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Abstract: Chicken gastrointestinal tract is an important site of immune cell development that not
only regulates gut microbiota but also maintains extra-intestinal immunity. Recent studies have
emphasized the important roles of gut microbiota in shaping immunity against viral diseases in
chicken. Microbial diversity and its integrity are the key elements for deriving immunity against
invading viral pathogens. Commensal bacteria provide protection against pathogens through direct
competition and by the production of antibodies and activation of different cytokines to modulate
innate and adaptive immune responses. There are few economically important viral diseases
of chicken that perturb the intestinal microbiota diversity. Disruption of microbial homeostasis
(dysbiosis) associates with a variety of pathological states, which facilitate the establishment of acute
viral infections in chickens. In this review, we summarize the calibrated interactions among the
microbiota mediated immune modulation through the production of different interferons (IFNs)
ILs, and virus-specific IgA and IgG, and their impact on the severity of viral infections in chickens.
Here, it also shows that acute viral infection diminishes commensal bacteria such as Lactobacillus,
Bifidobacterium, Firmicutes, and Blautia spp. populations and enhances the colonization of pathobionts,
including E. coli, Shigella, and Clostridial spp., in infected chickens.
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1. Introduction

Beginning from the first moment of birth, every single uncovered surface (for example the skin,
mouth, vagina, and gut) in warm-blooded animals becomes step by step colonized by a wide assortment
of microorganisms, which are known as the microbiota [1–3]. Although we have large data sets,
extensive research is still required to understand more about physiological functions and dynamics
of the microbiota. It is more important in pathological conditions and when microbiota performs its
function in the gut as digestion of nutrients and the main producer of many vitamins [4]. During a
lifetime, microbiota evolves with the host in composition with nutrition, probiotics and nutraceuticals
such ovotransferrin are the main components that maintain the diversity of gastrointestinal tract (GIT)
microbiota [5–7]. GIT microbiota has many effects on digestion of nutrients, immunity development,
and shielding hosts from pathogens [3,8,9]. Intestinal microbiota affects both local and systemic immune
responses [10,11]. Germ-free mouse models are extensively used to study microbiota functions of
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shaping adaptive and innate immune responses [11,12]. Various bacterial species have been recognized
that maintain host homeostasis. For instance, small molecules such as bacterial polysaccharide (PSA)
from Bacteroides fragilis have given proof that symbiotic microbes and its products communicate
with and shape the immune response, particularly in the transformation of CD4+ and Foxp3+ [13].
Segmented filamentous bacteria induce the Th17 cells [14] and Clostridial cluster XIVa and IV induce the
colonic Tregs [15]. Gut health improves the health of the poultry flock by enhancing its performance
and regulating T cells in the intestine [14,16]. Chicken intestine is inhabited by a variety of commensal
microbiota [9]. Of those, Firmicutes, Proteobacteria, and Bacteroidetes are the most important ones [17].
Bird development is severely affected if the gut microbiota or mucosal barrier of the intestine is
disturbed [18]. The GI tract has a very reactive environment and pathogens can disrupt the host and
its microflora homeostasis, which is called dysbiosis and leads to mucosal infections [19]. Bacterial
dysbiosis has been connected to inflammation and changes in immune functions [20]. Changes in the
microbial community affects type I IFNs and inflammatory responses of the host [21,22]. Many diseases
disturb the stability of intestinal microflora [23–25]. Chickens with dysbiosis are more prone to bacterial
infection [26]. Studies reflect connections between gut microbiota and distal organs in regulatory
functions like gut–lung, gut–brain, gut–skin, and gut–liver axes, which play an important role in many
infectious and chronic diseases [27]. In some studies, it is reported that gut microbiota can regulate the
antiviral immune response [28] through metabolites such as short-chain fatty acids (SCFAs). The role of
SCFAs is well studied in mouse models that show a reduction in inflammatory symptoms by utilizing
SCFAs and T regulatory cell suppression in allergic diseases of airways [29]. Recently, there is growing
interest to learn the mechanism involved in gastrointestinal tract (GIT) microbiota and infectious
and noninfectious disease interaction. GIT microbiota plays a pivotal role to regulate and induce
host responses against various pathogens including viruses [30–32], bacteria [33–35], and fungi [36].
Trans-kingdom associations of viruses and microbiota suggests important role of microbiota in virus
replication, development, and progression [37]. Some of the potential mechanisms involved in gut
microbiota mediated immunity to pathogens include those involving pattern-recognition receptors
(PRRs) such as Toll-like receptors [30,33,34] and nucleotide-binding oligomerization domain-like
receptors [38] that recognize microbial-associated molecular patterns (MAMPs).

