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Abstract: Infection is restrained by the concerted activation of tissue-resident and circulating immune
cells. Recent discoveries have demonstrated that tissue-resident lymphocyte subsets, comprised
of innate lymphoid cells (ILCs) and unconventional T cells, have vital roles in the initiation of
primary antiviral responses. Via direct and indirect mechanisms, ILCs and unconventional T cell
subsets play a critical role in the ability of the immune system to mount an effective antiviral
response through potent early cytokine production. In this review, we will summarize the current
knowledge of tissue-resident lymphocytes during initial viral infection and evaluate their redundant
or nonredundant contributions to host protection or virus-induced pathology.
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1. Introduction

In recent years, it is becoming evident that a complete immune response requires an evolutionary
division of labor between tissue-resident and circulating responses. Innate immune cells, such as
macrophages and dendritic cells (DCs), generally reside in peripheral tissues and can recognize
pathogens through the expression of toll-like receptors (TLRs) to produce a wide-variety of effector
molecules that can directly or indirectly limit early pathogen replication at the site of infection [1].
However, the recently described diversity and relative abundance of tissue-resident lymphocytes in
peripheral organs suggests that early myeloid responses alone cannot efficiently restrain pathogen
replication in infected tissues before initiation of antigen-specific T cell responses [2]. Tissue-resident
lymphocytes, such as innate lymphoid cells (ILCs) and “unconventional” T cells (invariant natural
killer T cells (iNKT), γδ T cells, and mucosal associated invariant T cells (MAIT)), have been shown to
have critical roles during the pathogen challenge [2–4]. In this review, we will summarize the current
knowledge of the direct and indirect roles of tissue-resident innate and innate-like lymphocytes in
suppressing or promoting primary viral-mediated pathology in tissues.

2. Discussion

2.1. Innate Lymphoid Cells

ILCs consist of a heterogeneous family of lymphocytes that do not express rearranged antigen
receptors, but instead express a wide variety of germline-encoded activating and inhibitory
receptors [3]. ILCs can be identified in lymphoid and non-lymphoid tissues, and are enriched at
epithelial barrier surfaces such as the intestine, lung, and skin [3]. Recent evidence has suggested
that mature ILCs can be further classified into group 1, 2, and 3 ILCs based on different expression of
transcription factors, cell surface markers, and effector cytokines [3]. ILCs are rapid producers of both
proinflammatory and regulatory cytokines in response to local injury, inflammation, pathogen infection,
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or commensal microbiota perturbation [3]. Because most ILCs have been shown to be tissue-resident
(with the exception of circulating natural killer (NK) cells) in almost all organs analyzed [5,6], their
ability to quickly respond to tissue stress and inflammation underpins their critical role in regulating
tissue homeostasis and repair during infection or injury [3]. In this section, we will review the
contribution of tissue-resident ILCs to host protection and pathology following viral infection.

2.2. Group 1 Innate Lymphoid Cells

Group 1 ILCs consist of both mature NK cells and type 1 innate lymphoid cells (ILC1). They are
further defined based on the production of the signature cytokine interferon (IFN)-γ in response to
the proinflammatory cytokines interleukin (IL)-12 and IL-18. While both mature NK cells and ILC1
require the group 1 ILC-defining transcription factor Tbx21 (T-bet) for their development, ILC1 differ
from circulating NK cells based on their long-term tissue residency in parabiotic mouse experiments,
Eomes-independent development, and the expression of the tissue-resident ILC markers CD61 and
CD200r1 [3,7]. In experiments studying the kinetics of murine cytomegalovirus (MCMV), influenza,
and Sendai virus infection, ILC1 were shown to promote early antiviral responses at the initial
sites of infection via rapid production of IFN-γ, well before other known tissue-resident innate and
adaptive lymphocytes [7,8]. Furthermore, genetic ablation of ILC1 led to increased MCMV viral
load in the liver and increased mortality in the presence of intact NK and T cell responses [7]. These
studies collectively suggest a non-redundant and essential host protective role for ILC1 during initial
viral immunosurveillance.

