systems [3,4]. During the pandemic, estimated case fatality ratios (CFR) ranged from less than 0.001%
to 10% due in part to significant case under-ascertainment and the heterogeneity of case definitions
between countries [5]. However, a true geographic variation in CFR could not be excluded [6].
Furthermore, as diagnostic capacity was overwhelmed, laboratory confirmation of infection was largely
restricted to severe and fatal cases leaving estimates of total morbidity unknown. Studies have since
estimated approximately 24% (95% confidence interval: 20–27%) of the global population was infected
during the pandemic [7], while mortality was similar to that of a severe seasonal epidemic (~0.01%
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CFR) [8]. Consistent with past pandemics, A/H1N1pdm09 has continued to circulate around the world
seasonally every year since 2009, replacing pre-pandemic A/H1N1 strains [9,10], and co-circulating
with influenza A/H3N2 and influenza B viruses [11,12].

The first case of A/H1N1pdm09 in India was reported in May 2009 in the city of Hyderabad,
Telangana [13]. By December, widespread human-to-human transmission led to substantial morbidity
and mortality within the country [13,14]. Following a second epidemic wave in early 2010,
approximately 50,000 cases had been reported in India during the pandemic period with a reported
CFR of 6.1% [15]. In subsequent seasons, the annual incidence of H1N1pdm09 in India was low,
with approximately 5000 cases or less reported nationally each year. However, in 2015 and 2017,
widespread epidemics occurred with an estimated 43,000 and 39,000 cases reported, as well as
approximately 3000 and 2300 deaths respectively [16]. States particularly affected included Maharashtra,
Gujarat, Rajasthan and Madhya Pradesh, accounting for 75.6% (n = 2261/2991), and 72.1% (n = 1634/2266)
of all deaths nationally in 2015 and 2017. In some states, CFR of up 20% in 2015 and 30% in 2017 have
been reported. Reasons for these frequent and severe epidemic waves of A/H1N1pdm09 in India with
apparent high mortality remain unclear. Resource-constrained lower-middle income countries such as
India where access to quality health care might be limited have been associated with excess influenza
mortality [6,8,17], however ongoing reports of A/H1N1pdm09 associated mortality among otherwise
healthy adults aged under 65 years in India remains particularly unusual [18–20].

Emerging methods of data integration in Bayesian phylogenetics have provided new insights into
the evolution and dynamics of influenza A viruses [21–23], however the use of these methods have
yet to be applied to A/H1N1pdm09 in India. In this study, we aim to utilize these methods to explore
possible genetic explanations for the high severity and mortality of A/H1N1pdm09 in India. We also
aim to understand the temporal, population and transmission dynamics of A/H1N1pdm09 in India to
estimate potential case under-ascertainment and opportunities for outbreak control. Our results have
potential implications for predicting the future risk of influenza A/H1N1pdm09 severity and spread,
both within India and around the world.

2. Materials and Methods

2.1. Compilation of Sequence Datasets

We searched the Global Initiative for the Sharing All Influenza Data (GISAID) on 28 March 2018 for
all available haemagglutinin (HA) gene sequences sampled in India between 2009 and 2017 inclusive [24].
We identified 930 out of 1025 openly available sequences with collection date and location metadata publicly
available or available upon request from the uploading authors (Acknowledgment Table 1). Of those,
we considered only 625 to be of sufficient length for analysis (>1600 bp). We removed 12 sequences across
five State and Union Territories (S/UT) of India due to low sampling frequencies defined as less than two
sequences per 10 million population within the study period. This cut-off was selected through trial and
error with the purpose of maintaining sufficient sampling across the study period, without excessively
removing valuable data-points (sequences and locations). We aligned the final dataset of 613 sequences using
MUSCLE v.3.8 [25] in Geneious v10.1.2 [26] and manually inspected and trimmed the HA coding regions for
further analysis. Table 1 and Supplementary Figure S1 shows the spatial and temporal distribution of the
Indian sequence dataset. For comparative analyses with globally circulating sequences we searched GISAID
for all full length (>1600 bp) A/H1N1pdm09 HA sequences sampled during the same period with complete
region and date of sampling metadata. Excluding India, we identified 23,144 records. We removed 1935
records with duplicate isolate sources resulting in a final global dataset of 21,209 sequences aggregated to
one of ten regions roughly similar to a previous study [11]: Northern Asia (Mongolia and Russia), China,
Japan/Korea, Southern Asia/South-East Asia, Middle East/Western Asia, Africa, Europe, North America
(Central America and USA/Canada), South America, and Oceania. The spatial and temporal distribution of
the complete global A/H1N1pdm09 sequence dataset can be seen in Supplementary Table S1. To reduce
computational burden and limit the impact of sampling bias we created two independent sequence subsets
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(S1 and S2), randomly sampling up to 50 sequences per region-year as per previous studies [11,12]. Each
subset was aligned using MAFFT v1.3.7 [27] in Geneious v10.1.2 [26] and manually inspected and trimmed
as before.

