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Abstract: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne
bunyavirus that causes severe disease in humans with case-fatality rates of up to 30%. There are
currently very limited treatment options for SFTSV infection. We conducted a drug repurposing
program by establishing a two-tier test system to rapidly screen a Food and Drug Administration-
(FDA)-approved drug library for drug compounds with anti-SFTSV activity in vitro. We identified
five drug compounds that inhibited SFTSV replication at low micromolar concentrations, including
hexachlorophene, triclosan, regorafenib, eltrombopag, and broxyquinoline. Among them,
hexachlorophene was the most potent with an IC50 of 1.3 ± 0.3 µM and a selectivity index of
18.7. Mechanistic studies suggested that hexachlorophene was a virus entry inhibitor, which impaired
SFTSV entry into host cells by interfering with cell membrane fusion. Molecular docking analysis
predicted that the binding of hexachlorophene with the hydrophobic pocket between domain I
and domain III of the SFTSV Gc glycoprotein was highly stable. The novel antiviral activity and
mechanism of hexachlorophene in this study would facilitate the use of hexachlorophene as a lead
compound to develop more entry inhibitors with higher anti-SFTSV potency and lower toxicity.
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1. Introduction

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus in
the genus Banyangvirus, family Phenuiviridae, order Bunyavirales. It was first identified in Huaiyangshan,
a mountainous area in Huaiyang County in the Henan province of China [1]. Subsequently, the virus
has also been isolated from infected humans, ticks, and mammals in Japan and South Korea. SFTSV is
so named as it causes severe fever with thrombocytopenia syndrome (SFTS), an acute febrile illness
characterized by high fever, thrombocytopenia, and hemorrhagic complications in infected humans.
Patients with SFTS may also develop other clinical manifestations such as systemic upset, coma, slurred
speech, gastrointestinal upset, hepatosplenomegaly, and lymphadenopathy, as well as abnormal
laboratory findings including leukopenia, prolonged activated partial thromboplastin time, deranged
liver function tests, proteinuria, hematuria, and elevated creatinine kinase and lactate dehydrogenate
levels. The mortality rate of SFTS may be as high as 17% to 30% [1,2].

In addition to tick-borne transmission, non-vector-borne transmission of SFTSV has also been
reported. A number of case clusters linked to nosocomial or intra-familial transmission have been
described. While the majority of the secondary cases in these clusters were likely infected through
unprotected direct contact with the index patients’ blood and/or bodily fluids with high viral loads,
possible transmission of the virus through exposure to contaminated hospital environment surfaces
and aerosols have also been reported recently [3–6].

Despite the clinical and public health importance of SFTSV, treatment options remain very limited.
Ribavirin exhibits some inhibitory effects on SFTSV replication in vitro and in a type I interferon
receptor-deficient mouse model, but it was not found to be effective in a retrospective cohort of
patients [2,7]. Comparatively, favipiravir (T-705), an RNA-dependent RNA polymerase inhibitor with
broad-spectrum antiviral activities, demonstrated higher in vitro and in vivo antiviral effects against
SFTSV. However, favipiravir is not clinically approved or readily available in many countries affected
by SFTSV, including China. To identify drug compounds that can be used to treat patients or reduce the
transmission of SFTSV, especially in the hospital setting, we conducted a drug repurposing program
by screening a Food and Drug Administration (FDA)-approved drug library consisting of 1528 drug
compounds. We first established a robust two-tier (ELISA followed by viral load reduction assay)
screening platform for SFTSV. Using this drug screening platform, we identified five drug compounds
with anti-SFTSV activity in vitro, and characterized the anti-SFTSV mechanism of the most potent
drug, hexachlorophene, as an entry inhibitor of SFTSV.