In the current study, we focused only on the interaction between gut microbiota and viral
infections and their impact on immune regulations in chicken. At present only four viral diseases
(Avian influenza, Marek’s, Infectious Bursal Disease (IBD), and Newcastle Disease (ND)) re reported
with their connections between gut microbiota and immune modulations.

Avian influenza virus (AIV) is a negative sense single-stranded virus having a segmented genome
that causes respiratory illness, gastroenteritis, and diarrhea [39]. There are a number of strains of AI
and the H9N2 strain is the biggest threat to public health due to its ability to replicate in mammalian
tissue [40–42], and previous reassortant isolates of Highly pathogenic avian influenza (HPAI) in
humans were shown to carry internal genes from avian H9N2 viruses [40,43,44]. Studies confer that gut
microbiota elicit the immune response against the influenza virus and they depicts that gut microbiota
regulation is a potential source of treatment for respiratory diseases [28,45]. Due to the high mutation
rate of influenza viruses, contemporary lack of a reliable antiviral treatment and consistently effective
vaccine emphasize the development of novel management and prevention strategies. The gut–lung
axis alliance acts as an important mark for the development of such strategies as it is extensively
used in many airway diseases. A correlation among gut microbiota diversity and influenza was
observed in mice [30]. It was reported that dysbiosis in chicken gut microbiota resulted in higher
cloacal and oropharyngeal shedding of avian influenza H9N2 in chickens, which was also linked
with compromised type I interferon (INF) expression [41]. Marek’s disease (MD) is a contagious,
globally prevalent viral disease of chicken [46] caused by Marek’s disease virus (MDV) or Gallid alpha
herpesvirus 2 [47] that mainly targets lymphoid organs such as spleen, bursa of Fabricius, and thymus,
thereby infecting B and T cells [48,49]. MDV causes up to 100% mortality [50,51]. The pathological
lesions of MDV include mononuclear infiltration of the gonads, peripheral nerves, various viscera,
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iris, muscles, and skin. Infected chickens develop CD4+ T-cell tumors in visceral organs and enlarged
nerves resulting in paralysis, blindness, and eventually death [52–57]. MDV also causes chicken gut
microbiota dysbiosis [58].

Infectious bursal disease (IBD) is a viral disease of chicken caused by infectious bursal disease
virus (IBDV) [59–62]. IBDV is a non-enveloped virus that belongs to the genus Avibirnavirus and the
Birnaviridae family [62–66]. IBDV infection causes immunosuppression, which leads to gut-associated
secondary infection, resulting in high mortality rates in chicken [67–69]. IBDV causes severe damage
to the bursa of Fabricius and affects IgM+ B cell production [61,70].

Newcastle disease virus (NDV) is a contagious disease of poultry caused by highly pathogenic
strain avian paramyxovirus type 1 (APMV-1) serotype belonging to the genus Avulavirus,
subfamily Paramyxovirinae, and family Paramyxoviridae [71,72]. It has been reported that NDV
infection causes dysbiosis of gut microbiota of chicken, which increases the severity of disease [73].
Despite these rapid advances, there is little information available on the impact of acute viral infection
on the quantity, composition, and kinetics of commensal gut microbiota in the chicken.

