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Abstract: Human noroviruses (NoVs) are a genetically diverse, constantly evolving group of viruses.
Here, we studied the effect of NoV pre-existing immunity on the success of NoV vaccinations with
genetically close and distant genotypes. A sequential immunization as an alternative approach to
multivalent NoV virus-like particles (VLPs) vaccine was investigated. Mice were immunized with
NoV GI.3, GII.4-1999, GII.17, and GIL.4 Sydney as monovalent VLPs or as a single tetravalent mixture
combined with rotavirus VP6-protein. Sequentially immunized mice were primed with a trivalent
vaccine candidate (GI.3 + GIL.4-1999 + VP6) and boosted, first with GII.17 and then with GIL.4 Sydney
VLPs. NoV serum antibodies were analyzed. Similar NoV genotype-specific immune responses
were induced with the monovalent and multivalent mixture immunizations, and no immunological
interference was observed. Multivalent immunization with simultaneous mix was found to be
superior to sequential immunization, as sequential boost induced strong blocking antibody response
against the distant genotype (GIL.17), but not against GII.4 Sydney, closely related to GII.4-1999,
contained in the priming vaccine. Genetically close antigens may interfere with the immune response
generation and thereby immune responses may be differently formed depending on the degree of
NoV VLP genotype identity.

Keywords: norovirus; VLP; vaccine; genotype; pre-existing immunity; cross-reactivity; blocking
antibodies; original antigenic sin (OAS)

1. Introduction

Noroviruses (NoVs) are the most common cause of epidemic acute gastroenteritis (AGE) in all age
groups globally. NoV AGE leads to an estimated 212,000 deaths per year, mainly in young children
in developing countries [1]. In developed countries, NoV AEG may cause deaths in the elderly and
is associated with economic and societal costs [2]. The NoV has a single-stranded, positive-sense,
RNA genome divided into three open reading frames (ORFs) that encode non-structural proteins
(ORF1), a major structural capsid protein, VP1 (ORF2), and a minor capsid protein, VP2 (ORF3) [3].
NoV virus-like particles (VLPs) are spontaneously self-assembled by the main capsid protein, VP1,
and can be produced in different expression systems for use as candidate vaccines [4-6]. Human NoVs
belong mainly to genogroups (GI) I and II, which are further classified to genotypes GIL.1-GL.9 and
GIL.1-GIL27 [7]. Approximately 90% of NoV outbreaks are caused by GII viruses, most belonging to
the GII.4 genotype [8].

NoV particles bind in a genotype-specific manner to a versatile group of histo-blood group
antigens (HBGAs) [9,10] that have been shown to be important for NoV entry and infection of the cells,
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functioning as attachment factors [11]. NoV blocking antibody assay, which measures the ability of
antibodies to block the binding of VLPs to cell surface carbohydrates, HBGAs, is a surrogate for the
standard neutralization assay [10,12-14]. Induction of blocking antibodies is one of the most important
correlates of protection identified so far [15,16]. Blocking antibody responses to NoVs are largely
genogroup-specific [12,17,18]. Variable levels of cross-blocking is observed between viruses inside
the genogroup, depending on genetic and antigenic distance [16,19,20]. Thereby, even though >90%
of children above five years of age have generated NoV-specific antibodies to several genotypes [14],
repeated infections commonly occur [21-23]. The immune escape is most evident with predominant
GIL.4 genotype viruses that share >95% identity in their VP1 aa sequence [24]. Despite the close genetic
relationship and pre-existing immunity to previously encountered strains, new GII.4 genotypes have
emerged periodically every few years by epochal evolution of VP1 [20,25]. GIL.4 genotype NoVs
have caused seven pandemics since the mid-1990s, including Grimsby (1995/96 US), Farmington Hills
(2002), Hunter (2004), Yerseke (2006a), Den Haag (2006b), New Orleans (NO) (2009), and Sydney
(SYD) (2012) [25]. Since the 2012 GII.4 SYD pandemic, novel predominant GII.4 viruses have acquired
different non-structural regions through recombination, but have retained the pandemic GII.4 SYD
capsid [26]. Exceptionally, in the 2014-2015-winter season, concern over a global pandemic was raised
when major non-GII.4 genotype, GII.17 Kawasaki outbreaks were reported on several continents, and
GII.17 became the predominant genotype in several Asian countries [27]. Spread of the novel GII.17
strain was enhanced by lack of pre-existing GIL.17-specific immune responses in the population and
low cross-reactivity of GII.17 with other circulating NoVs [28,29].