In addition to their cell-intrinsic host-protective role early during viral infection, recent studies
suggest that ILC1 may also regulate circulating adaptive T cell responses during viral infection.
For example, liver ILC1 display enhanced expression of NKG2A compared to liver NK cells, and
genetic deficiency of NKG2A leads to increased DC activation and expansion of adenovirus-specific
CD8+ T cells [9]. During LCMV infection, ILC1-intrinsic increases in PD-L1 expression can suppress
LCMV-specific T cell responses following adoptive transfer into sub-lethally irradiated hosts [10].
However, whether ILC1 are specifically required for these responses, and not NK cells, remains
poorly defined due to the lack of genetic evidence that endogenous ILC1-specific PD-L1 and NKG2A
expression is required for diminished virus-specific T cell responses. Given the antiviral role for ILC1
in other infection models, it will be of interest to further define the distinct viral escape mechanisms
that may lead to protective or tolerogenic crosstalk between ILC1 and T cells. It will also be important
to define the role of ILC1 responses during secondary heterologous infection since this would represent
a more relevant scenario to inform human tissue-resident immune responses and vaccination.

2.3. Group 2 Innate Lymphoid Cells (ILC2)

ILC2 are defined by their production of Th2-related cytokines, IL-4, IL-5, and IL-13 in response to
parenchymal cell production of IL-25, TSLP, and IL-33 [3]. While the production of type I and type
II interferons produced early during viral infection can largely inhibit lung ILC2 proliferation and
function in a STAT1-dependent manner [11,12], ILC2 can serve vital tissue repair function following
the resolution of influenza infection through the production of amphiregulin (AREG) in response to
local IL-33 production [13]. However, whether the described tissue repair role of ILC2 in the lung is
redundant with CD4+ T cell-derived AREG during influenza will require further investigation [14].
Furthermore, IL-5 derived from lung ILC2 following influenza infection has been implicated in the
recruitment and accumulation of eosinophils following viral clearance [15], even though the roles of
eosinophils in promoting tissue repair or host pathology in this context are unknown. Although not
directly addressed in viral infection models, recent studies have shown that IL-9 produced by ILC2
can prevent sepsis-induced pyroptosis in lung endothelial cells and contributes to the resolution of
inflammation during rheumatoid arthritis [16,17]. Thus, while early evidence suggests an integral role
for lung ILC2 in tissue repair following viral infection, it will be of interest to further profile the effector
cytokines and molecular mechanisms that can induce this process following respiratory infection.
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In contrast to the reported host protective roles of lung ILC2, respiratory viral infection can also
result in dysregulated type 2 immune responses, which can lead to allergic inflammatory reactions.
Infection with influenza virus, rhinovirus, and respiratory syncytial virus (RSV) can all result in
ILC2-mediated airway hyperreactivity and inflammation via IL-33 and TSLP production [18–20].
Similarly, IL-33 or allergen primed lung ILC2 have been shown to acquire memory-like properties
that result in more potent responses to an allergen re-challenge in comparison to primary ILC2
responses [21]. However, whether inflammation-primed ILC2 display enhanced effector function
following viral infection is unknown. Since a recent study demonstrated that prostaglandin E2 (PGE2)
can inhibit IL-33 induced ILC2 cytokine production and subsequent asthmatic readouts in mice [22],
it will be of future interest to determine whether certain respiratory viruses regulate the production
of PGE2 in infected cells to exacerbate ILC2 responses as a viral immunoevasion strategy. Thus, a
more complete understanding of the mechanisms of ILC2-related allergic immunopathology during
certain types of viral infection will be crucial for the development of new treatment strategies for
asthmatic patients.