2. Materials and Methods

2.1. Virus, Cell Lines, and Drug Compounds

SFTSV HB29 strain (a gift from Dr. Benjamin Brennan, MRC-University of Glasgow Centre for
Virus Research and Professor Mifang Liang, China CDC) was propagated in Vero cells and kept at−80◦C
in aliquots. Plaque forming unit (PFU) assay was performed to titrate the cultured virus. Vero (African
green monkey kidney, ATCC, CCL-81) and Huh-7 (human hepatoma, JCRB, 0403) cells were maintained
in Dulbecco’s modified eagle medium (DMEM, Gibco, CA, USA) culture medium supplemented with
10% heat-inactivated FBS (fetal bovine serum, Gibco), 50 U/mL penicillin, and 50 µg/mL streptomycin
as previously described [8–10]. Upon virus infection, the cells were maintained in FBS-free medium
with or without drug compounds. All experiments involving live SFTSV followed the approved
standard operating procedures of the Biosafety Level 3 facility at the Department of Microbiology,
The University of Hong Kong [11]. The FDA-approved drug library (Cat# HY-L022) and all the tested
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drug compounds were purchased from MedChem Express (Monmouth Junction, NJ, USA) unless
otherwise specified.

2.2. Cell Viability Assay and Cytopathic Effect (CPE) Inhibition Assay

The CellTiterGlo luminescent assay (Promega Corporation, Madison, WI, USA) was performed to
detect the cytotoxicity of the selected drug compounds as previously described [12]. Briefly, Vero cells
(4 × 104 cells/well) were incubated with different concentrations of the individual compound for 72 h,
followed by the addition of substrate and measurement of luminance 10 min later. The 50% cytotoxic
concentrations (CC50) of the drug were calculated by Sigma plot (SPSS) in an Excel add-in ED50V10.
To explore a suitable assay for FDA-approved drug library screening, the cytopathic effect (CPE)
inhibition assay was also performed as previously described with slight modifications [13]. Briefly,
Vero cells seeded in 96-well plates were infected with SFTSV for 1 h with different multiplicities of
infection (MOI) of 1.00, 0.10, or 0.01, followed by phosphate buffered saline (PBS) wash and replacement
of fresh DMEM medium containing 0.1% DMSO as the negative control or favipiravir (50 µg/mL) as
the positive control. The cell viability of each well was determined on day 1, 3, and 5 post-infection
(dpi) by the CellTiterGlo luminescent assay.

2.3. ELISA

ELISA was performed to determine the amount of viral nucleoprotein (NP) expression in
the culture supernatant as previously described with modifications [14]. Briefly, 100 ng/well of
rabbit-anti-SFTSV serum (Cat#PAB27171, Abnova, Taipei City, Taiwan) was coated in 96-well ELISA
plates for overnight incubation at 4 ◦C, followed by blocking with 2.5% FBS plus 2.5% FBS in PBS with
Tween 20 (Sigma-Aldrich, St. Louis, MO, USA) for 2 h at 37 ◦C. After washing, the culture supernatants
collected at 1, 3, or 5 dpi were transferred to the ELISA plates accordingly (50 µL, incubated at room
temperature for 2 h), followed by intensive wash and addition of 50 µL/well mouse-anti-SFTSV-NP
serum (in-house preparation), the secondary goat-anti-mouse horseradish peroxidase (HRP) antibody
(Invitrogen, Carlsbad, CA, USA), the 3,3′,5,5′-tetramethylbenzidine (TMB) solution (Invitrogen),
and the stop solution (0.1M HCl). Subsequently, the optical density of each well was read at 450 nm
(OD450) using VICTOR 3 multi-label plate reader (PerkinElmer, Inc., Waltham, MA, USA).

2.4. Viral Load Reduction Assay

Viral load reduction assay was performed as described previously with modifications [15,16].
Briefly, virus infection and drug treatment were first performed as described for the CPE inhibition
assay. Then, the culture supernatants were collected at 1, 3, and 5 dpi, followed by total nucleic
acid extraction. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) with
previously established primers (forward 5′-GGGTCCCTGAAGGAGTTGTAAA-3′ and reverse 5′-
TGCCTTCACCAAGACTATCAATGT -3′) and probe (FITC-TTCTGTCTTGCTGGCTCCGCGC-BHQ)
targeting the S segment of the SFTSV genome was then performed using the Roche LightCycler
Real-time PCR system [17].