2. Avian Influenza Virus

Avian influenza virus (AIV) subtype H9N2 has tropism for many tissues, including tissues of GIT
and the upper respiratory tract of chicken. AIV enters the body through the mucosa of the respiratory
tract and GIT [74]. Recent studies have revealed that commensal gut microbiota play a decisive role
in viral pathogenesis to regulate the immune response against influenza virus [28,45]. In contrast,
dysbiosis of gut microbiota in chicken elicit the severity of disease [39]. The health and diversity of gut
microbiota are key factors to diminish the influenza virus infection [28].

3. Commensal Bacteria Elicit Immunity

Commensal intestinal microbiota play a crucial role in the health and disease of the chicken by
eliciting an immune response against infection and virus clearance. Different commensal bacteria
have their own unique role against viral infection by modulating diverse immune mechanisms
as reported in Table 1 [75]. The depletion of these bacteria augment the influenza virus disease
course and delay the cloacal and oropharyngeal shedding in H9N2 infected chickens as compared
to undepleted groups [41,76]. Type-I IFNs comprised of IFN-α and IFN-β are integral parts of
the antiviral innate immune response in virus-infected cells and interrupt the viral life cycle by
degradation of virus nucleic acids or inhibition of viral gene expression [77–79]. Along with IFNs, IL-22
interactively inhibits intestinal viral infections [80] by impeding GIT tissue degeneration, escalating cell
proliferation, and modulating inflammation [81]. The expression level of IFN-α, IFN-β, and IL-22 in
antibiotic-treated along with AIV infected chickens was markedly diminished compared to undepleted
AIV infected chicks. The expression level of type-I IFNs and IL-22 in the antibiotic-treated group was
restored to the undepleted group by Lactobacillus and fecal microbial transplantation (FMT) [41,76].
Different bacterial genera in GIT modulate the expressions of different AIV antiviral cytokines.
IFN-α, IFN-β, and IL-22 expression were positively correlated with Collinsella, Faecalibacterium,
Oscillibacter, Holdemanella, Pseudoflavonifractor, Anaerotruncus, Butyricoccus, and Bifidobacterium while
these were negatively correlated with Clostridium cluster-XI, Escherichia, and Shigella species as
shown in Figure 1 [41]. Strong recovery was observed in histomorphological structures and the
general architecture of the ileum in AIV infected chickens after fecal microbial transplantation (FMT),
and probiotic (PROB) supplementation [41].
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Table 1. Comparison between commensal and pathogenic gut-microbiota mediated immune modulation in AIV, IBDV, MDV, and NDV infected chickens.

Virus
Control Group Infected Group

Commensals Effector Molecules and Outcomes Pathogens Effector Molecules and Outcomes

AIV

Collinsella, Faecalibacterium,
Oscillibacter, Holdemanella,

Pseudoflavonifractor, Anaerotruncus,
Butyricoccus, and Bifidobacterium

Increase IFN-α, IFN-β, and IL-22 and
antimicrobial peptides such as MUC, TFF,
ZO, and tight junction proteins comprised
of claudins, occludin, and zona occludens

mRNA expressions

Proteobacteria Clostridium
cluster XI, Escherichia, Shigella,

Salmonella, Vampirovibrio,
Clostridium cluster XIVb,
and genus Ruminococcus

Downregulate the IFN-α, IFN-β, and IL-22
secretion and antimicrobial peptides such

as MUC, TFF, ZO, and tight junction
proteins comprised of claudins, occludin,
and zona occludens mRNA expressions

also enhance the secretions of
proinflammatory cytokines IFN-γ, IL-17A,
IL-6, and IL-1B and produce inflammation

IBDV

Clostridium XlVa Induce T regulatory cells to produce
anti-inflammatory cytokines Desulfovibrionaceae Produce hydrogen sulfides and cause

inflammation

Faecalibacterium Enhance butyrate shortchain fatty acids
(SCFA) and suppress the inflammation Campylobacter jejuni Inhibit butyrate SCFA production cause

inflammation of GIT

Probiotics Increase immunoglobulins, FCR body
weight gain

Salmonella typhimurium and
Campylobacter jejuni Decreased IgG and IgA production

MDV
Firmicutes Induce T regulatory cells to produce

anti-inflammatory cytokines
Pathogenic Lactobacillus spp.,

Proteobacteria
Suppress the T regulatory cells stimulation

produce inflammation

Blautia spp. and Faecalibacterium
spp.