As no cross-protective immunity exists between NoV genogroups, a multivalent vaccine or a
bivalent VLP vaccine composition containing one GI (e.g., GL.1 or GI.3) and one GII genotype VLP
(e.g., GII.4 or GII.12) is considered to be a minimum requirement [5,15,30]. The most advanced NoV
VLP-based vaccine in clinical development is a bivalent vaccine containing GI.1 and GI1.4 VLPs as a
mixture [31]. Other vaccine candidates, combining two or more NoV VLP genotypes (a multivalent
vaccine), have also been proposed [30,32], including a trivalent combination vaccine developed by our
laboratory, containing a bivalent NoV VLP, G1.3, and GI1.4-1999, and a rotavirus (RV) VP6 protein [5,32],
targeted at two important causative agents of childhood acute gastroenteritis. Our NoV RV combination
vaccine candidate is based on non-live subunit antigens and could improve the low efficacy observed
with currently used live RV vaccines in developing countries [33]. RV VP6-specific IgA antibodies and
CD4* T cells have been associated with protection against RV infection [34,35].

The work described here investigates possible immunological interference among different VLPs
combined as a mixture formulation with RV VP6. Also, sequential immunization as an alternative
approach for NoV VLP vaccine immunization strategy has been explored.

2. Materials and Methods

2.1. Recombinant Proteins Production and Purification

Production and purification of NoV genotypes GL.3 (reference strain Genebank accession no:
AF414403) (Figure 1a), GI1.4-1999 (AF080551) (Figure 1b), GII.17 (BAR42289.1) (Figure 1c, and GII.4
SYD-2012 (AFV08795.1) (Figure 1d), as well as RV VP6 (GQ477131), used for immunizations, were
produced in 59 insect cells by a recombinant baculovirus technology and purified in our laboratory
as described in details previously [5,36]. VLPs used for analytical methods were produced either in
a baculovirus expression system (GI.1-2001 and GII.4 NO-2010) [5,36] or in Nicotiana benthamiana
plants (GI.4 and GII.4-2006 VLPs), as previously described [4]. The purity, integrity, and morphology of
the VLPs were determined by SDS-polyacrylamide gel electrophoresis, immunoblotting, densitometric
analysis, and electron microscopy (Figure 1a—d), as described elsewhere [5]. Protein concentration was
determined by using a Pierce™ BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA).
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Figure 1. Electron microscopy images of the purified norovirus (NoV) genotypes: (a) GL3, (b) GIL.4,
(c) GI.17, and (d) GIL4 SYD virus-like particles (VLPs). VLPs were examined by FEI Tecnai F12 electron
microscope (Philips 487 Electron Optics, Holland) after negative staining with 3% uranyl acetate, pH 4.6.
Bar, 200 nm.

2.2. Mice Immunization

Female BALB/c (H-2d) mice were obtained from Envigo RMS BV and randomly divided into seven
groups (Gr) of five mice (Figure 2). At seven weeks of age, the mice were immunized intramuscularly
(IM) at the right caudal thigh muscle with a single, monovalent NoV VLP vaccine (Gr I-1V, Figure 2a),
or as a multivalent formulation mixture of four NoV genotype VLPs and RV VP6 (Gr V, Figure 2b)
two times, at week 0 and week 3 according to the established optimal immunization schedule used in
our laboratory [5]. A 10 ug dose per each VLP was administrated, and control (Ctrl, Figure 2a) mice
received phosphate-buffered saline (PBS) carrier only. The mice in the sequential immunization group
(VL Figure 2c) were primed with GII.4-1999 + GL.3 VLPs + RV VP6 (the trivalent NoV-RV combination
vaccine [32]) at week 0 and week 3 and boosted with GII.17 VLPs at week 5, and with GI1.4 SYD at week 7,
using a 10 pg dose of each antigen per injection. Tail blood samples were collected at weeks 0 (pre-dose)
and 3 from all mice and additionally at weeks 5 and 7 from the mice in the Gr V and Gr VI. Mice were
sacrificed, and blood samples (serum) were collected at week 5 (Gr I-1V, Ctrl) or at week 9 (Gr V and
VI). Inmunizations were conducted under general anesthesia by inhalation of isoflurane (Attane vet,
Vet Medic Animal Health Oy), and a formulation of medetomidine (Dorbene® vet, Laboratorios Syva,
Leon, Spain) and ketamine (Ketaminol® vet, Intervet International B.V., Boxmeer, The Netherlands)
was used for euthanasia. All procedures were carried out in accordance with the regulations and
guidelines of the Finnish National Experiment Board (Permission number ESAVI/10800/04.10.07/2016)
and mouse welfare was monitored throughout the experiment on a daily basis.