2.4. Group 3 Innate Lymphoid Cells (ILC3)

Group 3 innate lymphoid cells (ILC3) are defined by their expression of the transcription factor
retinoid-related orphan receptor γt (RORγt) as well as the production of the cytokines IL-17A and/or
IL-22 in response to acute infection. ILC3 play a vital role within the regulation of immunity in mucosal
tissues, which play a supportive function during innate immune responses to bacterial infections
by contributing to the epithelial barrier integrity and repair [3]. In addition, IL-22 producing ILC3
have been implicated in the control of rotavirus infection within the gut epithelium by stimulating
STAT1-dependent interferon stimulated gene (ISG) expression in intestinal epithelial cells [23]. Because
of their protective function in barrier tissues, depletion of ILC3 during simian immunodeficiency virus
(SIV) infection in rhesus macaques may also contribute to the loss of intestinal mucosal integrity and
disease progression [24–26]. While these studies collectively support an indirect host-protective role
for ILC3 during viral infection, how ILC3 are depleted following SIV infection remains unclear.

While the inflammatory milieu in the gut during SIV infection has been proposed to directly
drive RORγt repression and apoptosis in ILC3 [25,26], a recent study has suggested that CD4+ T
cell deficiency, compounded with dextran sodium sulfate (DSS)-induced gastrointestinal damage, is
associated with the loss of ILC3 in the mesenteric lymph nodes of uninfected macaques [27]. Because
CD4+ T cells are depleted during SIV infection, it will be important to address whether CD4+ T cells are
required for the survival of mucosal ILC3 during SIV-associated barrier injury since ILC3 homeostasis
is normal in Rag2−/− mice that lack T cells [28]. Similar to other ILC subsets, chronic activation of
ILC3 can also lead to disease progression. ILC3 production of IL-17F during adenovirus infection
was shown to lead to optimal effector CD8+ T cell responses in the liver, which further exacerbates
viral-induced liver hepatitis in mice [29]. Similarly, IL-23 driven ILC3 production of IL-17A and IL-22
during hepatitis B virus (HBV) infection has been shown to be associated with liver fibrosis in human
patients, with liver cirrhosis potentially driven by the recruitment of Th17 cells [30,31]. However,
the HBV-specific mechanisms that promote IL-23 production in the liver are unknown. Thus, recent
studies suggest that ILC3 play both protective and pathologic roles during viral infection, but further
research is necessary to determine the molecular mechanisms and contexts that drive ILC3 responses
towards protection or pathology during different viral infections.

Taken together, the roles of ILCs during antiviral responses vary based on the phase of the
immune response. The roles of ILCs promote protective immunity or pathologic inflammation in
certain contexts. ILC1-produced IFN-γ controls early viral replication and may limit the dysregulation
of ILC2 and ILC3 homeostatic repair responses. However, exacerbated type I responses might abrogate
the beneficial tissue repair functions of ILC2 and ILC3 by directly inhibiting their activation during
viral infection. While viral-induced dysregulation of ILC2 responses can lead to exacerbated asthma,
ILC3-derived IL-22 can limit airway hyperreactivity [32], which suggests that ILC3 homeostasis may
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also be negatively impacted during respiratory infections in addition to mucosal infections. Going
forward, it will be important to further elucidate how ILC responses are regulated during viral
infection in addition to the study of the mechanisms that promote or prevent ILC-induced pathology.
A detailed understanding of the interplay between ILCs and circulating and tissue-resident adaptive
lymphocytes during viral infection is needed. Because host-virus co-evolution may drive specific
escape mechanisms that are unique to each virus, a more complete understanding of how viruses
evade or coopt ILC-mediated effector responses should inform novel vaccination strategies.

2.5. Unconventional T Cells

Alongside ILCs, tissue-resident “unconventional” T cell subsets play a critical role in the clearance
of pathogens with activity that precedes circulating adaptive T cell responses [2]. Unconventional
T cell subsets are composed of natural killer T (NKT) cells, mucosal associated invariant T (MAIT)
cells, and γδ T cells, all of which express restricted T cell receptor (TCR) sequences [4]. These T cells
are termed “unconventional” because of their limited T cell receptor diversity as well as their ability to
specifically recognize alternative microbial antigens that are not presented on major histocompatibility
complexes (MHC) I and II [4]. Despite limited TCR repertoires, these populations play a critical role
within the early antiviral immune response, which mount rapid effector responses as well as mediate
downstream adaptive T cell responses. In this section, we will summarize the roles of unconventional
T cells during antiviral responses and their potential therapeutic benefits.