2.5. Plaque Reduction Assay

Plaque reduction assay was performed as described previously with modifications [18]. Briefly,
Vero cells were seeded at 2 × 105 cells/well in 24-well tissue culture plates on the day before the assay
was performed. After 24 h of incubation, 60–80 PFUs of SFTSV were added to the cell monolayer with
or without the addition of selected drug compounds, and the plates were further incubated for 1 h at
37 ◦C in 5% CO2 before removal of unbound viral particles by aspiration of the media and washing once
with DMEM. The cell monolayers were then overlaid with media containing 1% low melting agarose
(Cambrex Corporation, East Rutherford, NJ, USA) in 2% FBS–DMEM and appropriate concentrations
of drug compounds, inverted, and incubated as stated above for another 8 days. Next, the wells were
fixed with 10% formaldehyde (BDH, Merck, Darmstadt, Germany) overnight. After removal of the
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agarose plugs, the cell monolayers were stained with 0.7% crystal violet (BDH, Merck), and the number
of plaques was counted. The percentage of plaque inhibition relative to the control (i.e., without the
addition of a drug compound) wells were determined for each drug concentration. The half maximal
inhibitory concentration (IC50) was calculated using Sigma plot (SPSS) in an Excel add-in ED50V10.

2.6. Virus Fusion Assay

To determine if hexachlorophene inhibits the cell membrane fusion of SFTSV, syncytium formation
of virus-infected cells was determined under low-pH exposure as previously described [19]. Briefly,
Vero cells were infected with SFTSV at 0.01 MOI. At 24 hpi, the cells were rinsed once with PBS and then
incubated with citrate-phosphate buffer (0.1 M citric acid and 0.2 M sodium dihydrogen orthophosphate,
Sigma-Aldrich, St. Louis, MO, USA) adjusted to pH 5.0 for 2 min. The citrate-phosphate buffer was
then replaced with 10% FBS–DMEM with or without hexachlorophene treatment. After 5 h, cell fusion
within monolayers was observed under a phase-contrast microscope.

2.7. Molecular Docking Analysis

The 3D structure of hexachlorophene (ID code: DB00756) was downloaded from the Drugbank
database (https://www.drugbank.ca/). The crystal structure of SFTSV Gc protein (PDB code: 5G47) was
used to build up the docking receptor [20]. Bond orders were assigned, hydrogens were added, and cap
termini were included with the Protein Preparation Wizard module as implemented in Maestro [21].
Protonation states of side chains were predicted by using PROPKA3.1 server [22]. Partial charges
over all atoms were finally assigned within the AMBER99 force field scheme as implemented in
AmberTools. Ligand binding sites were predicted with Metapocket2.0 server [23]. Ligand-receptor
docking was performed with LeadFinder version 1804 [24]. The top-ranked pose was visualized with
Pymol. Intermolecular interactions were visualized with Ligplot+ [25].