2.3. NoV-Specific ELISA

Homologous and cross-reactive serum IgG binding antibodies were detected by enzyme-linked
immunosorbent assay (ELISA) as described elsewhere in detail [5,32]. In brief, individual mouse serum
samples of the experimental groups and the control mice were analyzed two-fold diluted, starting
at a dilution of 1:200. NoV- and RV VP6-specific IgG antibodies were detected with horse-radish
peroxidase (HRP)-conjugated anti-mouse IgG (Sigma-Aldrich, Saint Louis, MO, USA) followed by
o-Phenylenediamine dihydrochloride (OPD)-substrate (Sigma—Aldrich) and the optical density (OD)
values were measured at 490 nm. The end-point titers of serum IgG were determined as the reciprocal
of the highest dilution of serum, giving an OD above the set cut-off value (mean OD of negative control
mice serum wells + 3 X SD) and at least 0.100 OD.

2.4. Blocking Assay

NoV VLP blocking assay, a surrogate neutralization assay, was used to determine the presence of
serum IgG antibodies that block the binding of NoV VLPs to the HBGA carbohydrates according to the
previously described method [37,38]. Pig gastric mucin (PGM, type III, Sigma—Aldrich, Cat. M1778)
was coated on microwell plates (Corning Inc, Corning, NY, USA) and blocked with 5% milk in PBS.
Starting serum dilution was 1:100 for homologous blocking and 1:20 for heterologous cross-blocking
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assay. Two-fold diluted serum samples were mixed and pre-incubated with NoV VLPs for 1 h at +37 °C
prior to plating on PGM coated microwell plates. Bound VLPs were detected with anti-NoV polyclonal
antisera (human [39] or rabbit [4]) followed by secondary IgG-HRP antibody (goat anti-human IgG,
Novex, Invitrogen or goat anti-rabbit, Abcam, Cambridge, UK) and OPD-substrate (Sigma-Aldrich).
Maximum binding was determined by VLP sample lacking mouse sera, and maximum binding OD
490 nm had to be >0.7 for each VLP to be acceptable [13]. The blocking index (%) was calculated as
follows: 100% — [(OD490 of wells with VLP and serum/OD490 of maximum binding wells) x 100%].
Blocking titer 50 (BT50) was determined as the reciprocal of the highest serum dilution blocking at
least 50% of the maximum binding.
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Figure 2. Immunization schemes of the study groups. Experimental groups of mice receiving
monovalent (MV) (a) NoV VLPs (Gr I-1V) or the control group (Ctrl), receiving carrier only, were
intramuscularly immunized twice at study weeks 0 and 3 and terminated at week 5. (b) Mice receiving
a multivalent mix (MX, Gr V) of the four NoV VLPs and the RV VP6 protein was immunized using the
same schedule but terminated at week 9. (c) Sequentially immunized mice (SQ, Gr VI) were primed
twice at weeks 0 and 3 with the trivalent mix of NoV VLPs and RV VP6, boost immunized at weeks 5
and 7 with heterologous NoV VLPs, and terminated at week 9. Tail blood samples (¢) were collected at
the indicated time points. Each horizontal arrow represents one injected antigen.