2.6. Natural Killer/ Invariant Natural Killer T (NKT/iNKT) Cells

NKT cells are characterized by their specificity to lipid antigens presented by the MHC-I like
molecule CD1d, and can be divided into two subsets based upon their TCR alpha chain expression
profiles [4]. These consist of type 1 NKT cells, or “invariant” NKT cells, which are duly named
because of their invariant TCRα chain (Vα14-Jα18 in mice, Vα24-Jα18 in humans) and restricted
range of TCRβ chains. Type 2 NKT cells or “diverse” NKT cells, on the other hand, have a much
larger repertoire of TCRα and TCRβ chain pairings [4]. iNKT cells react strongly to α-GalCer and
other similarly structured microbial and mammalian antigens by expanding rapidly upon encounter
and adapting an effector-like state with potent cytokine production that persists for days after the
initial stimulation [4]. While also capable of antigen-specific cytotoxicity [33], these cells act as potent
inflammatory cytokine drivers via production of IFN-γ, tumor necrosis factor-α (TNF-α), IL-4, and
IL-17. This rapid and diverse cytokine production by iNKT cells can further potentiate innate and
adaptive immune responses by activating antigen presenting cells (APCs), which leads to increased
protection against infection [2,4,34]. Because of these properties, recent studies have begun studying
the use of iNKT agonists during vaccination to enhance B and T cell responses [35].

Although iNKT cell responses are largely protective during the pathogen challenge, the direct
and indirect roles of iNKT cells during antiviral responses may be context-specific. During influenza A
infection, iNKT cells were found to be sufficient and necessary for host suppression of viral replication
and host survival by regulating immunosuppressive myeloid-derived suppressor cells. These results
were also corroborated by associative data during human influenza infection, which suggests that
iNKT cell activation may antagonize viral infection-associated immunosuppression across species [36].
iNKT cells have also been demonstrated to play a vital role in CD8+ T cell activation and expansion,
which leads to increased RSV clearance [37]. Furthermore, infection with kaposi sarcoma-associated
herpes virus, herpes simplex virus (HSV)-1, vaccinia virus, human papilloma virus (HPV), and human
immunodeficiency virus (HIV)-1 all decrease CD1d expression on infected cells, which suggests a
shared evolutionary immunoevasion strategy by viruses to circumvent iNKT cell activation [38–42].
While these studies collectively demonstrate important direct and indirect antiviral roles of iNKT cells,
they may also play redundant inflammatory roles during other viral infections. Using Jα281-deficient
mice lacking NKT cells, a previous study concluded that NKT cells are dispensable for early clearance
of MCMV in the spleen and liver. However, enhanced activation of NKT cells with α-GalCer during
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MCMV reduced viral titers in peripheral organs, which suggests that while the endogenous role of
NKT cells may be redundant in controlling MCMV infection, their effector functions can be harnessed
to enhance the protective antiviral response [43]. In support of these findings, recent studies have
demonstrated that α-GalCer used as an adjuvant during influenza vaccination enhanced cytotoxic
CD8+ T cell memory responses in mice [44,45]. Furthermore, administration of α-GalCer adjuvant
alongside H1N1 swine flu vaccines led to complete inhibition of viral replication within the respiratory
tract of piglets [46]. However, despite the reported efficacy of α-GalCer adjuvants in animal models,
clinical trials involving patients with chronic hepatitis B and C virus infection have shown no clear
clinical benefit to α-GalCer treatment [47,48]. These results raise important questions about the roles
of iNKT cells during acute and chronic infections and how the efficacious iNKT agonist treatments
would be in these different contexts. Taken together, previous studies collectively support an indirect
antiviral role for iNKT cells either through endogenous activation or therapeutic modulation of their
activity through α-GalCer stimulation in vivo. Further studies will be necessary to understand the
redundant and non-redundant roles of iNKT cells during different types of viral infections due to
shared viral immunoevasion mechanisms that suppress iNKT cell activation.

