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Abstract: Advances in DNA sequencing technology are facilitating genomic analyses of unprecedented
scope and scale, widening the gap between our abilities to generate and fully exploit biological
sequence data. Comparable analytical challenges are encountered in other data-intensive fields
involving sequential data, such as signal processing, in which dimensionality reduction (i.e.,
compression) methods are routinely used to lessen the computational burden of analyses. In this
work, we explored the application of dimensionality reduction methods to numerically represent
high-throughput sequence data for three important biological applications of virus sequence data:
reference-based mapping, short sequence classification and de novo assembly. Leveraging highly
compressed sequence transformations to accelerate sequence comparison, our approach yielded
comparable accuracy to existing approaches, further demonstrating its suitability for sequences
originating from diverse virus populations. We assessed the application of our methodology using
both synthetic and real viral pathogen sequences. Our results show that the use of highly compressed
sequence approximations can provide accurate results, with analytical performance retained and
even enhanced through appropriate dimensionality reduction of sequence data.

Keywords: alignment; assembly; taxonomic classification; time series; data transformation; DWT;
DFT; PAA; data compression; compressive genomics

1. Introduction

Next-generation sequencing (NGS) enables massively parallel determination of nucleotide order
within genetic material, making it possible to rapidly sequence the genomes of individuals, populations
and metagenomic samples [1–5]. However, the sequences generated by these instruments are almost
always considerably shorter in length than the genomic regions studied. Genomic analyses often begin
with the process of sequence assembly, where sequence fragments (reads) are reconstructed into the
larger sequences from which they originated. Computational methods play a vital role in the assembly
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of short reads, and a variety of assemblers and related tools have been developed in tandem with
emerging sequencing platforms [6]. All subsequent analyses and investigations depend upon the
quality, accuracy and speed of this crucial sequence assembly process.

There are many computational methods to generate consensus sequences representing the
genomes of species in a sample. Such approaches include seed-and-extend alignment methods using
suffix array derivatives, such as the Burrows-Wheeler Transform (BWT) for aligning short reads
informed by a known reference sequence [7,8], graph-based methods employing Overlap Layout
Consensus (OLC) [9,10] and de Bruijn graphs of k-mers [11–13] for reference-free de novo sequence
assembly. However, for sequencing projects to characterise genetic variation within populations
(deep sequencing), metagenomics and pathogen discovery, the effectiveness of the aforementioned
approaches varies considerably [14].

Samples with mixed viral infections, especially those comprising divergent variants, present a
number of analytical and computational problems. The use of a reference sequence, even the use of
a data specific generated sequence, can lead to valuable read information being discarded during
the alignment process [15]. On the other hand, while de novo approaches require little a priori
knowledge of target sequence composition, the methods are computationally intensive, and their
performance scales poorly with datasets of increasing size [9]. Aggressive heuristics must be employed,
to traverse graphs and deal with mismatches, reduce the running time of de novo assemblers, which,
in turn, can compromise assembly quality. Indexing structures such as the BWT and its relatives are
widely used to reduce the burden of pairwise sequence comparison, for both reference-based mapping
and de novo assembly. However, they cannot process mismatches within reads, necessitating the
use of computationally expensive heuristics to establish relationships between divergent sequences.
Increasing sequence length further affects the performance of these approaches [16].

A major challenge in working with NGS data from metagenomic studies is the high levels of diversity
present, particularly for the virus genetic material. Also, the number of sequences generated challenge
many computational systems for a feasible working solution in terms of time and the computational
resources typically available in biological laboratories. For biologists working on outbreak responses
or pathogen discovery, both the accuracy of the assembly results and the speed of sequence analyses
(e.g., assembly, alignment and pathogen classification) are crucial for crisis response and management.
The ability to run analyses in the field on portable computer systems without internet connectivity is also
important. Here, we explore the utility of data transform methods to extract major features from viral NGS
sequence data and use the features to analyse data in a lower dimensional space.

Similar analytical challenges involving high dimensional sequential data are encountered
in other data-intensive fields, such as signal and image processing, and time series analysis,
where data transforms and approximation techniques are used for data dimensionality reduction.
Data transform/approximation techniques include the discrete Fourier transform (DFT) [17], the discrete
wavelet transform (DWT) [18,19] and piece-wise aggregate approximation (PAA) [20,21]. The DFT or
DWT are used to transform data to their frequency domains, allowing feature extraction [22], and PAA is
used as a data approximation approach. In data-intensive fields, data transformations/approximations
are commonly used as dimensionality reduction approaches for obtaining fast approximate solutions for
a given problem. Due to the ordered nature of genetic data, many of these transformation approaches
can be applied to sequences of nucleotides [23] or amino acids [24]. An example of a successful
implementation of a Fourier transform in computational biology is the multiple sequence alignment
based on fast Fourier transform alignment algorithm MAFFT [25] where the physiochemical properties
of amino acids are used to represent sequences for fast matching of homologous sequence regions for
alignment. Since most transformation approaches are suitable only for numerical sequences, the strings
of letters representing genetic sequences must be mapped into numerical space using a numerical
sequence representation method [26].