Table 1. Haemagglutinin (HA) sequence dataset by year and State and Union Territories (S/UT) of
India included for analysis.

Year

S/UT (Population 106) 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total %

Assam (31.2) 4 4 1 11 20 3.3
Delhi (16.8) 10 4 7 14 6 2 20 63 10.3

Goa (1.5) 1 3 3 3 10 1.6
Haryana (25.4) 1 2 1 3 3 2 12 2.0

Jammu and Kashmir
(12.5) 1 2 8 29 7 11 58 9.5

Karnataka (61.1) 19 16 5 15 6 61 10.0
Kerala (33.4) 1 2 9 2 3 3 2 22 3.6

Madhya Pradesh (72.6) 4 8 4 5 5 18 44 7.2
Maharashtra (112.4) 42 8 5 54 66 6 53 8 242 39.5

Punjab (27.7) 1 2 4 7 1.1
Rajasthan (68.6) 3 1 3 5 6 18 2.9

Tamil Nadu (72.15) 5 2 2 6 1 16 2.6
Uttarakhand (10.1) 1 1 1 2 1 6 1.0
West Bengal (91.3) 3 5 26 34 5.5

Year Total 96 53 37 143 96 13 147 19 9 613 100.0

2.2. A/H1N1pdm09 Transmission within India

We used BEAUti v1.10 [28] to specify a discrete-trait phylogeographic model to estimate all possible
transitions between the 14 Indian S/UT included in our Indian dataset (n = 613). We selected a GTR+Γ4

substitution model with a relaxed clock based on preliminary path sampling and stone-stepping
sampling results [29,30] (Supplementary Table S2) and correlation (R2 = 0.81) between the sampling
time and root-to-tip divergence of HA [31] (Supplementary Figure S2). We ran four models
independently with 50 million Markov chain Monte Carlo (MCMC) generations sampling every
5000 steps. We inspected runs for similar convergence around the posterior using Tracer v1.6 [32].
We combined combined runs using LogCombiner v1.10 [28] after inspecting for similar convergence
around the posterior using Tracer v1.6 removing 10% each as burn-in [32]. Each model specified
a nonparametric Bayesian Skygrid tree prior [33,34] with 50 intervals as default to reconstruct past
population demographics. We produced maximum clade credibility (MCC) trees from the combined
posterior tree distribution using TreeAnnotator v1.10 specifying median node heights [28]. We used
SpreaD3 v0.9.6 [35] to calculate Bayes factors (BF) for each pairwise transition between the 14 S/UT
as well as to geospatially render the phylogeographic projections. We defined sufficient support for
transmission as a BF > 3 as per convention [36]. Higher levels of statistical support were defined
according to Supplementary Table S3 [37].

A single state, Maharashtra, accounted for 39.5% (n = 242/613) of the complete India dataset.
To compare and control for potential sampling in the dataset, we generated five unique subsets,
randomly sampling up to five sequences per location-year in location-years with greater than five
sequences, while leaving those with less than five sequences per location-year untouched. This created
a more equitable spatiotemporal distribution of sequences without removing under-represented
location-years (Supplementary Table S4). For each of the five random subsets, we specified an identical
discrete-trait phylogeographic model as above. We calculated BF for each pairwise transition as the
average between all five subsets using SpreaD3 v0.9.6 [35].
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2.3. Predictors of Transmission within India

We extended the phylogeographic model above using a generalized linear modelling (GLM)
framework to investigate the contribution of climactic, ecological, and demographic factors as potential
predictors of transmission [23]. Based on previously published studies [38,39], preliminary ecological
factors of interest included longitude, latitude, average temperature, and average precipitation.
Preliminary demographic predictors included average population growth, population density, gross
domestic state product (GDSP), and the percentage of S/UT population living in urban environments.
We also calculated aviation passenger flux as the average number of domestic passengers recorded
in all S/UT between 2009 and 2017 using data publicly available from the Indian Directorate General of
Civil Aviation [40]. After assessing for collinearity, the final GLM included S/UT population density,
average temperature, longitude, and passenger flux. We also included great-circle-distance between
each pair-wise location and sample size by S/UT to assess for potential sampling biases. We estimated
the mean posterior probability of each predictor’s inclusion in the model, BF, and the effect coefficient
using R as per [36,41].