2.5. Statistics

A non-parametric Mann-Whitney U test was employed to assess the statistical differences between
observations of two independent groups. Multiple datasets were compared using a non-parametric
Kruskal-Wallis test. Fisher’s exact test was used to assess the intergroup differences in the titers.
Analyses were conducted by IBM SPSS Statistics (SPSS Inc., Chicago, IL, USA), Version 25.0 and
with GraphPad Prism version 8 (GraphPad Software, La Jolla, CA, USA). The statistically significant
difference was defined as p < 0.05.
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3. Results

3.1. Simultaneous Immunization with Multivalent VLP Mixture Formulation

Similar NoV genotype-specific IgG binding antibodies were detected when comparing termination
sera of mice immunized twice, either with 10 pg of each monovalent NoV VLP alone (Gr I-IV, Figure 2a)
or as a component of a multivalent mixture (Gr V, Figure 2b) (Figure 3). No significant differences
(p <0.05) were observed when comparing genotype-specific IgG responses of monovalent or multivalent
mix immunized mice at serum dilution 1:200 (Figure 3a). The results showed induction of equal levels
of IgG antibodies against GI.3 (Figure 3b), GI1.4-1999 (Figure 3c), GII.17 (Figure 3d), and GIL.4 SYD
(Figure 3e), irrespective of the presence or absence of other co-administrated antigens. NoV-specific IgG
was not detected in any of the control animal sera (Gr VII) that received carrier (PBS) only (Figure 3b—e).
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Figure 3. NoV genotype-specific IgG antibody responses induced by monovalent NoV VLPs or
multivalent VLP mix immunization. Termination sera of mice immunized with monovalent (MV) VLPs,
GL.3 (GrI), GIL.4-1999 (Gr II), GIL.17 (Gr III), or GIL.4 SYD (Gr IV), or with the multivalent NoV VLP mix
(MX, Gr V), or the carrier only (Control group, Ctrl) were analyzed with enzyme-linked immunosorbent
assay (ELISA). (a) The mean optical density (OD490) at the serum dilution 1:200 of individual mice is
illustrated with group mean and the standard error of the mean (SEM). The horizontal dashed line
indicates maximum background level (cut-off limit). Mean IgG end-point titration curves specific for
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3.2. Sequential Immunization with Genetically Distant and Closely Related NoV VLPs

As an alternative immunization strategy and to study the effect of pre-existing immunity,
the sequential immunization schedule was employed (Gr VI, Figure 2). The mice primed twice
(week 0 and week 3) with the trivalent combination vaccine formulation (GI.3 + GII.4 + RV VP6) [32]
were further immunized with GIL.17 VLPs at week 5, followed by a GII.4 SYD VLP boost at week
7, and termination sera IgG was analyzed for all four NoV genotype-specific IgG levels (Figure 4).
When compared to genotype-specific immune responses of mice immunized twice with monovalent VLPs,
no significant (p > 0.05) differences in IgG responses were observed (Figure 4a). Similarly, strong serum
IgG titers to GL.3 (Figure 4b), GI1.4-1999 (Figure 4c), GIL.17 (Figure 4d), and GII.4 SYD (Figure 4e) were
measured following one boost immunization, with no significant difference (p > 0.05) to corresponding
monovalent immunization groups. The response to GII.17 (Figure 4d) was very strong considering
that the mice received only one GII.17 VLP dose at week 5 (Gr VI). On the contrary, GI1.4 SYD-specific
IgG response in Gr VI mice sera (Figure 4e) consists of the genotype-specific antibodies as well as
cross-reactive antibodies to GII.4 SYD induced by closely related GII.4-1999 VLPs.
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Figure 4. NoV genotype-specific IgG antibody responses induced by monovalent NoV VLPs or
sequential VLP immunization. Termination sera of mice immunized with monovalent (MV) VLPs,
GL.3 (Gr 1), GI1.4-1999 (Gr II), GII.17 (Gr III), or GIL.4 SYD (Gr IV), or sequentially (SQ) immunized
with heterologous VLP boosts (Gr VI) or the carrier only (Control group, Ctrl) were analyzed with
enzyme-linked immunosorbent assay (ELISA). (a) The mean optical density (OD490) at the serum dilution
1:200 of individual mice is illustrated with the group mean and the standard error of the mean (SEM). The
horizontal dashed line indicats maximum background level (cut-off limit). Mean IgG end-point titration
curves specific for NoV (b) GL3, (c) GIL4, (d) GIL.17, and (e) GIL.4 SYD VLPs with the SEM are shown.
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3.3. Simultaneous and Sequential Immunizations Induce Different Level of Blocking Antibodies