3. Results

3.1. Establishment of a Robust Antiviral Screening Platform for SFTSV

To establish a sensitive assay for anti-SFTSV drug screening, we compared the signal dynamic
range and screening window of three assays (i.e., CPE inhibition assay, ELISA, and viral load reduction
assay). The cell viability, SFTSV-NP protein expression, and the S-segment viral genome copy number
in the culture supernatant were monitored at 1, 3, and 5 dpi, respectively. Favipiravir was used as a
positive control in all three assays [7]. As shown in Figure 1a, differences of cell viability between the
favipiravir-treated and the DMSO-treated groups were less than 20%, indicating that the CPE inhibition
assay was not a sensitive assay for drug screening when favipiravir was used as a positive control.
Next, the culture supernatants were subjected to ELISA and qRT-PCR analyses. As shown in Figure 1b,
>10-fold and >15-fold read-outs between the favipiravir-treated and the DMSO-treated groups were
detected with 0.01 MOI at 3 dpi and 5 dpi, respectively, by ELISA. In the viral load reduction assay,
there was approximately 4-log10 difference in SFTSV RNA load between the two groups at the 3 dpi
and 5 dpi (Figure 1c). These data suggested that both the ELISA and the viral load reduction assay
were sensitive drug screening assays for SFTSV. Considering the cost-effectiveness of the two assays
and the need to balance between maximum drug efficacy and drug half-life (t1/2), drug compound
library screening was then performed using ELISA with 0.01 MOI of SFTSV as virus inoculum and the
culture supernatant being collected at 3 dpi.

https://www.drugbank.ca/
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Figure 1. Optimization and comparison of biochemical assays for Food and Drug Administration-
(FDA) approved drug compound library screening. Vero cells seeded in 96-well plate were infected
with severe fever with thrombocytopenia syndrome virus (SFTSV) for 1 h with the multiplicities of
infection (MOIs) indicated (1, 0.1 and 0.01), followed by phosphate buffered saline (PBS) wash and
replacement of fresh Dulbecco’s modified eagle medium (DMEM) containing 0.1% DMSO (negative
control) or favipiravir (50 µg/mL, positive control). (a) Cell viability of each well was determined
on day 1, 3, and 5 post-infection, which was normalized by that of the mock-infected cells. (b) Cell
culture supernatant was collected at the indicated time points and applied for ELISA to measure
the SFTSV-nucleoprotein (NP) protein intensity. (c) Alternatively, viral copy in the supernatant
was determined by quantitative RT-PCR (qRT-PCR). The experiments were carried out in triplicate.
The results are shown as mean ± standard deviation.

3.2. Identification of Anti-SFTSV Drug Compounds

An FDA-approved drug library with 1528 drug compounds was screened using the optimized
conditions with the concentration of each drug set at 10 µM. ELISA was utilized for primary screening,
followed by viral reduction assay as a secondary validation assay. Among the 1528 drug compounds,
the top 80 primary hits with >50% reduction of absorbance signal in ELISA were subjected to viral load
reduction assay (fixed drug compound concentration of 10µM) to further select compounds that can
inhibit SFTSV replication in a dose-dependent manner. Drug compounds with obvious cytotoxicity
at ≤10 µM were excluded. Five drug compounds, namely hexachlorophene, triclosan, regorafenib,
eltrombopag, and broxyquinoline, were identified as anti-SFTSV drug compounds after this two-step
screening (Figure 2b). These five drug compounds were then prioritized by their antiviral potency
(i.e., IC50 and IC99) (Table 1). Hexachlorophene was selected for further characterization, as it had
the lowest IC50 (1.3 ± 0.3 µM) and the highest selectivity index (CC50/IC50, 18.7) among the five drug
compounds in the viral load reduction assay.
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Figure 2. Identification of anti-SFTSV drug compounds. (a) Screening pipeline and attrition rates of
compounds from primary screening by ELISA, secondary screening by viral load reduction assay,
followed by prioritization by IC99. (b) Shown are chemical structures of five selected drugs that show
dose-dependent inhibition of SFTSV replication.



Viruses 2019, 11, 385 6 of 13

Table 1. Anti-SFTSV activity and cytotoxicity of five selected drug compounds.