2.4. Positive Selection Analysis

For the complete Indian sequence dataset (n = 613) we generated rate ratios of non-synonymous
to synonymous (dN/dS) mutations using Bayesian renaissance counting (BRC) implemented in BEAST
v1.10 [28] assuming three independent (1, 2, 3) codon partitions [42]. At each site, positive selection
was determined where the lower 95% Bayesian credible interval (BCI) was greater than one (dN/dS > 1).
Potential sites under selection were validated using both two-rate fixed effects likelihood (FEL) and
single-likelihood ancestor counting (SLAC) tests in HyPhy assuming a p-value threshold of 0.1 which
is convention [43,44]. For this, fixed MCC trees were generated with TreeAnnotator v1.10 [28] from
previous BEAST outputs. We also used BRC methods in BEAST v1.10 to compare dN/dS ratios at
significant sites in both global A/H1N1pdm09 datasets previously generated (S1 and S2). Due to
the significant number of taxa in both global datasets (2 × n = 4063), we first generated a posterior
distribution of 10,000 trees each at 100 million MCMC generations before inferring dN/dS ratios on
a fixed posterior of 500 trees after removing 50% burn-in similar to Bedford et al. 2015 [11]. For all
three datasets, relative H1 and H3 site numbering was determined using the influenza research
database’s (FluDB) HA Subtype Numbering algorithm [45] and residue frequencies at selected sites
was determined using Geneious v10.1.2 [26]. Selected sites within the HA structure (RCSB PDB ID:
4LXV [46]) were visualized with YASARA View v19.7.20 [47].

3. Results

3.1. CFR and Viral Population Demographics

In Figure 1a we show the inferred past population demographics of A/H1N1pdm09 in India
between 2009 and 2017 alongside the observed cases and deaths recorded each year [15,16],
and calculated the CFR (Figure 1b). The largest epidemic peak inferred as the effective population size
(Ne) of A/H1N1pdm09 (Figure 1a) can be seen in 2009 (Median Ne = 36.24; 95 BCI = 11.93 to 152.25)
concurrent with the global pandemic at the time. The second largest peak Ne can be seen in early 2015
(Median Ne = 25.58; 95 BCI = 13.74 to 54.90) with epidemic activity estimated to have begun in late
2014 (Figure 1a). A low Ne is seen in mid-2011 (Median Ne = 12.60; 95 BCI = 4.20 to 45.10) consistent
with the observed case data (Figure 1b) before consecutive Ne waves of similar height can be seen
in the years 2012 to 2014. Less than 1000 cases of A/H1N1pmd09 were reported nationally in 2014
(Figure 1b), however results of the demographic reconstruction suggest a typical seasonal epidemic
beginning in late 2013 before declining in mid-2014 (Figure 1a Arrow). A widening 95% BCI can
be seen in mid-2016 onward likely due to the reduction in taxa available for accurate demographic
inference (n = 28).
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Figure 1. (a) Bayesian Skygrid estimation of effective viral population size (Ne) of A/H1N1pdm09 in 
India between 2009 and 2017. Here, we show the mean Ne and respective 95% Bayesian credible 
interval (BCI) plotted in blue. (b) Official A/H1N1pdm09 case and death counts (left axis) reported 
by the National Centre for Disease Control in Delhi (NCDC) [15,16]. Calculated yearly case fatality 
ratios (CFR) with corresponding percentages shown (right axis). The arrow in Figure 1a points to the 
inferred seasonal epidemic in 2013/14, in contrast to reported cases in Figure 1b. 

3.2. dN/dS Selection Analysis and Amino Acid Variations 

Bayesian renaissance counting (BRC) identified 40 codon sites under positive selection given 
the uncertainty of the posterior phylogeny (95% BCI > 1.0). Six of these sites were also detected by 
both FEL and SLAC procedures assuming a fixed tree (Table 2). Site 222 (H1 numbering onwards) 
had the highest dN/dS ratio (13.42) followed by site 84 (8.14), 185 (4.50), and 256 (4.39). All validated 
sites detected in the complete Indian dataset, excluding 163, exhibited significantly higher dN/dS 
ratios given the 95% BCI determined by BRC compared to both international samples. Among the 
six selected sites, four (163, 185, 186 and 222) are located within the antigenic sites of HA (Ca, Cb, Sa, 
Sb). The relative structural positions of these six selected sites are visualized in Figure 2. The 
complete dN/dS results for both the Indian and International sequence datasets can be seen in 
Supplementary Tables S5 and S6. 

Table 2. dN/dS ratios of codon sites identified in India under pervasive positive selection relative to 
dN/dS ratios of two distinct international samples S1 and S2. 

Site (H3 a) Ag b 
India Taxa (n = 613) International (S1) International (S2) 

dN/dS 95% BCI dN/dS 95% BCI dN/dS 95% BCI 
84 (92) n/a 8.14 (5.68–10.92) 2.53 (1.69–3.45) 3.51 (2.33–4.79) 

163 (166) Sa 3.83 (2.68–5.35) 4.54 (2.98–6.38) 2.62 (1.79–3.68) 
185 (188) Sb 4.50 (3.18–6.21) 2.14 (1.41–2.94) 1.13 (0.76–1.54) 
186 (189) Sb 3.35 (2.26–4.51) 1.44 (0.97–1.94) 1.47 (0.93–1.97) 
222 (225) Ca 13.42 (9.43–18.42) 3.42 (2.30–4.81) 4.32 (2.87–5.85) 
256 (259) n/a 4.39 (3.12–6.09) 1.16 (0.74–1.58) 1.08 (0.75–1.48) 
a Relative H3 numbering determined by FluDB HA Subtype Numbering algorithm [45]. b Antigenic 
Domain (Ag). 