To investigate if the neutralizing capability of IgG antibodies induced by simultaneous multivalent
mixture immunizations (Gr V, Figure 2) is different from response to sequential immunization (Gr VI,
Figure 2), genotype-specific blocking activity of the serum was analyzed. Equal levels of GI.3-specific
blocking antibodies (Figure 5a) were generated by multivalent mixture (mean BT50 = 720) and
sequential immunization (BT50 = 640). Similar levels of GII.4-1999-specific blocking antibodies were
measured for both groups (mean BT50 = 640 Gr V; mean BT50 = 480 Gr VI) (Figure 5b). A single
boost injection of GII.17 VLPs (Figure 5¢) was sufficient to induce a comparable level of GII.17-specific
blocking antibodies (mean BT50 = 560) to immunization with multivalent mix (mean BT50 = 720).
In contrast, a single GII.4 SYD VLP boost injection (Figure 5d) generated significantly lower blocking
antibodies (mean BT50 = 70) than immunization with multivalent mixture (mean BT50 = 400) (p = 0.024).
Furthermore, the sera of mice immunized with the monovalent VLP vaccine (Gr I-1V, Figure 2) were
tested for homologous blocking titers against all four genotypes (GI.3, GI1.4-1999, GII.17, and GII.4
SYD) and blocking antibody levels similar to the levels induced by the multivalent VLP mix (Gr V)
were observed (BT50 > 400).
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Figure 5. NoV genotype-specific blocking antibodies after immunization with multivalent NoV VLP
as a mix or sequentially. Individual sera of mice immunized with multivalent mix (MX, Gr V) or
sequentially (SQ, Gr VI) were 2-fold diluted starting at 1:100 dilution and assayed for the blocking of
homologous NoV (a) GL.3, (b) GII.4-1999, (c) GIL.17, or (d) GIL.4 SYD VLP binding to histo-blood group
antigens present in pig gastric mucin. The blocking index (%) was calculated as [100% — [OD (wells with
serum)/OD(wells without serum, maximum VLP binding)] X 100%] and shown are individual mouse
50% blocking titer (BT50) and group geometric mean titer with 95% confidence interval. An arbitrary
titer, BT50 of 5, was assigned to samples with <50% blocking index at the lowest serum dilution 1:100.
Statistical differences were determined using Fisher’s exact test, and a p value of <0.05 was considered
statistically significant (*).
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3.4. Cross-Protective Blocking Antibody Responses

The protective potential of serum antibodies induced by multivalent mixture (Gr V), or sequential
immunization (Gr VI) against heterologous NoV VLPs belonging to GI (GI.1 and GI.4) or GII (GIL.4-2006
and GII.4 NO) was tested by cross-blocking analysis (Figure 6). Blocking of GII.4-2006 VLP binding
(Figure 6a) was equal in both groups (BT50 = 320). A considerable four-fold higher cross-blocking titer
of GIL.4 NO VLP binding was observed with multivalent mixture immunization sera (Gr V, BT50 = 640)
than with sera of the sequential immunization group (Gr VI, BT50 = 160) (Figure 6b). Very low levels of
GL1 VLP cross-blocking antibodies were detected in both the Gr V and Gr VI immune sera (BT50 = 40)
(Figure 6¢), whereas no blocking antibodies to GL.4 VLP binding were observed (Figure 6d).

(a) (b)

Gll.4-2006 Gll.4 NO

100 100

—-@— GrV (MX) -@— GrV (MX)
. —-©- GrvI(sQ) ] @ GrVvI(sQ)
80 80—
s 60 5 60
g ] O]
o g =) i
=] -
S 407 £ 40 \
8 g8 ]
o L o ]
20 204
0 T T T T T T 0 T T T T T T
20 40 80 160 320 640 1280 20 40 80 160 320 640 1280
Serum dilution Serum dilution
() (d)
Gl.1 Gl.4
100 100 —
1 - Grv (Mx) E —@— GrV (MX)
] -O— GrVI(SQ) ] -0~ GrVvi(sQ)
80+ 80—
% 60 % 60
()
g ] 2]
] > ]
2 40 2 4]
= ] % ]
8 o
k) ] S ]
“ 20 20
0 T T T T T T 0
20 40 80 160 320 640 1280 20 40 80 160 320 640 1280
Serum dilution Serum dilution