Compound IC99 (µM) IC50 (µM) CC50 (µM) Selectivity Index

Hexachlorophene 7.5 ± 1.2 1.3 ± 0.3 24.3 ± 3.2 18.7
Triclosan 8.5 ± 2.1 3.2 ± 0.4 17.7 ± 2.9 5.5

Regorafenib 11.3 ± 0.5 4.5 ± 0.5 31.3 ± 0.5 7.0
Eltrombopag 10.3 ± 3.4 4.1 ± 0.2 18.4 ± 0.2 4.5

Broxyquinoline 16.3 ± 4.3 5.8 ± 1.3 36.4 ± 5.5 6.3

3.3. Ant-SFTSV Activity of Hexachlorophene In Vitro

The anti-SFTSV activity of hexachlorophene was further validated by viral load reduction assay
in different cell lines and plaque reduction assay. Dose-dependent reduction in the viral RNA load was
observed in the culture supernatant of hexachlorophene-treated Vero and Huh-7 cells with an IC50 of
1.3 ± 0.3 µM (Figure 3a). At 10 µM, hexachlorophene reduced the viral RNA load by ≥2-log10 at 72 hpi.
In the plaque reduction assay, hexachlorophene achieved 100% plaque reduction at ~10 µM, with an
IC50 of 2.6 ± 0.14 µM (Figure 3b). In the absence of SFTSV infection, hexachlorophene exhibited a CC50

of 24.3 ± 3.2 µM at 72 hpi in Vero cells (Figure 3c).
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3.4. Hexachlorophene Interferes with SFTSV Entry into Cells

To differentiate whether the entry or the post-entry phases of the SFTSV replication cycle were
interrupted by hexachlorophene, we performed a virus entry assay by exposing SFTSV-infected cells to
hexachlorophene during the virus entry step, followed by quantification of the intracellular SFTSV viral
RNA load at 2 hpi. As shown in Figure 4a, hexachlorophene or DMSO was co-mixed with SFTSV (5 MOI)
and incubated with Vero cells for 2 h. Significantly lower viral RNA load was detected in the cells
co-mixed with hexachlorophene (p = 0.0173) than those co-mixed with DMSO. Expectedly, there was
no statistically significant difference between the DMSO and favipiravir groups, as the latter is a viral
polymerase inhibitor (Figure 4a). The result indicated that hexachlorophene treatment interfered with
SFTSV entry. To further dissect the anti-SFTSV mechanism of hexachlorophene, we performed virus
attachment and inactivation assays to investigate whether the drug inhibited virus attachment to the
host cell surface or directly inactivated the viral particles by binding to the viral envelope. As shown in
Figure 4b, no significant (p = 0.7806) inhibitory activity was observed when hexachlorophene was added
to Vero cells pretreated with the drug compound (−4 to 0 hpi), which suggested that virus attachment to
the host cell surface was not affected. Virus infectivity was also not significantly (p = 0.3335) impaired
when SFTSV was pre-incubated with hexachlorophene for 2 h, followed by the detection of plaque
formation when hexachlorophene concentrations were <0.1 µM (Figure 4c).
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Figure 4. Hexachlorophene interferes with SFTSV entry without inhibiting viral attachment to host
cells or inactivating the virions. (a) SFTSV entry assay. Vero cells were infected with the mixture
of SFTSV (MOI = 5.0) and indicated drug for 2 h, followed by intensive wash and detection of
intracellular SFTSV viral RNA load by qRT-PCR assays. Favipiravir (T-705), a known virus polymerase
inhibitor, was used as the negative control. (b) SFTSV attachment assay. Vero cells were pre-treated by
hexachlorophene for 4 h, followed by intensive wash and shift to 4 ◦C incubate with SFTSV (MOI = 5.0).
After 2 h, the infectious inoculum was removed, cells were washed, and the intra-cellular viral RNA
load was determined by qRT-PCR. (c) SFTSV inactivation assay. SFTSV was incubated with 10 µM
hexachlorophene for 2 h, followed by standard plaque assay from diluting the mixture for 1000 fold
(i.e., the remaining concentration of hexachlorophene was below its IC50). All experiments were
performed in triplicates. Data are presented as mean values ± standard deviations. P value was
calculated by Student’s t-test (compared with the DMSO group).