Produce succinate and lactate and provide
energy and reduce inflammation Streptococcus spp. Septicemia, peritonitis, and endocarditis

NDV Paenibacillus and Enterococcus Antimicrobial peptides Rhodoplanes, Clostridium,
and Epulopiscium Cause local mucosal infection
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Figure 1. Regulation of different immune mechanisms by intestinal microbiota in AIV, IBDV, MDV,
and NDV virus infected broiler chickens. (A) Collinsella, Faecalibacterium, Oscillibacter, Holdemanella,
Pseudoflavonifractor, Anaerotruncus, Butyricoccus, and Bifidobacterium enhance the IFN-α, IFN-β, and IL-22
secretions, which control the virus replication by degrading the virus nucleus, as well as virus replication
genes, and repair mucosal tissue damage. (B) Bacteroides, Candidatus, SMB53, Parabacteroides,
Lactobacillus, Paenibacillus, Enterococcus, and Streptococcus spp. promote the antimicrobial peptides
such as MUC, TFF, ZO, and tight junction proteins comprised of claudins, occludin, and zona
occludens mRNA expressions and inhibit pathobiont colonization and translocation and suppress
inflammation. (C) Clostridium XlVa and Firmicutes induce the T regulatory cells, which produce
anti-inflammatory cytokines and suppress inflammation. (D) Faecalibacterium and Blautia spp. enhance
butyrate succinate and lactate production, which provide energy and reduce inflammation. (E) Cluster
XI, Salmonella, Escherichia, and Shigella are pathobionts. These pathogens decrease IFN-α, IFN-β,
and IL-22 antimicrobial peptides such as MUC, TFF, ZO, and tight junction proteins comprised of
claudins, occludin, and zona occludens mRNA expressions, increase the IFN- γ, IL-17A secretions that
cause the mucosal inflammation, tissue damage Increased virus replication and fecal shedding. (F)
Desulfovibrionaceae produce hydrogen sulfides and produce inflammation of mucosa. (G) Vampirovibrio,
Clostridium cluster XIVb, and genus Ruminococcus induce the proinflammatory cytokines IL-6 and IL-1B,
which produce GIT inflammation and leads to increased viral replication. (H) Salmonella typhimurium,
Campylobacter jejuni decrease viral specific IgG and IgA production, which results in more viral shedding.

4. AIV Mediated Dysbiosis in Commensal Microbiota

Type-I INFs and IFN-γ are effective antiviral agents in H2N9 AIV infection [21,22,79,82–84] that
enhance inflammation and mucosal tissue degeneration, and disrupt the commensal gut microbiota
diversity, which leads to an increased pathogenic bacterial population and results in secondary bacterial
infections [21,85]. Previously, in H9N2 AIV infected chickens, elevated levels of IFN-γ and IL-17A
were observed, which caused the dysbiosis of commensal gut microbiota and decreased the number of
lactic acid producing bacteria such as Lactobacillus, Enterococcus, and Streptococcus due to an increased
population of pathogenic Proteobacteria [86], comprised of Salmonella, E. coli, Klebsiella, and Shigella,
which produce inflammation in GIT as described in Table 1 [87]. Similar results were also observed in
highly pathogenic influenza virus infected mice and increased production of IFN-γ and IL-17A led
to intestinal micro flora dysbiosis [88]. An increased growth of pathobionts including Vampirovibrio,
Clostridium cluster-XIVb, and genus Ruminococcus was observed in AIV infected broiler chicks [79].
These pathobionts produce proinflammatory cytokines IL-6 and IL-1B [87]. The mucosal epithelium of
GIT plays a basic role in digestion and absorption of nutrients acting as a first line of defense against
pathogens and preventing the entry of pathogens into the body of the host [89,90]. Damage of the