In addition to the DFT, the DWT and PAA, suitable methods for measuring the pairwise similarity
of sequential data or transformations include the Lp-norms [27], dynamic time warping (DTW) [28],
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longest common subsequence (LCS) [29], and alignment approaches, such as the Needleman-Wunsch and
Smith-Waterman algorithms. Euclidean distance is arguably the most widely used Lp-norm method for
sequential data comparison but can only be used on sequences of the same length. Furthermore, Lp-norm
methods do not accommodate shifts in the x-axis (time or position) and are thus limited in their ability
to identify similar features within offset data. Elastic similarity/dissimilarity methods, such as LCS,
unbounded DTW and various alignment algorithms, permit comparison of data with different dimensions
and tolerate shifts in the x-axis. These properties of elastic similarity methods can be very useful in the
analysis of speech signals, for example, but can be computationally expensive [30]. Several approaches
have been proposed to permit fast searching with DTW, including the introduction of global constraints
(wrapping path) or the use of lower bounding techniques, such as LB_keogh [28].

While pairwise comparison methods may be used for clustering, classification and similarity
searches, they are very time consuming for large datasets (O(n2) time complexity). Indexing structures,
such as the R*-tree, KD-tree, VP-tree and MVP-tree have significantly lower time complexity (O(n
log(n))) for similarity search [31] and are more appropriate for efficient analysis of large datasets.
The R*-tree [32,33] and KD-tree [34] indexing structures are very accurate for low dimensional datasets.
However, their performance deteriorates significantly in high dimensional space [31], a phenomenon
known as the ‘curse of dimensionality’ [35,36]. Metric trees, such as the VP-tree [37] and MVP-tree [38],
are less prone to this limitation. Metric space indexing structures make use of geometric properties
for partitioning data and work efficiently on both low and high dimensional data [39]. The curse of
dimensionality can be further mitigated using data approximations, such as the DFT, the DWT and the
PAA, to partition a dataset in an approximated space without loss of generality [21].

Here, we investigate the performance of three established dimensionality reduction techniques on
three common analysis tasks involving viral short read sequence data: classification, reference-based
mapping/alignment and de novo assembly. We benchmarked the accuracy of our proposed methodology
against existing tools, and demonstrate the applicability of time series and signal processing data
mining techniques for the analysis of viral NGS data.

2. Materials and Methods

2.1. Symbolic to Numeric Sequence Representations

Various numeric sequence representation methods can be used for symbolising a nucleotide
sequence to a numerical space (see 51). Depending on the chosen numerical representation, each
nucleotide is associated with a specific numerical value or vector. The specific values are assigned
to the position of each nucleotide indicating the presence of a nucleotide at each sequence position
(Equation 1). Ri is the indicator for a specific nucleotide in the ith position of the sequence S with
a length of n nucleotides. Values v1 . . . v5 correspond to the numerical value or numerical vector
associated with each nucleotide.

R =



v1 i f i = A
v2 i f i = T
v3 i f i = C
v4 i f i = G
v5 otherwise

∀i ∈ S (1)

Methods, such as the electron-ion interaction pseudopotentials (EIIP) [40] and the atomic representation
approach [41], aim to mimic the biochemical properties of nucleic acids but introduce some mathematical
bias that does not exist in reality [26]. Other methods, like the Voss indicator [42] and the Tetrahedron
approach, do not introduce internucleotide mathematical bias, meaning the pairwise distances between
each non-identical transformed nucleotide are the same (for example, the distance between A and T is equal
to the distances between A and C as well as A and G). Furthermore, the cumulative sum of a numerical
representation R can be used to indicate the trajectory of a sequence in nucleotide space. Table 1 indicates
the values used for different representation methods [26].
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Table 1. Numerical nucleotide sequence representation methods.

Method Numerical Representation

Integer number A = 1, C = −1, G = 2, T = −2, N = 0

Real number A = −1.5, C = 0.5, G = −0.5, T = 1.5, N = 0.0

EIIP A = 0.1260, C = 0.1340, G = 0.0806, T = 0.1335, N = 0

Atomic A = 70, C = 58, G = 78, T = 66, N = 0

Pair A or T = 1, C or G = −1, N = 0

Complex number A = 1 + 1i, C = −1 + 1i, G = −1− 1i, T = 1− 1i, N = 0 + 0i

DNA Walk A = [1, 0], C = [0, 1], G = [0,−1], T = [−1, 0], N = [0, 0]

Tetrahedron
A = [0, 0, 1], C =

[
−

√
2

3 ,−
√

6
3 , 1

3

]
,

G =
[
−

√
2

3 , −
√

6
3 , − 1

3

]
, T =

[
2×

√
2

3 , 0,− 1
3

]
, N = [0, 0, 0]

Voss indicator A = [0, 0, 1, 0], C = [1, 0, 0, 0], G = [0, 1, 0, 0], T = [0, 0, 0, 1], N = [0, 0, 0, 0]

2.2. Sequence Transformation

Effective methods for transforming/approximating sequential data should: (i) accurately
transform/approximate data without loss of useful information, (ii) have low computational overheads,
(iii) facilitate rapid comparison of data and (iv) provide lower bounding—where the distance between
data representations is always less than or equal to that of the original data—precluding false negative
results [43]. The lower bounding property guarantees that if two data points are nearby in their original
space, they will remain so in their transformed/approximate space. We employ the DFT and the DWT
transformation methods and the PAA approximation method as they satisfy the above requirements,
and these are widely used for analysing discrete signals [44] and can be used to transform/approximate
nucleotide sequence numerical representations to different levels of resolution, permitting reduced
dimensionality sequence analysis.