The frequency of residue changes (Datafile 1) at each detected site in India varied. Among the 
detected sites, S185T was the most frequently observed residue change (n = 473/613; 77.2%), followed 
by K163Q (n = 240/613; 39.2%), A256T (n = 231/613; 37.7%), and S84N (n = 160/613; 26.1%). Two 
residue changes, D222G and D222N, were observed in 3.1% (n = 19/613) and 1.6% (n = 10/613) of the 

Figure 1. (a) Bayesian Skygrid estimation of effective viral population size (Ne) of A/H1N1pdm09
in India between 2009 and 2017. Here, we show the mean Ne and respective 95% Bayesian credible
interval (BCI) plotted in blue. (b) Official A/H1N1pdm09 case and death counts (left axis) reported by
the National Centre for Disease Control in Delhi (NCDC) [15,16]. Calculated yearly case fatality ratios
(CFR) with corresponding percentages shown (right axis). The arrow in Figure 1a points to the inferred
seasonal epidemic in 2013/14, in contrast to reported cases in Figure 1b.

3.2. dN/dS Selection Analysis and Amino Acid Variations

Bayesian renaissance counting (BRC) identified 40 codon sites under positive selection given the
uncertainty of the posterior phylogeny (95% BCI > 1.0). Six of these sites were also detected by both
FEL and SLAC procedures assuming a fixed tree (Table 2). Site 222 (H1 numbering onwards) had
the highest dN/dS ratio (13.42) followed by site 84 (8.14), 185 (4.50), and 256 (4.39). All validated sites
detected in the complete Indian dataset, excluding 163, exhibited significantly higher dN/dS ratios given
the 95% BCI determined by BRC compared to both international samples. Among the six selected sites,
four (163, 185, 186 and 222) are located within the antigenic sites of HA (Ca, Cb, Sa, Sb). The relative
structural positions of these six selected sites are visualized in Figure 2. The complete dN/dS results for
both the Indian and International sequence datasets can be seen in Supplementary Tables S5 and S6.

Table 2. dN/dS ratios of codon sites identified in India under pervasive positive selection relative to
dN/dS ratios of two distinct international samples S1 and S2.

Site (H3 a) Ag b
India Taxa (n = 613) International (S1) International (S2)

dN/dS 95% BCI dN/dS 95% BCI dN/dS 95% BCI

84 (92) n/a 8.14 (5.68–10.92) 2.53 (1.69–3.45) 3.51 (2.33–4.79)
163 (166) Sa 3.83 (2.68–5.35) 4.54 (2.98–6.38) 2.62 (1.79–3.68)
185 (188) Sb 4.50 (3.18–6.21) 2.14 (1.41–2.94) 1.13 (0.76–1.54)
186 (189) Sb 3.35 (2.26–4.51) 1.44 (0.97–1.94) 1.47 (0.93–1.97)
222 (225) Ca 13.42 (9.43–18.42) 3.42 (2.30–4.81) 4.32 (2.87–5.85)
256 (259) n/a 4.39 (3.12–6.09) 1.16 (0.74–1.58) 1.08 (0.75–1.48)

a Relative H3 numbering determined by FluDB HA Subtype Numbering algorithm [45]. b Antigenic Domain (Ag).

The frequency of residue changes (Datafile 1) at each detected site in India varied. Among the
detected sites, S185T was the most frequently observed residue change (n = 473/613; 77.2%), followed
by K163Q (n = 240/613; 39.2%), A256T (n = 231/613; 37.7%), and S84N (n = 160/613; 26.1%). Two residue
changes, D222G and D222N, were observed in 3.1% (n = 19/613) and 1.6% (n = 10/613) of the Indian
sample respectively. Four residue changes could be observed at site 84; in descending order of
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frequency: S84N (n = 160/613; 26.1%), S84G (n = 66/613; 10.8%), S84I (n = 6/613; 1.0%) and S84D
(n = 2/613; 0.3%). Eight discrete changes were observed at selected site 186; in descending order of
frequency: A186T (n = 5/613; 0.82%), A186G (n = 2/613; 0.33%), and A186V (n = 1/613; 0.16%).
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Figure 2. Relative structural locations of A/H1N1pdm09 residues within the HA monomer under
positive selection in India. Sites under selection are highlighted in red and numbered without signal
peptide (H1 numbering). Letters in parentheses indicate sites located within the known antigenic
domains of HA1. (RCSB PDB ID: 4LXV).