2.7. MAIT Cells

Mucosal associated invariant T (MAIT) cells are defined by their reactivity to the MHC-I-like
protein MR1, which plays a critical role in both their development and function [49]. MR1 ligands
are mainly derivatives from the synthesis pathways of Vitamin B2 (folate) and B9 (riboflavin), which
allows MAIT cells to sense a diverse range of microbial metabolites [4]. As such, MAIT cells are
generally known for their ability to rapidly and specifically respond to bacterially-infected cells and
yeasts [50,51]. Recent analysis of MAIT cell TCR sequences has led to a better understanding of the
diversity of microbial metabolites that MAIT cells can detect, but demonstrate a lack of pre-existing
specificity for virally-encoded antigens [52,53]. Although unable to directly sense virally encoded
molecules, MAIT cells serve important antiviral roles through the potentiation of proinflammatory
responses. MAIT cells robustly respond to IL-12 and IL-18 stimulation, which produces IFN-γ, TNF-α,
and IL-17 that can enhance innate and adaptive B cell antibody responses [54,55]. In humans, MAIT
cells have been implicated in the antiviral response to dengue virus, hepatitis C virus, influenza virus,
and Zika virus in response to IL-12 and IL-18 [56,57]. This evidence is further supported by evidence
from MAIT cell deficient MR1−/− mice that display increased weight loss and mortality during H1N1
infection [58]. Similar to ILC subsets, MAIT cells are also depleted during HIV-1 infection [59,60],
although whether a small number of functional MAIT cells remain is unclear. Irrespective of these
inconsistencies, MAIT effector function can be restored upon treatment with IL-7 in vitro [61]. Given
that IL-7 signaling drives optimal mucosal ILC2 and ILC3 homeostasis in mice [62], it will be interesting
to determine whether HIV-1 infection regulates IL-7 production in mucosal tissues to circumvent
tissue-resident lymphocyte responses.

Although MAIT cell responses have been implicated in acute and chronic viral infections, the
association between MAIT cell activation and clinical outcomes varies depending on the type of viral
infection. For example, MAIT cell activation during HCV infection correlated with positive disease
outcomes, but was also associated with disease severity in patients infected with dengue virus [56].
While these studies suggest that MAIT cell activation and potentiation of type I inflammatory responses
may be crucial for control of certain viral infections, their responses might also exacerbate virus-induced
pathology in certain settings. Because of these observations, it will be of interest to test whether MAIT
cell cytokine secretion may contribute to the hyperreactive phenotypes that can be associated with
severe influenza infection [63,64]. Use of MAIT cell deficient MR1−/− mouse models in future studies
will be able to carefully examine the role of these cells during chronic viral-induced immunopathology.
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2.8. γδ T Cells

γδ T cells have several distinct subsets that differ between mice and humans regarding antigen
reactivity, tissue residency, and TCR usage. They have been implicated in the establishment and
regulation of inflammatory responses, tissue homeostasis, and tissue repair [65]. As such, γδ T
cells are among the first line of defense within barrier tissues against bacterial, fungal, and viral
pathogens. These cells utilize their cytotoxic capacity via granzymes and perforin to destroy infected
cells and early production of IL-17 along with IFN-γ and TNF-α to enhance the immune response [66].
γδ T cells typically respond to phosphoantigens derived from intracellular pathogens, but their
expanded receptor diversity allows particular subsets to recognize alternative cell-stress induced
proteins, which support their function in the identification and elimination of transformed or infected
cells [4]. Additionally, some γδ T cells have the ability to recognize CD1d-based lipid antigens, which
may be redundant with iNKT cell activity [67] even though the extent remains unclear.