Figure 1A illustrates an example of the DFT and DWT transformations and PAA approximation
of a short nucleotide sequence. The DFT and the fast Fourier transform (FFT) convert data from
their original domain into the frequency domain. In principle, the DFT decomposes a numerically
represented nucleotide sequence with n positions (dimensions) into a series of n frequency components
ordered by their frequency. A subset of the resulting Fourier frequencies are used to approximate the
original sequence in a lower dimensional space [17], and the tradeoff between analytical speed and
accuracy can be varied according to the number of frequencies considered [45].

The DWT transforms data into the time-frequency domain, capturing both frequency and temporal
location information [18,46,47], in contrast to DFT, which only provides frequency information. DWT is
a set of averaging and differencing functions that may be used recursively to represent sequential
data at different resolutions, and each resolution can be used as an approximation of the original data.
Figure 1B depicts DWT transformations of a short nucleotide sequence.

In PAA, a numerical sequence is divided into n equally sized windows, the mean values of
which together form a compressed sequence representation [20,21]. The selection of n determines
the resolution of the compressed or approximate representation. While PAA is faster and easier to
implement than the DFT and the DWT, unlike these two methods, PAA is irreversible, meaning that
the original sequence cannot be recovered from the approximation. Figure 1C depicts an example of
the PAA transformations of a short nucleotide sequence.
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Figure 1. A numerically represented DNA sequence transformed at various levels of spatial resolution
using the discrete Fourier transform (DFT) of the whole sequence (A), the Haar discrete wavelet
transform (DWT) (B) and piecewise aggregate approximation (PAA) (C). A 30 nucleotide sequence
(x-axis) is represented as a numerical sequence (black lines) using the real number representation
method (y-axis where T = 1.5, C = 0.5, G = −0.5 and A = −1.5) for DFT approximations of the sequence
with 5 (red), 3 (blue) and 1 (green) Fourier frequencies (A); DWT approximations of the same sequence
with 8 level wavelets (red), 4 level wavelets (blue) and 2 level wavelets (green) (B); PAA approximations
of the same sequence with 8 (red), 5 (blue) and 3 (green) coefficients (C).

2.3. Similarity Search Approaches for Sequential Data

Here, we adopt the Euclidian distance and VP-tree index to perform a fast k-nearest neighbour
(k-NN) similarity search for aligning the reads to a reference genome.

In a VP-tree indexing structure, data is segregated using the distance between data points, thus
implementing data partitioning in a metric space. A data point to use as a vantage point is selected
(either randomly or by applying some heuristic to find and use the furthest point in the dataset [37]),
and the rest of the data points are partitioned into two nodes based on their distance to that point.
Data found to be closer to the vantage point than a given threshold (the median distance between all
the data points and the vantage point) are assigned to the same node, and the rest of the data points to
a different node. This function is repeated recursively in order to complete the partitioning process.
The resulting indexing structure can then be used for fast identification of a k-nearest neighbour (k-NN)
search. A k-NN-search returns the data points that are closest to a query q. Initially, the distance
between the query q and the vantage point in the top node is calculated. If the distance between q
and the vantage point satisfies a set of given conditions (the distance is smaller or larger than a given
threshold – this threshold being the median distance between the vantage point and other data points
within the node), a decision is made to visit either one or both of the child nodes. This process is
repeated until the entire tree has been traversed. The k data points—in this case, reads—found closest
to our query are the k-nearest neighbours to the query q.

2.4. Proposed Short Reads Processing Methodology

Our methodology for taxonomic classification, reference-based mapping and de novo assembly of short
reads used time series and digital signal processing data transformation techniques. Figure 2 illustrates the
fundamental concept of our approach. The short reads and reference genomes are mapped to a numerical
space using an appropriate method from Table 1. Subsequently, lower dimensional approximations were
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generated for all data using the appropriate data transformation method, such as DFT, DWT and PAA.
A VP-tree was constructed to allow fast data comparison. Depending on the application, the VP-tree was
constructed either by using k-mer transformations obtained from the reference genomes or by using the
short reads’ transformations. Consequently, the best matches for our short reads’ transformations were
identified using a k-NN search approach on the VP-tree. As a final step, the results obtained from the k-NN
search were re-evaluated in the original space to remove potential false positive results.
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Figure 2. Overview of our proposed methodology using time series transformation/approximation
methods: (i) Creation of numerical representations of input sequences. (ii) Application of an appropriate
signal decomposition method to transform sequences into their feature space. (iii) Use of approximated
transformations to perform rapid data analysis in lower dimensional space. (iv) Validation of inferences
against original, full-resolution input sequences. In the case of reference-based alignment and taxonomic
classification, approximated read transformations were compared with a reference sequence. In our
de novo implementation, pairwise comparisons were performed between all of the approximated
read transformations.

2.5. Data

The implementations of our proposed methodologies were assessed with both simulated and
real virus datasets. The simulated datasets were generated using CuReSim [48] and WGSIM
(https://github.com/lh3/wgsim). Simulated data included information, such as the reference genome
used, the alignment position and alignment direction, for each read, enabling rigorous evaluation of the
proposed techniques. We used two simulators to examine our approach in a variety of use cases. CuReSim is

https://github.com/lh3/wgsim
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highly customisable, allowing the user to control the type of variation (insertion, deletion and substitution)
to simulate. WGSIM can simulate genomes with uniform insertion, deletion and substitution variation.