3.3. Phylogeography of A/H1N1pdm09

In Figure 3 we show the spatio-temporal projection of definitive A/H1N1pdm09 transmission
(BF > 100) in India from 2009 to 2017 based on the most complete sequence dataset available (n = 613).
The corresponding phylogeographic MCC tree can be seen in Supplementary Figure S3. We observe
consistent historic transmission over time from Maharashtra to most S/UT included in our model,
spanning the entire latitude of India. The average of each of the five randomly down-sampled
datasets showed similar routes of transmission demonstrating connections from Maharashtra to most
S/UT (Supplementary Figure S4 and Table S7). Between the 14 S/UT modelled as discrete-traits,
we identified 30 supported (BF > 3) routes of asymmetric transmission out of a possible 182 unique
paths (Supplementary Table S8). Maharashtra was the most frequently implicated origin site for
transmission (n = 9/30; 30%) and the most supported (221,244 > BF > 199.23) followed by Karnataka
(n = 8/30; 27%), and Jammu and Kashmir (n = 4/30; 13%). Kerala was the most frequently implicated
destination for transmission (n = 5/30; 17%), followed by Jammu and Kashmir, Punjab, and Karnataka
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(n = 3/30; 10% each). Assam, Punjab, and Rajasthan were not supported sources for transmission
(BF < 1) but were variably implicated as destinations (n = 4/30; 13% and 1/30; 3% respectively).
Maharashtra was the only state implicated as a frequent source of transmission (n = 6/30; 20%) but
never as a destination.Viruses 2019, 11, x FOR PEER REVIEW 7 of 17 
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Figure 3. Phylogeography of definitive A/H1N1pdm09 transmission between S/UT in India since
2009. Paths between S/UT are coloured by inferred transmission time and directions indicated by
adjacent arrows. All routes shown are characterised by definitive statistical support (Bayes factor
(BF) > 100). Supported to very strongly supported routes (100 > BF > 3) are not shown but can be seen
in Supplementary Table S8.

3.4. Generalized Linear Modelling

Of the 11 demographic, ecological, and climactic factors included as predictors in the GLM,
seven were supported as either promoters or protectors of A/H1N1pdm09 transmission between the
14 S/UT modelled (Table 3). The most supported factor identified in the model was great-circle-distance
between any two pair-wise locations (BF = 269.3). As indicated by the negative model coefficient
(β| δ = −0.53), increasing distance between states was definitively protective of viral transmission.
Population density and average temperature by origin were also both protective of viral transmission
between S/UT, however with reduced support (BF = 8.93 and 4.69 respectively). In contrast, sample size
by origin was the most supported factor (BF = 237.2) and strongly correlated with definitive promotion
of viral transmission indicated by the positive model coefficient (β| δ = 1.46). Sample size by destination
was also implicated as a strong promotor of viral transmission (BF = 10.3). Other apparent promotors
of A/H1N1pdm09 transmission included aviation passenger flux both by origin and destination,
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and sample size by destination. Passenger flux by origin had the highest median effect size coefficient
(β| δ = 1.86) of all factors however the wide uncertainty of the 95% BCI means it might also be protective
(−0.46 to 2.95).

Table 3. Predictors of A/H1N1pdm09 transmission in India between 14 S/UT from 2009 to 2017.

Predictor E(δ) Probability (β| δ) Coefficient 95% BCI BF a

Distance 0.88 −0.53 −0.79 to −0.28 269.3
SS origin 0.87 1.46 0.96 to 2.12 237.2

P Flux destination 0.31 0.35 0.15 to 0.56 15.67
SS destination 0.22 0.26 0.11 to 0.42 10.03

Pop Dense origin 0.2 −1.43 −2.82 to −0.28 8.93
P Flux origin 0.14 1.86 −0.46 to 2.95 5.84

Average temp origin 0.12 −0.49 −0.8 to −0.18 4.69
a Predictors are ordered by decreasing significance (BF) and probability of inclusion (E(δ)) in the model as a measure
of the likelihood of impact on transmission.

4. Discussion

This study provides new insights into the high CFR and dynamics of A/H1N1pdm09 in India.
Using the most comprehensive A/H1N1pdm09 HA sequence dataset annotated with associated
temporal and spatial metadata available from India, our analysis has uncovered possible genetic
explanations for the apparent high CFR of A/H1N1pdm09 observed there. Case fatality ratios aim to
measure the individual risk of death among infected cases and are frequently used as a proxy for disease
severity within populations [48]. In India, yearly CFR for A/H1N1pdm09 have ranged from 3.6% to
23.3%, which is orders of magnitude higher than observed in other countries (Figure 1b). The true
CFR is certainly lower due to case under-ascertainment [48]. For example, in states with more than
100 reported deaths, the upper CFR range from 2009 to 2017 drops to 18.2% [19]. In order to roughly
determine the degree of possible case ascertainment issues affecting CFR estimates in India, we used
demographic reconstruction methods to infer the effective viral population size (Ne) of A/H1N1pdm09
through time. In contrast to official case counts which show little activity in the three years from 2012 to
2014 (Figure 1b) we infer sizable A/H1N1pdm09 epidemics in India occurring almost yearly (Figure 1a).
This suggests a high degree of case under-ascertainment during those years. Likely explanations for
this include the widespread circulation of mild or subclinical strains or increasing population immunity
to drifted but antigenically indistinguishable strains. In the absence of any significant changes to
surveillance and reporting guidelines however, the magnitude of cases and deaths therefore detected
in 2015 and 2017 suggests the emergence of antigenically novel A/H1N1pdm09 viruses. The acute
magnitude and severity of the 2015 season in particular was reflected extensively in the Indian media at
the time [49–51], and largely affected younger and middle-aged persons under 65 years and involved
the deaths of healthy people [18–20]. Clinicians working in intensive care reported severe clinical
manifestations and extensive ulceration of the trachea-bronchial tree on bronchoscopy (personal
correspondence, clinician round table). This is in contrast to other countries where post-pandemic
A/H1N1pdm09-predominate seasons have been relatively mild [52,53].