Figure 6. NoV cross-blocking antibodies after multivalent NoV VLP mix or sequential immunization.
Group-wise pooled sera of mice immunized with multivalent mix (MX, Gr V) or sequentially (SQ, Gr
VI) were 2-fold diluted starting at 1:20 dilution and assayed for the cross-blocking of heterologous NoV
(a) GIL4-2006, (b) GIL.4 NO, (c) GIL.1, or (d) GL.4 VLP binding to histo-blood group antigens present in
pig gastric mucin. The blocking index (%) was calculated as [100% — [OD (wells with serum)/OD(wells
without serum, maximum VLP binding)] X 100%] and shown are group mean blocking indeces (%) with
the standard errors of the mean of repeated assays. The horizontal dashed line represents a blocking
titer of 50% (BT50).

Cross-blocking of heterologous GI1.4-2006 (BT50 = 320) and GII.4 NO (BT50 = 640) VLPs binding
by termination sera of mice simultaneously immunized with the VLP mix (Gr V, Figure 6a,b) was
similar to genotype-specific blocking of GII.4-1999 (BT50 = 640) and GII.4 SYD (BT50 = 400) VLP
binding (Figure 5b,d), respectively. To confirm this finding we measured the kinetics of blocking
antibodies of Gr V to homologous GII.4 SYD (Figure 7a) and heterologous GIL.4 NO (Figure 7b) in tail
blood collected prior to immunization (week 0), after the first immunization (week 3) and two weeks
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after the second immunization (week 5). Low homologous (Figure 7a) and heterologous (Figure 7b)
blocking activities were observed after the first immunization at week 3, followed by equally robust
generation of blocking antibodies to GII.4 SYD (BT50 = 400) and GII.4 NO VLPs (BT50 = 400) following
the second dose at week 5. Similar levels of blocking antibodies to GII.4 SYD (BT50 = 200) and GII.4
NO VLPs (BT50 = 400) were measured at week 7 (Figure 7a,b).

(a) (b)
GIl.4 SYD Gll.4 NO
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Figure 7. Kinetics of NoV type-specific and cross-reactive blocking antibodies after multivalent NoV
VLP mix immunization. Group-wise pooled tail blood samples of mice were collected at the time of
the first immunization (week 0), the second immunization (week 3), and two and four weeks after the
second immunization (weeks 5 and 7) and 2-fold diluted starting at 1:100 dilution, for assaying the
blocking antibodies of (a) homologous GIL.4 SYD VLPs and (b) heterologous GII.4 NO VLPs binding
to histo-blood group antigens present in pig gastric mucin. The blocking index (%) was calculated
as [100% — [OD (wells with serum)/OD(wells without serum, maximum VLP binding)] X 100%] and
shown are titration curves of each time-point blocking index (%). The horizontal dashed line represents
a blocking titer of 50% (BT50).

We also wanted to test the cross-blocking potential of GII.17 VLP immunized mice sera (Gr III,
Figure 2), because it has been recently shown that GII.17-specific antibodies suppressed the replication
of GII.4 SYD in intestinal epithelial cell cultures [40]. As shown above (Figure 3d, Figure 4d, and
Figure 5¢) monovalent GII.17 VLP immunization induced high genotype-specific IgG antibody levels
and blocking antibodies; however, no cross-blocking antibodies to any of the seven VLP genotypes
tested (GI1.4-1999, GI1.4-2006, GIL.4 NO, GII.4 SYD, GI.1, GI.3, Gl1.4) were observed (Figure 8).
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Figure 8. NoV cross-blocking antibodies after monovalent NoV GII.17 VLP immunization. Termination
sera was pooled and serially 2-fold diluted starting at a 1:20 dilution and analyzed in a blocking assay
against seven heterologous GI and GII VLPs. The blocking index (%) was calculated as [100% — [OD
(wells with serum)/OD(wells without serum, maximum VLP binding)] x 100%] and shown are the blocking
index (%) of the two analysis. The horizontal dashed line represents a blocking titer of 50% (BT50).
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4. Discussion