CuReSim was used to generate 16 HIV-1 HXB2 simulated datasets with different levels and types
of variation. WGSIM was used to generate 4 mixed virus datasets with different levels of variation.
Each simulation contained 200,000 reads generated using 5 Norovirus, 5 Ebola virus and 5 Respiratory
syncytial virus (RSV) genomes, with various types and extents of simulated variation. HXB2 and
simulated mixed virus datasets and corresponding reference genomes used to simulate them are
deposited on GitHub (https://github.com/Avramis/Supporting-data/tree/master/Simulated%20Data).
Table 2 contains detailed information about the simulated datasets.

Table 2. Simulated read data. Each row contains details for each simulated dataset (i.e., virus family,
virus, GenBank ID, variation type, variation level, number of reads and simulator used to generate
data). Abbreviations: Ins, insertions; Del, deletions and Sub, substitutions.

Family Virus GenBank Genome ID
Variation Type (%)

Reads Simulator
Ins Del Sub

HIV HXB2 K03455 0.0 0.0 0.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 1.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 2.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 3.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 4.0 2133 CuReSim

HIV HXB2 K03455 0.0 0.0 5.0 2133 CuReSim

HIV HXB2 K03455 0.5 0.5 0.0 2133 CuReSim

HIV HXB2 K03455 1.0 1.0 0.0 2133 CuReSim

HIV HXB2 K03455 1.5 1.5 0.0 2133 CuReSim

HIV HXB2 K03455 2.0 2.0 0.0 2133 CuReSim

HIV HXB2 K03455 2.5 2.5 0.0 2133 CuReSim

HIV HXB2 K03455 0.5 0.5 1.0 2133 CuReSim

HIV HXB2 K03455 1.0 1.0 2.0 2133 CuReSim

HIV HXB2 K03455 1.5 1.5 3.0 2133 CuReSim

HIV HXB2 K03455 2.0 2.0 4.0 2133 CuReSim

HIV HXB2 K03455 2.5 2.5 5.0 2133 CuReSim

Mixed Viruses:
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

0.0 0.0 0.0 200,000 WGSIM

Mixed Viruses:
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

1.0 1.0 1.0 200,000 WGSIM

Mixed Viruses,
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

3.33 3.33 3.33 100,000 WGSIM

Mixed Viruses,
Caliciviridae,
Filoviridae,

Pneumoviridae

Norovirus,
Ebola

virus, RSV

KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608,
KU296553, KU296549, KU296528,
KU296416, KP317952, KP317946,
KP317934, KP317923, KP317922

6.66 6.66 6.66 200,000 WGSIM

Furthermore, 15 publicly available real virus datasets were used for the evaluation of our
methodology. The real datasets comprise 5 Norovirus, 5 Ebola virus and 5 human respiratory syncytial

https://github.com/Avramis/Supporting-data/tree/master/Simulated%20Data
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virus (RSV) short read datasets. Norovirus NGS datasets (ERR225628, ERR225629, ERR225631,
ERR225632, ERR225633) were generated from diarrhoeal patients in Vietnam [49]. Group A rotavirus
datasets were obtained from human and pig samples from Vietnam [50]. Human coronavirus
NL63 datasets were obtained from Kenya [51]. The Ebola virus datasets (SRR3107337, SRR3107338,
SRR3107340, SRR3107342, SRR3107343) were retrieved from the bioproject PRJNA309162, generated
during the outbreaks in West Africa in 2013–2016 [52]. The human respiratory syncytial virus (RSV)
datasets (ERR303259, ERR303260, ERR303261, ERR303262, ERR303263) [53] were generated from
humans in Kenya. All 15 datasets are publicly available. The accession numbers of Sequence Read
Archive (SRA) and European Nucleotide Archive (ENA) can be found in Table 3.

Table 3. Real short reads data. Rows contain information for each real reads’ dataset (i.e., virus family,
virus, genome strain GenBank ID, SRA project ID, number of reads and technology used to sequence
data). SRA: Sequence Read Archive; ENA: European Nucleotide Archive.

Family Virus Amplicon/Random
Primer

GenBank
Genome ID ENA/SRA_ID Reads Sequencing

Technology

Caliciviridae Norovirus Amplicon KM198486 ERR225628 2126502 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198500 ERR225629 3037674 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198511 ERR225631 3285078 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198528 ERR225632 4361884 Illumina MiSeq

Caliciviridae Norovirus Amplicon KM198529 ERR225633 5187234 Illumina MiSeq

Filoviridae Ebola virus Amplicon KU296608 SRR3107337 522968 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296549 SRR3107338 771031 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296416 SRR3107340 186657 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296553 SRR3107342 478346 Ion Torrent PGM

Filoviridae Ebola virus Amplicon KU296528 SRR3107343 42410 Ion Torrent PGM

Pneumoviridae RSV Amplicon KP317934 ERR303259 7275032 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317922 ERR303260 9278070 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317946 ERR303261 11111114 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317923 ERR303262 13293226 Illumina MiSeq

Pneumoviridae RSV Amplicon KP317952 ERR303263 15237848 Illumina MiSeq

The HIV-1 HXB2 genome (K03455) was used as a reference index to align and/or run the taxonomic
classification analysis for the HXB2 simulated dataset. The Norovirus genome KM198509, the Ebola
virus genome KM034562 and the RSV genome KP317934 were used as a reference index to align
and/or run the taxonomic classification analysis for the mixed virus datasets. The Norovirus genome
KM198509 was used to run the taxonomic classification analysis on the real Norovirus datasets,
the Ebola virus genome KM034562 was used to run the taxonomic classification analysis on the real
Ebola datasets and the RSV genome KP317934 was used to perform the taxonomic classification
analysis on the real RSV datasets. All reference genomes used in this study are available from the
NCBI (https://www.ncbi.nlm.nih.gov/genome), and accession numbers can be found in Table 4.