Viruses 2019, 11, 681 6 of 14

GIT mucosa promotes the translocation of pathogens into body and causes systemic infection [91,92].
Antimicrobial peptides including mucins (MUC), endogenous trefoil (TFF), and tight junction proteins
(Claudins, Occludin, and Zona Occludens (ZO)) inhibit pathogenic microbe infection and keep the
permeability of the intestinal mucosa intact [93–99]. In recent studies, it was reported that in H9N2
AIV infected chickens, the expressions of MUC, TFF, Claudins, Occludin, and ZO were significantly
reduced and produced inflammation of mucosal epithelium, which led to secondary bacterial infection
due to invasion of E.coli as presented in Figure 1 [85,86].

5. Infectious Bursal Disease Virus (IBDV)

IBDV is an immunosuppressive disease of poultry [67,69], mainly affecting the primary lymphoid
organs comprised of thymus and bursa of Fabricius, as well as gut-associated lymphoid tissues
(GALT) [100], which act as the first line of defense against invading pathogens and establish
systemic immune responses [101]. The immune system is an important contributor for regulating the
microbial composition; likewise, it has been also reported that microbiota shapes the immunity [11].
Immunosuppressive diseases impact the development of the intestinal immunity and microbial
composition and consequently modify the gut barrier [3,102]. IBDV causes acute infection between
two to five days post inoculation [103], during which peak production of proinflammatory cytokines
and IBDV replication has been reported [104], which causes gut microbiota dysbiosis, leading to
lower abundance of commensals Clostridium XlVa [105]. Previously, it was reported that these
commensals induce the colonic T regulatory cells to suppress the production of the proinflammatory
cytokines [15,106–108]. In IBDV infected birds an increased abundance of sulphur reducing
Desulfovibrionaceae was observed and these hydrogen sulfides are toxic to mucosal tissue, which leads
to severe inflammation of GIT as described in Table 1 [105,109,110]. Faecalibacterium is an important
butyrate-producing bacteria in the cecum of the chicken [111]. Higher numbers of Faecalibacterium
are deleterious for Campylobacter jejuni replication since butyrate may inhibit the replication of
Campylobacter jejuni [112]. Recently, a lower abundance of Faecalibacterium and higher fecal shedding of
Campylobacter jejuni in chickens that were co-infected with IBDV and Campylobacter jejuni was observed
as compared to those infected only with Campylobacter jejuni [113,114]. IgA is the main immunological
defense against invading pathogens in the gut and it also regulates the microbial diversity in the
intestine [115]. IBDV depletes B cell production in the lamina propria of the intestine and cause
enteritis [116], which leads to a decrease in IgA and IgG mediated humoral immunity against Salmonella
typhimurium and Campylobacter jejuni, resulting in increased shedding of these pathogens in feces of
IBDV infected chickens as shown in Figure 1 [113,117–119]. Contrarily to the pathobionts mediated
immunosuppressive effects IBDV, it was also reported that probiotic supplementation in IBDV infected
broiler chicks enhanced the body weight gain, feed conversion ratio, and antibody titers, and decreased
the morbidity and mortality against IBDV infection [120].