The design of this study aimed to define the optimal immunization strategy with multivalent NoV
VLPs and to predict the effects of pre-existing NoV immunity on the development of immune responses
tonovel NoV infections that may be caused by genetically very close or distant NoV genotypes. The basis
for antigen selection and inclusion of RV VP6 into the multivalent mixture used in this study, and the
sequential prime immunization, lies in the trivalent NoV-RV combination vaccine designed in our
laboratory, consisting of NoV GI.3 and GII.4-1999 VLPs and RV VP6 protein [5,32,37,41]. Representative
of GII, GII.4-1999 was selected as an ancestral genotype with a broad cross-blocking profile [20] and
GI representative GL.3 VLP due to relatively high incidence in children [42]. By including RV VP6,
the most abundant and highly immunogenic RV antigen, into the combination vaccine, this vaccine
candidate is targeted to prevent two main causes of AGE in young children [5,32,37]. Even though
the NoV VLP vaccine candidates tested in phase I/II clinical trials are either monovalent or bivalent
VLP formulations [43,44], it is not known if it might be necessary to upgrade the vaccines according
to emerging new variants, such as the sudden emergence of a novel non-GII.4 variant GII.17 in 2014
might suggest. Currently developed vaccines might not provide protection to GII.17 strains due to low
cross-reactivity observed by ourselves and others [28,29].

We have comprehensively studied the immunogenicity of the trivalent NoV VLP and RV VP6
vaccine candidate in preclinical studies, demonstrating induction of strong NoV- and RV-specific
immune responses [5,32,37,41]. No interference of the immune responses to any antigens of the
combination vaccine have been observed when NoV- and RV-specific humoral and cellular responses
have been assessed in mice immunized with bivalent [5] or trivalent [32] NoV-RV combination vaccine.
Although VP6 induced immune response generation was not in the scope of the present study, both
simultaneous and sequential immunizations induced similar VP6-specific antibody levels (data not
shown). We have previously shown that NoV VLPs are highly immunogenic delivered either IM,
intradermally (ID), intranasally (IN), or primed IM and boosted IN [45]. Here, we have extended our
investigation of different NoV VLP vaccine delivery strategies [17,39] by combining four different
NoV genotypes, two GII.4 VLPs, an ancient and a recent pandemic strain (GI1.4-1999 and GII.4
SYD), one recently emerging non-GII.4 VLP (GIL.17), and one GI genotype (GL.3). To determine
the requirements for delivery of the multivalent vaccine antigens, we used NoV VLPs as a mixture
delivered at the same time or at separated times, using sequential immunization. The results show that
multiple NoV genotype VLPs can be delivered simultaneously as a multivalent VLP vaccine mixture
(a cocktail) and immune responses to all vaccine antigens are induced. Congruent to our earlier
findings [39], there was no inhibition observed by multivalent mixture immunization, as IgG binding
and blocking antibodies were at an equal level to the responses induced by monovalent VLPs. This is
in contrast to a previous report by Leroux—Roels et al. [44] showing that GI.1 VLP equivalent dose in
a bivalent GI.1 + GII.4 VLP vaccine formulation interfered with GII.4-specific immune responses in
humans. It could be speculated that the discrepancy here might be related to differences between NoV
genotypes regarding the immunological interference they might possess in relation to other genotypes.