Table 4. Reference genomes used during classification and reference-based alignment.

Family Virus GenBank ID: Length (nt)

Retroviridae Human immunodeficiency virus 1 (HXB2) K03455 9179

Caliciviridae Norovirus KM198509.1 7425

Filoviridae Zaire ebolavirus KM034562.1 18957

Pneumoviridae Human orthopneumovirus (Respiratory Syncytial Virus) KP317934.1 15233

https://www.ncbi.nlm.nih.gov/genome
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2.6. Classification and Alignment Evaluation

The accuracy of a classification and an alignment tool can be quantified in terms of the
F-measure [48], a balanced measure of precision and recall, with precision = true positive/true
positive + false positive, recall = true positive/true positive + false negative and the F-measure = 2 ×
(precision x recall)/(precision + recall) [48]. In the case of simulated data, information concerning the
position of the read on the reference and alignment direction can be used to establish the correctness of
alignment, and thereby provide a more informative F-measure score. Unclassified reads are considered
a false negative result. Any reported match to the correct region of the genome in the correct direction
is considered a true positive result. However, if the alignment position or direction information is
unavailable, the F-measure can be calculated from the number of hits reported for a read, or the
absence of a hit. Again, unclassified reads are considered false negative results, and classified reads
are considered true positive results. In the case of mixed genome data, the F-measure score can be
calculated by taking into consideration the number of hits that are reported for a read, as well as if a
read is assigned to a reference genome from the same family. If a read is assigned to a genome from a
different virus family, it is considered a false positive result, while unclassified reads are considered a
false negative result.

3. Results

3.1. Classification by Numbers (CBN)

For the taxonomic classification analysis, a classification tool was implemented in C++ (https:
//github.com/Avramis/ClassificationByNumbers). The implementation was developed to evaluate
our methodology but was not optimised for speed. Users might specify parameters, such as the
representation method, transformation method, search stringency and the k-mer length. A VP-tree
indexing structure classified reads using a given set of genomic references. VP-tree construction began
with the extraction of all unique k-mers, of a user-specified length k, from the set of supplied reference
genomes. Each unique k-mer was represented in numerical sequence and then transformed into a lower
dimensional space. The transformed data were then used to generate the VP-tree indexing structure.
Subsequently, each short read from a query set was converted into numerical space, transformed
to a lower dimensional space and evaluated against the VP-tree. The approximate solution arising
from this was then evaluated using the original data to identify false positive matches. The CBN
algorithm generated two output files. The first output was a text file providing detailed information
on all of the classification matches generated for each read, including the reference name, the direction
in which the query read was aligned to the reference, the start and end position of the query on the
reference, the alignment score, the CIGAR string describing how the read aligns with the reference
and the actual alignment of the query read on the reference genome. The second tabular output file
provided a brief overview of the alignment. Each line contained the name of the read, the number of
classifications generated for that particular read, the highest classification score obtained, the name of
the reference, which provided the highest classification score, the alignment direction and starting
position on the reference.

The CBN tool was evaluated against NCBI-BLAST 2.8.1 BLASTn [54] and Kaiju 1.6.3 [55] classifier
tools. BLASTn performs the analysis in nucleotide space, whereas Kaiju translates nucleotide sequences
from every possible reading frame and performs the analysis in protein sequence space. Figures 3–5
illustrate the results of the classification evaluation process. Both BLASTn and Kaiju were evaluated
using their default parameters. CBN was evaluated using k-mers of 100, 150, 200, 250 and 300 for the
HXB2 simulated reads and 50, 100 and 150 for the mixed virus and real datasets. For the DFT and PAA
methods, we evaluated the use of transformation/approximations with 2, 4, 6, 8, 10 and 12 Fourier
frequencies or PAA coefficients, respectively. For the DWT variant, we tested the cases of 2, 4, 8, 16 and
32 wavelets.

https://github.com/Avramis/ClassificationByNumbers
https://github.com/Avramis/ClassificationByNumbers
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Figure 3. Accuracy of our prototype classification implementation and two established tools on
HIV-1 HXB2 simulated datasets. All plots illustrate the F-measures obtained on the 16 different HIV
datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files. Plot 3-i
depicts the F-measures obtained for each classifier on the simulations with 0% to 5% of substitution
variation rate. Plot 3-ii illustrates the F-measures obtained for each classifier on the simulations with
0% to 5% uniform insertion/deletion variation, and plot 3-iii illustrates the F-measures obtained for
each tool on simulations of uniform 0% to 10% insertion/deletion and substitution variation.
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Figure 4. Accuracy of our prototype classification implementation and two established tools on
mixed viruses simulated datasets. The y-axis indicates the F-measure score, and the x-axis depicts
the reads data files. The plot depicts the F-measures obtained for each classifier on the mixed virus
simulations. DFT: discrete Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise
aggregate approximation.
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Figure 5. Accuracy of our prototype classification implementation and two established tools on
real sequences. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
Plot 5-i depicts the F-measures obtained for each classifier on the Norovirus sequences data. Plot 5-ii
illustrates the F-measures obtained for each classifier on the Ebola sequence data. Plot 5-iii illustrates
the F-measures obtained for each tool on Respiratory syncytial virus (RSV) sequence data. DFT: discrete
Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.