In our study we provide possible genetic explanations for the circulation of a severe A/H1N1pdm09
virus in India which has yet to be articulated in the literature. We provide evidence of increased
positive selection within the antigenic sites of HA (Figure 2) among Indian A/H1N1pdm09 strains
relative to globally circulating strains that could explain the severity of recent epidemics observed there
(Table 2). Progressive selection at HA antigenic sites (i.e., antigenic drift) is principally responsible for
the seasonal emergence of influenza A epidemics worldwide [54,55], and higher rates of selection at
antigenic sites are known to drive the increased frequency and severity of A/H3N2 epidemics [56].
Residue changes within the four antigenic sites of A/H1N1pdm09 HA (Sa, Sb, Ca and Cb) continue
to be detected worldwide [57] including S185T [58–60] detected in our study (Table 2; Sb domain).
Residue change S185T was observed in the majority of our extant Indian sample (n = 473/643; 77.2%).
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Increased selection at position 186 however has not previously been reported. Residue changes at
this position have been observed overseas among cases with severe disease concurrent with other
residue changes also detected in our study (Table 2) such as S185T and D222N/G [61–64]. Outside of
typical determinates associated with excess influenza mortality such as reduced access to health care
in India [6,8,17], selection at these sites together provide possible genetic explanations for the unusual
severity of recent epidemics in India. At site 186 particularly, the equivalent position in A/H3N2
viruses (position 189) is one of seven key positions within HA capable of generating antigenically
novel variants from a single residue change [65]. Therefore, residue changes at this site, such as A186T,
may constitute a new antigenic determinate of A/H1N1pdm09 severity. This could have substantial
public health implications for future epidemic prevention, control, and response within India, but also
for risk prediction around the world. However, the low frequency of residue changes at position 186
in our sample (n = 8/613; 1.31%) mean these mutations might also be sporadic. Yet, the robust evidence
for increased selection relative to internationally circulating A/H1N1pdm09 viruses (Table 2) suggests
an unusual situation could be occurring in India which warrants further investigation. Future studies
such as haemagglutinin inhibition (HI) assays will be necessary to provide empirical evidence of
the potential antigenic implications of residue changes at position 186 in A/H1N1pdm09 rather than
position 189 in A/H3N2.

Our analysis also detected significantly increased selection at positions 84 and 256, relative
to overseas viruses (Table 2). Along with position 163 which we found to be under increased
selection in India (dN/dS = 3.83; BCI = 2.68–5.35) but not significantly more than overseas
(Table 2: BCI = 1.79–6.38), residue changes at these positions such as S84N, K163Q, and A256T
(along with S185T mentioned previously) were frequently observed in our sample and are known
to be characteristic of clade 6B and 6B.1 (S84N) A/H1N1pdm09 strains [66]. Clade 6B viruses are
further defined by residue changes D97N and K283E in HA1, yet only position 97 and not 283
observed increased selection (dN/dS = 3.14; BCI = 2.06–4.33) relative to overseas H1N1pdm09 viruses
(Supplementary Table S5). Overall 36.1% (n = 221/613) of our sample comprised clade 6B H1N1pdm09
viruses, the majority (63.8%; n = 141/221) of which were collected in 2015 (Supplementary Table S9).
Clade 6B strains have been detected globally since 2012 [66] and our results show sporadic detection of
6B resides since then (Supplementary Table S9) contrary to previous analyses [67,68] which suggested
emergence in India in 2015. Notably, a previous study from 2014 found an association between clade
6B viruses with reduced immune responses among younger and middle-aged persons born after
1985 [69]. As the majority of sequences isolated during the severe 2015 season (96.1%; n = 141/147)
comprised of 6B viruses, the increased selection at these sites relative to overseas viruses (excluding
K163Q and K283E) provides additional explanation for increased morbidity and mortality observed
in India during that season. By 2017, 77.7% (n = 7/9) of the sequenced dataset was of clade 6B.1,
although there was little data available from that year. Following the widespread global circulation
of clade 6B and subclade 6B.1 (S84N, S162N, and I216T) residues, the A/H1N1pdm09 vaccine strain
was updated for the first time since 2009 (from A/California/7/2009 to A/Michigan/45/2015) during
the 2017–2019 Southern Hemisphere influenza seasons [70,71]. The 2019–2020 Northern Hemisphere
recommendation includes another updated A/H1N1pdm09 vaccine strain, A/Brisbane/02/2018 from
clade 6B.1A, which includes additional residue changes [72]. Since the uptake of the influenza vaccine
however remains low in India, the increased selection and significant emergence of clade 6B in 2015
and 6B.1 in 2017 could have contributed to the high morbidity and mortality observed there. Increasing
influenza vaccination rates should help to reduce the impact of future A/H1N1pdm09 epidemics
in India.