γδ T cells play an important protective role during infection via potent cytotoxic capabilities
as well as the ability to regulate recruitment of other immune cells [68,69]. Infection or reactivation
of herpesvirus family members in humans is associated with the clonal expansion of activated γδ

T cells, which show reactivity against infected cells through the production of IFN-γ and TNF-α to
reduce viral replication [70,71]. However, whether expanded γδ T cell clones display specificity to
virus-associated molecules or self-induced stress ligands remains unknown. The antiviral role of γδ T
cells is further supported by the use of TCRδ−/− mice that display increased mortality during both
vaccination and West Nile virus infection [72,73]. Although γδ T cell antiviral activity is consistent
across a range of other viruses (influenza, Epstein-Barr, hepatitis B and C) [74–77], TCRδ−/− mice do
not display increased mortality following MCMV infection but adoptively transferred γδ T cells can
rescue the survival defect observed in total T cell deficient mice [78,79]. Together, these results suggest
that the antiviral role of γδ T cells may be essential or redundant depending on the specific type of viral
infection. Additionally, γδ T cell functionality appears to change over the course of primary to chronic
HIV infection where initial anti-inflammatory TGF-β-producing cells give way to pro-inflammatory
IFN-γ producing γδ T cells [80]. Dysregulation of γδ T cell activation during HIV infection can have
serious consequences since pro-inflammatory γδ T cells have been shown to correlate with HIV viral
load [81]. Thus, γδ T cell activation can lead to overactive systemic immune activation, which may
contribute to disease progression even though further research is required to determine the extent to
which this occurs during other chronic viral infections.

γδ T cell deficient mouse models have highlighted the importance of these cells during antiviral
responses, which have lead to active research into the use of phospho-antigen treatment to selectively
activate γδ T cell responses. Such treatments have proven effective in controlling viral infections
with aminobisphosphonate pamidronate-based expansion of γδ T cells leading to reduced disease
severity and mortality during H1N1 and H5N1 influenza infection [82]. Additional non-peptidic
drugs, such as Phosphostim and Zoledronate, have been implicated in the treatment of HCV, via
γδ T cell-mediated reduction of viral replication [74]. Thus, while early studies involving γδ T cell
phosphoantigen treatment are promising, the spectrum of γδ T cell functions in acute and chronic
viral infections will need to be further tested to fully understand the immunotherapeutic potential of
these methods.

Despite limited T cell receptor diversity, the ability of the unconventional T cell subsets to mount
swift and potent antiviral responses through interplay with other innate and adaptive immune cell
subsets reinforces their importance during viral infection. Specific knockout mouse models have
helped elucidate the redundant and nonredundant roles of unconventional T cells during different
viral infections. Furthermore, the ability of unconventional T cells to regulate the adaptive immune
response in an adjuvant-like manner will lead to the development of more precise iNKT, MAIT, and
γδ T cell-based agonists to improve current vaccination strategies.
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3. Conclusions