3.5. Hexachlorophene Inhibits Membrane Fusion of SFTSV

The fusion of a virus-infected cell with neighboring cells leads to the formation of multi-nucleate
enlarged cells and syncytia [19,26]. This event is induced by surface expression of viral fusion proteins
that are fusogenic directly at the host cell membrane. Only viruses that are able to directly fuse at the
cellular surface without the need of endocytosis induce syncytium formation. Syncytium formation of
SFTSV-infected cells can be triggered by low pH buffer [19]. Since hexachlorophene interfered with
SFTSV entry without inhibiting viral attachment to host cells or inactivating the virions (Figure 4),
we therefore asked if hexachlorophene inhibited SFTSV membrane fusion. To this end, we first treated
SFTSV-infected cells in citrate-phosphate buffer adjusted to pH 5.0. Then, the cells were treated with
hexachlorophene (5.0 µM, 2.5 µM, or 0 µM) (Figure 5a). As shown in Figure 5b, syncytium formation
in SFTSV-infected cells was dramatically inhibited by hexachlorophene in a dose-dependent manner,
indicating that SFTSV-induced cell fusion was impaired.
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Figure 5. Hexachlorophene inhibits membrane fusion of SFTSV. (a) Schematic representation of the
experimental procedures. Vero cells were infected with SFTSV (MOI = 0.01) for 1 h. At 24 hpi,
the cells were treated with citrate-phosphate buffer adjusted to the pH 5.0 for 2 min, washed, and
then replaced with DMEM containing 10% fetal bovine serum (FBS) and different concentrations of
hexachlorophene. Syncytium formations were determined by microscopic examination at 5 h after
drug addtion. (b) Syncytium formation of SFTSV-infected Vero cells with or without hexachlorophene
treatment. Mock-infected Vero cells (left) were included as the negative control (magnification 80×).

3.6. Hexachlorophene is Predicted to Occupy the SFTSV Gc Hydrophobic Pocket

Viral envelope proteins are known to fuse with plasma or endosomal membranes to allow the
release of the viral genome. The SFTSV M segment encodes the two viral envelope glycoproteins
(GPs), Gn and Gc. The N-terminal, Gn, is responsible for receptor binding to the cell surface
while the C-terminal, Gc, is a fusion protein that facilitates virus entry [27]. To characterize the
relative binding affinity and intermolecular interactions between hexachlorophene and the SFTSV Gc
glycoprotein, molecular docking was performed to predict the binding pose of the drug. As shown
in Figure 6a, hexachlorophene was predicted to bind with the deep hydrophobic pocket between
domain I and domain III of the SFTSV Gc glycoprotein with a relative binding free energy ∆G output
of −9.2 kcal/mol [20]. Broad areas of hydrophobic interactions between the ligand and the protein were
predicted to occur, and the hydrogen and halogen bonds were predicted to stabilize the binding pose
(Figure 6b,c). Overall, these findings suggested that the binding of hexachlorophene to the hydrophobic
pocket at the SFTSV Gc glycoprotein was highly stable.
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Figure 6. Docking model between hexachlorophene and the SFTSV Gc glycoprotein. (a) Left:
top-ranked docking pose predicting the binding between hexachlorophene and the deep hydrophobic
pocket of the SFTSV Gc glycoprotein. Hydrophobicity is highlighted in red. Right: the SFTSV Gc
glycoprotein domains I, II, and III are highlighted in red, yellow, and blue, respectively. (b) 2D and
(c) 3D intermolecular interaction showing hydrogen bonding, halogen bonding, and hydrophobic
interactions between hexachlorophene and Gc protein. Hydrogen and halogen bonds are indicated in
blue lines, and the distances are also labeled.