Figure 3 shows the results obtained from the classification process on HIV- 1 HXB2 data. Figure 4
illustrates the results of the mixed virus datasets. Figure 5 illustrates the results obtained from the
real data. For taxonomic classification of HIV-1 HXB2 simulated reads, where the short reads were
classified against the genome used to generate them, Kaiju reported the highest accuracy scores.
CBN outperformed BLASTn in most cases, falling behind in terms of accuracy only on datasets with
high variation rates. For the mixed virus simulated datasets, where reads were classified against
species strains related to those used to generate reads, BLASTn correctly assigned the most species,
followed closely by CBN and finally Kaiju. In the evaluation of the tools on the real data, where reads
were classified using a publicly available species-specific reference sequence, CBN generated more
accurate results than other tools, followed by Kaiju and BLASTn.

3.2. Alignment by Numbers (ALBN)

To test the applicability of sequential data transformations and feature selection for read alignment,
we implemented a prototype k-NN read aligner (Figure 6) in C++ (available at https://github.com/

Avramis/Alignment_by_numbers). As with the CBN classification analysis, the ALBN code was not
optimised for speed. Users might specify parameters, such as the representation method, transformation
method, search stringency and the k-mer length used for seeding alignments. The algorithm’s output
was used to construct gapped alignments in the widely used Sequence Alignment/Map (SAM)
file format.

https://github.com/Avramis/Alignment_by_numbers
https://github.com/Avramis/Alignment_by_numbers
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The ALBN tool was evaluated against a set of well-established, widely used, state-of-the-art tools,
such as Bowtie2 (version 2.3.1) [56], BWA-MEM (version 0.7.16) [7], GraphMap (version 0.5.2) [57]
and Segmehl (version 0.3.4) [58]. Existing state-of-the-art tools were evaluated with default settings.
ALBN was evaluated using k-mer lengths of 100, 150, 200, 250 and 300 for the HXB2 simulated reads
and 50, 100 and 150 for the mixed virus and real datasets. For the DFT and PAA variants, we evaluated
the use of transformation/approximations with 2, 4, 6, 8, 10 and 12 frequencies and PAA coefficients
accordingly. For the DWT variant, we tested the cases of 2, 4, 8, 16 and 32 wavelets.

Each aligner’s accuracy was quantified in terms of the F-measure [48]. CuReSim provides
information, such as the simulated read’s origin on the reference genome and its alignment direction,
enabling evaluation of each aligner’s output and calculation of alignment accuracy in terms of the
F-measure. For mixed virus datasets, tool performance was evaluated in terms of ability to match and
align reads to the appropriate virus reference genome. For the real data, F-measures were calculated
according to the number of reads aligned to the given genome or otherwise.

Figures 7–9 illustrate the F-measures obtained by evaluating alignments from each aligner.
Figure 7 illustrates alignment performance for each of the 16 datasets simulated using the
K03455 HIV-1 HXB2 reference genome. Figure 8 illustrates the alignment performance for virus
reads simulated with Norovirus genome KM198509.1, Ebola genome KM034562.1 and the RSV genome
KP317934.1. Figure 9i–iii illustrate alignment performance (F-measure) for alignments of real Norovirus,
Ebola virus and RSV sequences against the same reference genomes as those used for simulation.

ALBN provided accurate results in all scenarios tested. Regarding the HIV-1 HXB2 data, where
short reads were aligned to the genome used to generate them, ALBN provided the most accurate results
in all 16 cases, followed by Bowtie2. This was also the case for the mixed virus datasets, where reads
were aligned to reference strains related to those used to generate the dataset. In both cases, GraphMap
and BWA-MEM were third and fourth in terms of accuracy, respectively. ALBN also generated
the most accurate alignment results using real data, where reads were aligned to species-specific
reference genomes.
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Figure 7. Accuracy of our prototype reference alignment implementation and four established tools on
HIV-1 HXB2 simulated datasets. This Figure illustrates the F-measures obtained on the 16 different
HIV datasets. Plot 6-(i) depicts the F-measures obtained for each aligner on the simulations with 0%
to 5% of substitution variation rate. Plot 6-(ii) illustrates the F-measures obtained for each aligner
on the simulations with 0% to 5% uniform insertion/deletion variation, and plot 6-(iii) illustrates
the F-measures obtained for each tool on simulations of uniform 0% to 10% insertion/deletion and
substitution variation. DFT: discrete Fourier transform; DWT: discrete wavelet transform; PAA:
piece-wise aggregate approximation.
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Figure 8. Accuracy of our prototype aligner implementation and four established tools on mixed viruses
simulated datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
The plot depicts the F-measures obtained for each aligner on the mixed virus simulations. DFT: discrete
Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.
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3.3. De novo Assembly by Numbers 