A growing body of evidence suggests that tissue-resident lymphocytes (including ILCs and
unconventional T cell subsets) are critical first responders during initial pathogen challenge. During
the antiviral response, these cells elicit a broad range of effector mechanisms: from direct suppression
of viral replication, potentiation of local and circulating type I inflammatory responses, and tissue
repair (Figure 1). While these mechanisms are host protective by design, dysregulation of these
responses can lead to exacerbation of the inflammatory response and virus-associated pathology.
However, there are still open questions that need to be addressed to more completely understand the
role of specific tissue-resident lymphocytes during viral infection. For example, how specific viral
infections, such as HIV-1, deplete mucosal-resident lymphocytes remain poorly defined. In addition,
the majority of studies have not used cell type specific genetic ablation strategies to profile the
endogenous role of tissue-resident lymphocytes during viral infection. Thus, whether redundancy
exists between unconventional T cell subsets and ILC responses, and tissue-resident and circulating
lymphocyte responses remains unclear for most viral infections (Table 1). Irrespective of these points,
a more complete understanding of specific viral immunoevasion strategies may not only elucidate the
evolutionary necessity for redundancy in the tissue-resident lymphocyte responses to viral infection,
but also inform strategies for the treatment of tissue pathology associated with chronic viral infections.
Studies elucidating the mechanisms of tissue-resident lymphocyte responses to viral infection may
also prove to be beneficial for therapeutic use in other infectious diseases and cancer.
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Figure 1. Viral infection leads to the activation of tissue-resident ILCs and unconventional T cell
subsets. Recognition of pathogen associated molecular patterns (PAMPs) by antigen presenting cells
(APC), which include tissue-resident macrophages and dendritic cells, during viral infection leads to
the production of proinflammatory cytokines that include IL-12 and IL-18. IL-12 and IL-18 stimulation
of ILC1, NKT, MAIT, and γδ T cells leads to robust cytokine production by these cell types to inhibit
viral replication and stimulate subsequent circulating adaptive lymphocyte responses. During the
recovery phase of viral infection, the release of IL-33 promotes amphiregulin production by ILC2 to
promote tissue repair. Similarly, IL-22 produced by ILC3 can promote barrier integrity and directly
limit viral replication to resolve viral infection.
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Table 1. Protective and pathologic tissue-resident lymphocyte responses to viral infection.

Cell Type Virus Protection or
Pathogenesis

Genetic
Evidence * Redundancy Reference

ILC1 MCMV Protection Yes No [7]
ILC1 Influenza A (H1N1) Protection No ? [8]
ILC1 Adenovirus, LCMV Protection No ? [9,10]
ILC2 Influenza A (H1N1) Pathogenesis No ? [11]
ILC2 Influenza A (H1N1) Protection No ? [13]
ILC2 Influenza A (H1N1) Protection No ? [15]
ILC2 Influenza A (H3N1) Pathogenesis No ? [18]
ILC2 Rhinovirus Pathogenesis No ? [19]
ILC2 RSV Pathogenesis No ? [20]
ILC3 Rotavirus Protection No ? [23]
ILC3 SIV Protection No ? [24–26]
ILC3 Adenovirus, LCMV Pathogenesis No ? [29]
ILC3 Chronic HBV Pathogenesis No ? [30,31]
iNKT Influenza A (PR8) Protection Yes No [36]
iNKT RSV Protection No ? [37]
iNKT MCMV Protection Yes Yes [43]
iNKT Influenza A Protection No ? [44,45]
iNKT Influenza A (H1N1) Protection No ? [46]
iNKT Chronic HBV, HCV Neither No ? [47,48]
MAIT Dengue, HCV, Influenza Both No ? [56]
MAIT Influenza A (H1N1) Protection Yes No [58]
MAIT HIV Protection No ? [61]

γδ HHV Protection No ? [70,71]
γδ Vaccinia, West Nile Protection Yes No [72,73]
γδ MCMV Protection Yes Yes [78,79]
γδ HIV Pathogenesis No ? [81]
γδ Influenza A (H1N1, H5N1) Protection Yes No [82]

* Genetic evidence refers to the specific ablation of the indicated cell type in the presence of an intact immune
system. ? refers to incomplete evidence for subset redundancy in the referenced study. ILC: Innate lymphoid
cell. MCMV: Murine Cytomegalovirus. LCMV: Lymphocytic Choriomeningitis Virus. RSV: Respiratory Syncytial
Virus. HBV: Hepatitis B Virus. SIV: Simian Immunodeficiency Virus. iNKT: invariant Natural killer T cell. HCV:
Hepatitis C Virus. NKT: Natural killer T cell. MAIT: Mucosal associated invariant T cell. γδ: γδ T cell. HHV: Human
Herpesvirus. HIV: Human Immunodeficiency Virus.
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