Finally, we calculated selection ratios at position 222 up to eight times greater than the equivalent
sample of globally circulating A/H1N1pdm09 (Table 2), the highest of all sites detected. Variants
at this position, particularly D222G/N are known to preferentially bind to α2,3-linked sialic acid
(α2,3-SA) receptors necessary for lower respiratory tract colonisation in humans [73,74] and have
demonstrated an associated 11% increase in morbidity and 23% increase in mortality in cases infected
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with D222G/N mutants [75,76]. Earlier studies had shown A/H1N1pdm09 strains circulating in India
in 2014 had acquired residue changes D222N in HA [77,78] although this was contested by the
National Institute of Virology in Pune [79]. In our sample of 613 Indian taxa we identified both G222
and N222 residues, albeit at low frequencies, 3.1% (n = 19/613) and 1.6% (n = 10/613) respectively,
and only once in 2015. Like position 186, the sporadic detection of residue changes at position
222 means the impact on the observed morbidity and morbidity in India is not clear. However,
the disproportionate increase in selection at position 222 (Table 2) further exemplifies the unusual
epidemiological situation in the country. Because short-term selection is a stochastic process [80]
but long-term is known to involve complex interactions between A/H1N1pdm09 evolution, host
response, and human behavior [54], the observed increase in pervasive positive selection in India could
therefore be the result of between-host transmission characteristics unique to the country and warrants
further investigation [54].

Overall the combination of increased selection for and circulation of clade 6B genogroups, increased
selection of known determinates of A/H1N1pdm09 severity such as D222N/G, and the identification of
potentially new antigenic determinates of severity such as A186T, together provides credible genomic
evidence that might explain the increased frequency and severity of A/H1N1pdm09 epidemics in India.
Seasonal surveillance of clade 6B residues (and related subclades), D222G/N, and residue changes at
site 186 may assist with the early detection of severe epidemics in the future.

Our study is also the first to simultaneously integrate GLM and Bayesian phylogeography analysis
methods to empirically quantify the transmission dynamics of A/H1N1pdm09 in India revealing
supported routes of A/H1N1pdm09 transmission. We have identified Maharashtra state as a key
location disseminating A/H1N1pdm09 to many S/UT including Rajasthan, Tamil Nadu, Delhi, Jammu
and Kashmir, Karnataka, Madhya Pradesh, West Bengal, Assam, and Kerala (Figure 3). These results
could have important implications for surveillance, risk assessment, and epidemic control strategies
including vaccination in the country, as they could also be generalisable for other influenza A viruses
such as A/H3N2 or other potentially pandemic variants that could emerge in the future. For example,
India, along with East and Southeast Asia has been shown to be a significant source for globally
circulating influenza A/H3N2 viruses [11]. The emergence of a novel pandemic influenza A strain
in India represents a significant health risk to the global population. Therefore understanding the
transmission patterns of influenza A within India allows for rapid risk assessment not only within the
country, but also risk assessment for subsequent spread around the world.

The identification of key climactic, demographic, and ecological factors associated with A/H1N1pdm09
transmission within India similarly indicates opportunities for targeted interventions during outbreaks that
could also be generalisable among S/UT not included in our model. For example, increasing distance between
S/UT was the most significant (BF = 269.3) factor identified as contributing to the model and was associated
with the prevention of transmission (Table 3). Other preventative factors while immutable included increasing
population density and average temperature by originating S/UT. This suggests that S/UT with lower average
temperatures are more likely to transmit A/H1N1pdm09 to other S/UT in India. This appears consistent with
previous biological evidence suggesting cooler temperatures are favourable for influenza transmission [81,82]
and the known seasonality of influenza in India where large temperature variations are observed between
Northern India and Southern India during winter [83,84]. High passenger flux by both origin and destination
was another factor shown to be on average predictive of transmission between S/UT in India, but the evidence
was inconclusive (Table 3). Taken together, public health decision makers might choose to prioritise efforts
restricting human movement between neighbouring S/UT, and potentially restricting key domestic flights
with high passenger flux.