Lastly, to test the applicability of this approach to the de novo assembly of short reads, we 

implemented assembly by numbers (ASBN), a prototype algorithm for all-against-all k-mer 

comparison, using data transformations/approximation. Note, preliminary results have been 
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Figure 9. Accuracy of our prototype aligner implementation and four established tools on real
sequences datasets. The y-axis indicates the F-measure score, and the x-axis depicts the reads data files.
Plot 8-(i) depicts the F-measures obtained for each aligner on the Norovirus sequences data. Plot 8-(ii)
illustrates the F-measures obtained for each aligner on the Ebola sequences data. Plot 8-(iii) illustrates
the F-measures obtained for each tool on the Respiratory syncytial virus (RSV) sequences data. DFT:
discrete Fourier transform; DWT: discrete wavelet transform; PAA: piece-wise aggregate approximation.

3.3. De novo Assembly by Numbers

Lastly, to test the applicability of this approach to the de novo assembly of short reads, we implemented
assembly by numbers (ASBN), a prototype algorithm for all-against-all k-mer comparison, using data
transformations/approximation. Note, preliminary results have been presented as a conference paper [59].
Figure 10 illustrates the main concept of our de novo assembly approach. For the ASBN tool, reads are
represented as numerical sequences using an appropriate numerical representation method (Table 1).
Here, we used the tetrahedron numerical representation. Every k-mer of each numerically represented
read was identified and transformed to lower dimensional space using the chosen transformation
method. All k-mers’ transformations were used to build a VP-tree, to allow for fast data comparison.
Afterwards, all k-mers were compared to the rest of the data using the VP-tree index. Information from the
data comparison was used to construct a weighted graph similar to that shown in Figure 10A. The shortest
path on the weighted graph was identified with a breadth-first search (BFS) (Figure 10B). Reads overlaps
were used to generate an OLC alignment of short reads (Figure 10C).
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Figure 10. A de novo assembly methodology for numerically represented nucleotide reads.
All-against-all sequence comparison (A) enables the construction of a read graph with weighted
edges. The weight assigned to each edge is the smallest pairwise distance obtained between every
possible k-mer representation of the two reads. In this example, a 5-mer was used. The smallest distance
between every possible k-mer can be obtained by either using a sliding window approach or break
reads every possible subsequence with length k. (B) The shortest path in the graph is identified with a
breadth-first search algorithm (red coloured edges) thereby (C) enabling read alignment. A DNA walk
representation of the overlapped reads (D) may subsequently be used as a three-dimensional graphical
portrayal of the reads, illustrating alignment characteristics.

The ASBN assembler was compared with Megahit (version 1.1.3) [60] and SPAdes (version
3.13.0) [61] de novo assemblers on the HIV-1 HXB2, and mixed virus simulated datasets accordingly.
Megahit, SPAdes, BLASTn and Kaiju were evaluated using default parameters. ASBN was evaluated
using k-mer lengths 100, 150, 200, 250 and 300 for the HXB2 simulated reads and 50, 100 and
150 for the mixed virus datasets. For the DFT and PAA variants, we evaluated the use of
transformation/approximations with 2, 4, 6, 8, 10 and 12 frequencies and PAA coefficients accordingly.
For the DWT variant, we tested the cases of 2, 4, 8, 16 and 32 wavelets.

The derived contigs from each assembler were evaluated against the reference genomes used
to generate the data simulations with BLASTn [54]. From the BLASTn output, information about
the contigs’ alignment position on the genome and the length of the alignment were obtained.
Subsequently, a measure of assembly contiguity and the sum of gaps/mismatches were calculated and
plotted on an X-Y matrix (similar to Figures 11 and 12) with x being the total coverage of the genomes
generated and y being the total number of gaps in the coverage. A perfect assembly would have x =

full genome length and y = 0, indicating that the contig is identical to the genome in terms of length
and nucleotide composition. For the HIV-1 HXB2 datasets, the contigs were evaluated against the
K03455 genome, and the contigs obtained from the mixed virus datasets were evaluated against the
15 different genomes: KM198529, KM198528, KM198511, KM198500, KM198486, KU296608, KU296553,
KU296549, KU296528, KU296416, KP317952, KP317946, KP317934, KP317923 and KP317922.
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Figure 11. Accuracy of our prototype de novo assembly implementation and two established tools
on HIV-1 HXB2 simulated datasets. The contigs obtained for each assembler were evaluated against
the reference genome used to generate the simulated data. BLASTn was used to align all contigs to
an HIV-1 HXB2 reference genome and determine genome coverage. The y-axis indicates the number
of gaps and mismatches that exist in the contigs obtained for each tool, and the x-axis depicts the
length of the genome the reported contigs cover. The contigs obtained from the assembly of the
HIV-1 HXB2 simulated short read data were evaluated against the K03455 reference genome. Plot 10-i
illustrates results obtained from all assemblers on variation-free data. Plots 10-ii to 10-vi illustrate
results obtained from all assemblers on data with different levels of substitution variation. Plots 10-vii
to 10-xi illustrate results obtained from all assemblers on data with different levels of insertion/deletion
variation. Plots 10-xii to 10-xvi illustrate results obtained from all assemblers on data with different
levels of combined insertion/deletion and substitution variation.
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Figure 12. Accuracy of our prototype de novo assembly implementation and two established tools on
mixed viruses simulated datasets. The contigs obtained for each assembler were evaluated against the
reference genome that was used to generate the simulated data. BLASTn was used to align all contigs
to an HIV-1 HXB2 reference genome and determine how much of the particular genome they cover.
The y-axis indicates the number of gaps and mismatches that exist in the contigs obtained for each
tool, and the x-axis depicts the length of the genome the reported contigs cover. The contigs obtained
from the mixed virus simulated dataset were evaluated against the KM198529, KM198528, KM198511,
KM198500, KM198486, KU296608, KU296553, KU296549, KU296528, KU296416, KP317952, KP317946,
KP317934, KP317923 and KP317922 references genomes. Plots 11-i to 11-iv illustrate results obtained
from all assemblers on data with 0%, 3%, 10% and 20% variation levels accordingly.