We also investigated if NoV-specific immune responses induced by vaccination may be differently
formed depending on the degree of VLP genotype identity with NoV VLPs previously encountered.
In the sequential immunization schedule, it could be assumed that the priming of mice with a
combination of NoV GI.3 and GII.4 VLPs and RV VP6 mimics the baseline pre-existing immunity to
these viruses, which exist in the pediatric population [22,46]. In addition, the boosting of mice with
the GIL.17 and GII.4 SYD VLPs at later time points reflects the children’s exposure to novel NoVs.
The sequential immunization with NoV VLPs derived from genetically distant GII.17 genotype was
successful in inducing high NoV GII.17-specific immune response. These results are in line with our
earlier studies showing that sequential immunization with NoV VLPs derived from genetically diverse
GIL4 and GII.12 genotypes has been successful in inducing high NoV-specific immune response to both
genotypes [47]. In contrast, sequential boost immunization with GII.4 SYD VLPs, genetically closely
related to GII.4-1999 (41% capsid protein identity, by the Protein Basic Local Alignment Search Tool)
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failed to induce strong blocking GII.4 SYD-specific responses when compared to mice immunized with
multivalent VLPs mixed simultaneously. Noteworthy, even though similar level of GII.4 SYD-specific
IgG titers were measured in all immunization groups, the GIL.4 SYD blocking activity of sequentially
immunized group sera was significantly lower, addressing the importance of measuring blocking
NoV-specific IgG antibodies. The presence of blocking antibodies reveals the protective potential and
specificity of these IgG antibodies, as previously reported in mice [17] and in humans [16], where the
lack of cross-blocking antibodies was observed despite the presence of cross-reactive IgG antibodies.
The lack of GII.4 SYD blocking antibodies in sequentially immunized mice was surprising, as it could be
assumed that priming with closely related GII.4-1999 VLPs would increase GII.4 SYD-specific blocking
antibodies. These results indicate that there might be an original antigenic sin (OAS) for closely
related antigens (GI1.4-1999 and GII.4 SYD, respectively), which could be an obstacle when considering
frequently updated NoV VLPs vaccinations. Similarly, results in mice immunized sequentially with
variant influenza viruses have suggested that OAS could be a potential strategy by which variant
influenza viruses subvert the immune system [48]. Similarly, in humans, higher antibody titers to
influenza strains encountered earlier in life following repeated exposures with new variants has
been reported, indicating antigenic seniority [49]. Moreover, the antigenic distance hypothesis by
Smith et al. in 1999 [50] suggesting that antigenic distance between circulating influenza strains and
vaccine strains partly account for the variable vaccine efficacy, has also been supported by recent
report [51]. If the same phenomenon would apply to NoVs, it should be taken into consideration
when designing vaccines for NoVs. The lack of cross-blocking between GI.1 and GI.4 and vaccine
genotypes used in the present study was congruent with our previous results showing low or absent
cross-blocking between, e.g., GI.1 and GI.3 NoV VLPs [17].

It has been recently published [40] that GII.17 VLPs induce antibodies able to inhibit GII.4 SYD
genotype replication in in vitro cell culture models. For the above reason and as we observed that GII.17
VLPs were highly immunogenic even when delivered only once in a sequential regime, we assumed
that GIL.17-specific sera might efficiently block the binding of heterologous NoV VLPs not included in
the vaccine formulation. Unfortunately, we did not observe such cross-blocking antibodies in mice
immunized with GII.17 VLPs. The discrepancy in the results may come from the differences in the
assays used to measure the cross-blocking activity. Sato et al. used a novel in vitro cell culture infection
model while we employed the widely used ELISA-based blocking assay as a surrogate neutralization
assay [10,12,15]. Sato et al. have also shown that GII.4 SYD-specific antibodies did not block GII.17
virus replication. Congruently, we have published that the ancestor GI1.4-1999 VLPs are superior to
more recent GII.4 variants in inducing cross-reactive responses, including the cross-blocking response
to GII.17 VLPs [17,20,28,52]. On the other hand, we observed that when mice are immunized with
the quadrivalent NoV VLP mixture containing GI.3, GII.4-1999 (an ancestor GII.4 variant), GI.4 SYD
(the most recent pandemic variant), and GII.17, cross-blocking of GII.4 variants 2006 and 2009 (NO)
was comparable to homologous GII.4-1999 and GII.4 SYD VLP blocking. These results indicate that
a combination of GII.4 VLPs from the ancestral and the most novel variant could suffice to protect
against most GIL.4 NoV infections. This is a relevant observation as GII.4 NoVs cause over 70% of all
NoV AGE worldwide [53].

The protective immunity may be evaded by small changes in the immunodominant epitopes and,
therefore, NoV vaccine antigens might need periodic updates, similar to seasonal influenza vaccines.
Instead of using multivalent VLP mixtures, one option is to use monovalent or bivalent NoV VLPs to
prime the immune system and to then boost with the diverse monovalent VLP. However, this study
indicates that OAS might interfere with the immune response generation for genetically closely related
NoV genotype VLPs used as a boost. Furthermore, in this study, by combining an ancestor GII.4 (1999)
and a novel GIL.4 (SYD), it was possible to induce great cross-reactive responses to other GII.4 variants,
indicating that vaccine-induced protection could extend to genotypes not included in the vaccine.
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