Overall this study has some key limitations. First, sample representativeness is a limitation of any
epidemiological study, including phylogeography. Only 14 S/UT were included in our model due to
limited sample availability or unrepresentative sampling (five states with less than two sequences per
10 million population were removed). This includes less than half of the 36 S/UT in India. Ancestral
state reconstruction methods like those used by discrete-trait phylogeography can only generate
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inferences from traits assigned to the extant taxa. For example, no sequences were available from
Gujarat, which has been affected by particularly large outbreaks (approximately 7100 cases in 2015 and
7700 in 2017), meaning inferred transmission to and from Gujarat while perhaps expected, remains
unresolved in our model. Limited sample availability may also have the effect of exaggerating the
evidence of transmission between any two pair-wise locations in the model, for example, where Gujarat
or another unsampled state may have acted as intermediate locations for transmission. Sample size by
origin was also implicated as a predictor of transmission in the complete Indian dataset (n = 613), which
suggests sampling bias may be affecting our primary results. For example, Maharashtra was the most
highly supported location for transmission to other S/UT, but also had the most sequences available
(n = 242/613; 39.5%). Discrete-trait Bayesian phylogeography is known to be susceptible to sampling
bias and, in such cases, produces overestimates of origin support [85,86]. It is reassuring however that
the results from each of the five randomly down-sampled datasets showed not dissimilar evidence for
transmission from Maharashtra and other S/UT (Supplementary Figure S4, Table S7). Furthermore,
Maharashtra also endured the largest recorded outbreaks (approximately 8500 cases in 2015 and
6100 cases in 2017 [16]) and had the highest average number of domestic passengers between 2009
and 2017 [40] suggesting our primary results may in fact reflect the truth. However, measures of
transit between states in our GLM model only extended to domestic aviation. Other significant
means of interstate travel in India such as rail (nationally 8.1 billion passengers in 2017 [87]) was not
considered in our model due to the lack of S/UT transit data. We hypothesize that rail-travel would
have a significant effect on A/H1N1pdm09 transmission in India, particularly over short distances,
however the absence of this data does not affect the interpretation of our results. Rather, any effect of
rail-travel remains unresolved. Future studies could investigate the effect of rail-travel if state-based
data were to become available.

Lastly, only HA sequences were included in our analysis due to the limited availability of whole
A/H1N1pdm09 genomes from India. Residue variations among other genes such as Polymerase basic
protein 2 (PB2) have been shown to affect viral replication in other influenza A viruses such as A/H5N1
which are associated with increased morbidity and mortality [88]. We cannot know if other more
important residue changes may be driving the frequency and severity of A/H1N1pdm09 outbreaks
in India, rather than selection within HA. Future studies however could investigate selection pressures
and residue variations within PB2, among the other gene segments of influenza A.

5. Conclusions

Our findings have important implications in understanding the dynamics of influenza
A/H1N1pdm09 transmission and evolution in India which could inform future public health prevention
and control efforts in the country. We have identified increased selection pressure at multiple meaningful
HA residue positions including site 222 and clade 6B characteristic residues relative to internationally
circulating viruses that may explain the high CFR observed there, particularly the abnormally severe
2015 and 2017 seasons, and signifies a link to the unique public health burden of the virus in India.
We believe this is the first study to observe increased selection at site 186 and believe this site could be
a potential determinate of A/H1N1pdm09 severity. Future investigations however are warranted to
confirm the antigenic potential of residue changes at this position and associated impact on morbidity
and mortality. We have revealed national routes of A/H1N1pdm09 transmission in India identifying
Maharashtra as the most supported state for spread throughout the country while quantifying climactic,
ecological, and transport factors as drivers of within-country transmission. Together these results
have important implications for future A/H1N1pdm09 surveillance and control within India but also
for epidemic and pandemic risk prediction around the world. Strengthening influenza surveillance
capacity in the country should remain a priority, first to improve estimates of severity, and second,
to prepare for future epidemics and pandemics. Continuous monitoring of haemagglutinin changes
remains vital for public health surveillance in India.



Viruses 2019, 11, 791 12 of 16

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/9/791/s1:
Figure S1: Spatial distribution of 613 taxa included in the final dataset sampled in India between 2009 and 2017 by
S/UT. Figure S2: Root-to-tip regression over time of 613 H1N1pdm09 isolates sampled from India between 2009
and 2017 inclusive. Figure S3: Maximum clade credibility tree (MCC) of 613 A/H1N1pdm09 taxa sequenced for
HA between 2009 and 2017 inclusive from 14 states and union territories (S/UT) in India. Figure S4: Definitively
supported (BF > 100) routes of A/H1N1pdm09 transmission between S/UT in India from 2009 to 2017 based on
five randomly subsampled datasets. Table S1: Global dataset of HA sequences by year and region for comparative
analysis. Table S2: Substitution model and clock prior testing results using path sampling (PS) and stepping-stone
sampling (SSS) of log marginal likelihoods. Table S3: Interpretation of computed BF values. Table S4: Subsample
of HA sequences by year and S/UT included for replicate analysis. Table S5: dN/dS rate ratios and 95% BCI of all
positively selected HA sites among Indian (n = 613) and International (S1 and S2) taxa of H1N1pdm09 detected
using BRC. Table S6: Codon sites under pervasive positive selection as identified using Bayesian Renaissance
Counting (BRC), two-rate fixed effects likelihood (FEL) and single-likelihood ancestor counting (SLAC) in India.
Table S7: Statistically supported routes for A/H1N1pdm09 transmission in India between 14 S/UT from 2009
to 2017 based on the average of five randomly subsampled sequence datasets (n = 259). Table S8: Statistically
supported routes for A/H1N1pdm09 transmission in India between 14 S/UT discrete locations from 2009 to 2017.
Table S9: Distribution of A/H1N1pdm09 viruses belonging to clade 6B by year and S/UT in India between 2009
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