Figure 11 illustrates the assembly results of SPAdes, Megahit and all three variants of ASBN
on the 16 simulated HIV-1 HXB2 datasets. Figure 12 illustrates the assembly results on the mixed
virus simulated databases. Although ASBN processes data and assembles short reads in a lower
dimensional space, it nevertheless generated contigs that collectively cover the expected genome length
and provided comparable results to both existing state of the art de novo assemblers tested in this
experiment (Figures 11 and 12). In all cases, ASBN generated contigs spanning the whole genomes of
their respective viral species.

4. Discussion

Although well-established data compression methods for reversible compression of
one-dimensional and multivariate signals, images, text and binary exist [62–64], there are very
few examples of their application to biological sequence data. We have developed algorithms
incorporating signal compression methods for three common biological sequence analysis problems:
classification, alignment and de novo assembly of NGS short read virus data. Our results in
Figures 3–12 show that this approach permits accurate classification of de novo assembly and reference
alignment in spite of high rates of sequence variation or the use of a divergent reference genome.
Data approximation/summarisation techniques, such as the DFT, the DWT and the PAA, can be used
to extract major features of sequence data and to suppress noise or low-level variation. This allows
sequence comparison exploiting the major characteristics of the data, thus enabling the identification
of similarities that might otherwise be concealed by minor variation or sequencing error/noise.

Collectively, our results demonstrate that complete nucleotide-level sequence resolution is not
a prerequisite of accurate sequence analysis and that analytical performance can be preserved and
even enhanced through appropriate dimensionality reduction (compression) of sequences. While our
implementations use k-mers, the nature of the transformation/compression methods used shows
that optimal k-mer length selection is far less important than the conventional exact k-mer matching
methods. The inherent error tolerance of the approach also permits the use of longer k-mers than
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typically used in conventional sequence comparison algorithms, reducing the computational burden
of pairwise comparison, and thus, in de novo assembly specifically, the complexity of building and
searching an assembly graph.

Efficient mining of terabase-scale biological sequence datasets requires looking beyond
substring-indexing algorithms [65] towards more versatile methods of compression for both data
storage and analysis. The use of probabilistic data structures can considerably reduce the computer
memory required for in-memory sequence lookups at the expense of a few false positives, and Bloom
filters and related data structures have seen broad application in k-mer centric tasks, such as error
correction [66], in silico read normalisation [67] and de novo assembly [68,69]. However, while
these hash-based approaches perform well on datasets with high sequence redundancy, for large
datasets with many distinct k-mers, large amounts of memory are still necessary [67]. Lower bounding
transformations and approximation methods (such as the DFT, the DWT and PAA) can exhibit the
same attractive one-sided error offered by these probabilistic data structures, but instead of hash tables,
use concrete and reusable sequence representations.

Furthermore, transformations allow compression of standalone sequence composition, enabling
flexible reduction of sequence resolution according to analytical requirements, so that redundant
sequence precision need not hinder analysis. While the problem of read alignment to a known reference
sequence is largely considered solved, assembly of large genomes remains a formidable problem in
computing. Moreover, consideration of the metagenomic composition of mixed biological samples,
as demonstrated, further extends the scope and scale of the assembly problem beyond what is tractable
using conventional sequence comparison approaches. By implementing a reference-based aligner and
de novo assembler, we have demonstrated that using compressed numerical representations offers a
versatile approach for reconstructing genomes and metagenomes sequenced with short reads.

Emerging long read sequencing technologies bring new challenges for sequence data analysis.
Whilst the error rate of Oxford Nanopore sequencing platform, for example, has decreased considerably
since the technology’s introduction [70,71], the relatively high error rate still limits the scope of
downstream analyses [72]. Efficient algorithmic approaches are needed to (1) identify sequence
identity/infer homology in spite of abundant insertion/deletion errors associated with the platform,
which are problematic for approaches dependent on exact subsequence matching and (2) to overcome
issues relating to high data dimensionality and the curse of dimensionality [73]. Both in terms of the
raw electric current traces generated by DNA translocation through a nanopore and the corresponding
base-called sequences, the resemblance between long reads and time series data from other fields
is striking, such that the various transformations/approximations we have implemented will be
directly applicable.

In conclusion, nucleotide sequences may be effectively represented as numerical series, enabling
the application of existing analytical methods from a variety of mathematical and engineering fields
for the purposes of sequence alignment and assembly. By applying established signal decomposition
methods, compressed representations of nucleotide sequences can be created, permitting reductions in
the spatiotemporal complexity of their analysis, without necessarily compromising analytical accuracy.
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