6. Marek’s Disease Virus

Marek’s disease (MD) is a contagious and globally prevalent viral disease [46]. Marek’s disease
virus (MDV) suppresses the immune system and produces inflammatory neurological syndromes,
which lead to paralysis and causes 100% mortality in chickens [49,50,121]. MDV affects the immune
system, especially B and T lymphocytes [122]. The pattern of the disease to alter the immune system is
probably due to the established link between the microbiome and immune system. MDV pathogenesis
causes dysbiosis in chicken gut microbiota, which leads to enrichment of certain pathogenic bacterial
genera in the cecum [123]. Ovotransferrin, which is a nutraceutical, has anti MDV properties and
it enhances the Firmicutes population and diminishes the Proteobacteria [5,124–126]. Members of
phylum Firmicutes regulate the inflammation by producing anti-inflammatory cytokines through
regulatory T (Treg) cell activation as discussed in Table 1 [127]. MDV during the proliferative phase at
28–35 days of its life cycle [49], reduces the Firmicutes population and provides a favorable environment
for the four different opportunistic pathogenic Lactobacillus spp. and Proteobacteria colonization
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due to inflammation of the intestinal mucosa [123,128]. Blautia is a Gram-positive staining coccoid
or oval-shaped, non-motile bacterium that produces metabolites such as succinate and lactate by
the degradation of polysaccharides and provides energy to the host [129,130]. In recent studies,
an increased Faecalibacterium spp. and Blautia spp. colonization in control chicks was reported as
compared to their MDV infected counterparts, having more Streptococcus spp. [128], and these are
opportunistic pathogens that develop septicemia, peritonitis, and endocarditis in chicken [131].

7. Newcastle Disease Virus (NDV)

Newcastle disease is a contagious disease of chicken [71], which produces hemorrhages and
necrosis of the respiratory tract and the digestive system [132], leading to high morbidity and mortality
in chicken [133]. NDV infection induces interferon production [134], which increases the lethality
of bacterial endotoxin [135] and causes the disproportion of intestinal microbiota in chickens [73].
Rhodoplanes are pathogens that produce febrile conditions and cause local infection [136]. In the
cecum of NDV infected chickens, an increased abundance of pathogenic Rhodoplanes, Clostridium,
and Epulopiscium was detected, which causes the depletion of Paenibacillus and Enterococcus [137].
Paenibacillus are commensal bacteria that produce antimicrobial substances against a wide range
of microorganisms such as fungi, plant pathogenic bacteria, and anaerobic pathogens including
Clostridium botulinum as shown in Figure 1 [138,139].

8. Conclusions

In conclusion, we have reported here that commensal bacteria including Lactobacillus,
Bifidobacterium, Firmicutes, Faecalibacterium, Blautia spp., and Clostridium XlVa play a key role in
viral disease prevention and treatment, through competition, by inhabiting the mucosal surface of GIT.
Microbiota helps the host in food digestion to produce SCFAs as an energy source. These SCFAs
regulate the different anti-viral immune mechanisms by the production of IFN-α, IFN-β, and T
regulatory cells, which stimulate secretions of anti-inflammatory cytokines such as IL-22 and promote
the humoral immune response by the production of IgA and IgG antibodies to control the severity
of virus infection in chicken. Contrarily, it is also observed that these viral infections cause dysbiosis
of intestinal microbiota and enhance gut pathobiont colonization such as Proteobacteria, Clostridium
cluster XI, Clostridium cluster XIVb, Escherichia, Shigella, Salmonella, Campylobacter jejuni, Streptococcus
spp., Rhodoplanes, Vampirovibrio, Desulfovibrionaceae, and genus Ruminococcus. These pathobionts
augment the severity of virus infections by suppression of anti-inflammatory cytokines, T regulatory
cells, and B lymphocytes immunoglobulins production and enhance proinflammatory cytokines
comprised of IL-17A and IFN-γ production. Due to the constant emergence of new viral strains that
lead to reduced cross-protection by vaccinations against viral infections, there is, therefore, still a need
for the development of a more reliable way to solve this riddle. As we observed, the change of a single
bacterial genus can have a direct impact on immune system regulation, and supplementation of these
specific commensal probiotics in a specific virus infection could be an alternative to restore the innate
and adaptive immune mechanisms and combat these severe economic losses in the poultry industry.
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