4. Discussion

As exemplified by the recent epidemics caused by severe acute respiratory syndrome and Middle
East respiratory syndrome coronaviruses, Ebola virus, and Zika virus, the de novo development of new
antiviral treatments invariably lags behind the rapid progression of emerging viral outbreaks [28–30].
Thus, drug repurposing programs have been increasingly conducted to find clinically approved drugs
with in vitro and/or in vivo activity against emerging viruses [31]. The candidate drug compounds
identified in these drug repurposing programs have the advantages of being clinically available
with known pharmacokinetics, pharmacodynamics, and side effect profiles. This information would
facilitate more rapid development of the repurposed drug compounds into clinical use. SFTSV is
an emerging tick-borne bunyavirus that causes severe disease in infected humans with very limited
antiviral treatment options. In this study, we established a robust two-tier drug screening platform and
then used it to screen a drug library consisting 1528 FDA-approved drug compounds to successfully
identify five drugs that were able to inhibit SFTSV replication at low micromolar levels. These included
antibacterial and antifungal disinfectants (hexachlorophene and triclosan), multi-kinase inhibitor for
the treatment of advanced solid organ tumors (regorafenib), small molecule agonist of the c-mpl
receptor for the treatment of immune thrombocytopenic purpura and aplastic anemia (eltrombopag),
and antiprotozoal agent (broxyquinoline).
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Among these five drugs, hexachlorophene demonstrated the highest antiviral potency in vitro.
Hexachlorophene is an organochlorine compound that was widely used as a topical antibacterial
and antifungal disinfectant and surgical scrub, as well as in agriculture as a bactericide, fungicide,
and pesticide [32]. Moreover, hexachlorophene also exhibited antiviral activity against various RNA and
DNA viruses. Disinfectants containing hexachlorophene exhibited antiviral activity against rhinovirus
(in combination with ethyl alcohol) and rotavirus (0.75% hexachlorophene or 0.1% hexachlorophene
with 70% isopropylalcohol) [33,34]. Hexachlorophene inhibited the 3C-like protease activity of severe
acute respiratory syndrome coronavirus and the in vitro replication of other coronaviruses, including
murine hepatitis virus, bovine coronavirus, and human enteric coronavirus [35,36]. Hexachlorophene
also exhibited antiviral activity against polyomaviruses (BK virus and Simian Virus 40) by inhibition of
the large tumor antigen’s ATPase activity of these viruses [37].

In the present study, we further expanded the spectrum of antiviral activity and described a
novel antiviral mechanism of hexachlorophene. We showed that hexachlorophene potently inhibited
SFTSV replication, as evidenced by significant (>2-log10) reduction of viral RNA load and 100% plaque
reduction at a drug concentration of 10 µM, which was below its CC50. The IC50 of hexachlorophene
against SFTSV (1.3–2.6 µM) was lower than that the other anti-SFTSV drug compounds reported
thus far (caffeic acid, 180 µM; ribavirin, 40.1 µM; favipiravir, 25.0 µM; amodiaquine, 19.1 µM;
and 2′-fluoro-2′-deoxycytidine, 3.7 µM) [38–40]. Using a combination of virus entry, attachment,
inactivation, and membrane fusion assays, we showed that hexachlorophene interfered with virus entry
and virus-induced cell fusion without affecting virus attachment to host cells or inactivating the virions.
Molecular docking predicted that hexachlorophene bound stably with the deep hydrophobic pocket
between domain I and domain III of the SFTSV Gc glycoprotein, providing insights into the structural
interactions between hexachlorophene and SFTSV that explain the drug’s in vitro antiviral activity.

The novel findings in this study have a number of important implications. First, we showed that
our two-tier drug screening platform is a robust system that can be utilized to identify anti-SFTSV
drug compounds rapidly. This system could be used to screen larger chemical libraries containing
more drug compounds to find additional treatment options for SFTSV. Second, the novel antiviral
activity and mechanism of hexachlorophene in this study would facilitate the use of hexachlorophene
as a lead compound to developing more entry inhibitors with higher anti-SFTSV potency and lower
toxicity. The antiviral activity and mechanism of the other identified hit compounds by our two-tier
screening system should be further characterized in future studies. Finally, the use of hexachlorophene
as a disinfectant should be considered to reduce the risk of nosocomial outbreaks of SFTSV associated
with contaminated environmental surfaces.
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