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Abstract: As essential components of the host’s innate immune response, NFκB and interferon
signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous
Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the
signaling of these pathways. Here we review the biology of the HCMV factors that alter NFκB and
interferon signaling, including what is currently known about how these viral genes contribute to
infection and persistence, as well as the major outstanding questions that remain.
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1. Introduction

Human cytomegalovirus (HCMV) is a widespread opportunistic pathogen that causes disease
in a variety of immunosuppressed populations, including the elderly, cancer patients, and AIDS
patients [1,2]. HCMV infection also causes significant morbidity in transplant recipients, and it is
a major cause of kidney, liver, heart and bone marrow transplant rejection [3]. HCMV infection is
also a significant cause of congenital disability, as roughly 5 out of every 1000 infants born each year
are infected with HCMV, and approximately 10% of that population will experience neurological
symptoms [2,4,5].

The relationship between HCMV and host immunity, including recognition, priming, and the
subsequent host response, is a major determinant of HCMV pathogenesis. The earliest events of this
response typically involve innate immune sensing of infection in non-immune cells, induction of an
anti-viral state, and secretion of anti-viral paracrine factors that both help neighboring cells resist
infection as well as recruit and activate professional immune cells. Interferon and NFκB signaling
are two signal transduction cascades integral to these processes that are frequently targeted by viral
infection to ensure persistence. The past 25 years have seen great progress in identifying numerous
HCMV viral factors that modulate these innate immune pathways. However, many questions remain
about both the specific biochemical mechanisms involved as well as the contexts through which they
contribute to viral pathogenesis, replication, and persistence. Given their importance to infectious
outcomes, further elucidating the diverse roles of these viral innate immune modulators remains a
high priority to further our understanding of viral biology, while also potentially providing fertile
ground for therapeutic development.

2. HCMV and Interferon Signaling

Interferons (IFN) are a broad class of cytokines initially recognized for their ability to protect
cells from viral infection. Anti-viral IFN signaling in response to infection is capable of inducing a
variety of host cell defenses targeting various aspects of virus biology, including global inhibition
of translation via activation of protein kinase R (PKR), induction of RNAse L-mediated degradation
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of viral RNA, production of anti-viral nitric oxide through inducible nitric oxide synthase (iNOS),
depletion of tryptophan via the indoleamine 2,3 dioxygenase (IDO) pathway, and upregulation of
antigen presentation via major histocompatibility (MHC) complex constituents [6–10]. IFN signaling
is sub-classified into Type I, Type II, and Type III groups based on their specific signaling architectures
and outcomes. The majority of interferon-induced anti-viral activity is dependent on the diverse
activities of Type I IFNs, which in humans include IFNκ, IFNε, IFNω, IFNβ, and a host of IFNα
isoforms derived from 13 separate genes [11]. The activities of Type I IFNs induce the expression of a
large set of IFN-stimulated genes (ISGs) that are critical for rendering the host cell environment less
permissive for viral infection. In addition to the direct effects of Type I cytokines on ISG induction,
these IFNs have been implicated in coordinated innate immune effector processes including Natural
Killer (NK) cell activation, dendritic cell (DC) maturation, and T-cell differentiation [12]. In contrast to
the diverse signaling of Type I IFNs, Type II IFN signaling is comprised entirely of the activities of a
single cytokine: IFNγ. While IFNγ is also capable of activating ISG expression, its primary function
appears to center around enabling the activation, recruitment, and survival of a diverse array of
immune cells [13]. The final interferon subtype, Type III, was discovered more recently. Like Type I
IFN signaling, Type III IFN signaling plays an important role in host cell defense against viral infection,
but it relies on a different subset of IFNs (IFN-λ1, IFN-λ2, and IFN-λ3) and a distinct, heterodimeric
IL28Rα/IL10Rβ receptor to induce the expression of anti-viral ISGs. As expression of the Type III IFN
receptor is limited to epithelial cell populations, Type III IFN signaling is restricted to a more niche
biological context than Type I signaling [14]. HCMV gene products that interact directly with Type III
signaling have yet to be described. Canonical signaling of all three IFN subtypes occurs through the
activation of the JAK-STAT pathway, but each subtype coordinates with unique cellular receptors and
recruits specific STAT proteins that tailor downstream responses to respective Type I, II, and III IFN
signaling inputs (reviewed in [15]).

The IFN response to HCMV infection is complex, with multiple distinct mechanisms of IFN
activation and temporal peaks of IFN activity occurring over the viral life cycle. The initial interferon
response to HCMV infection is triggered when the cell detects viral attachment and entry, resulting
in an early induction of IFN synthesis and secretion [16]. The list of cellular sensors that detect and
are activated by HCMV binding and entry continues to expand, and includes the TLR2 (toll-like
receptor) and CD14 receptors that interact with viral gB and gH [17,18] as well as the intracellular
dsDNA sensors Z-DNA binding protein 1 (ZBP1) [19], TLR9 [20], and cGAS [20], all of which detect
the presence of the viral genome in the host cell. Seemingly in response to these cellular defenses,
HCMV has evolutionarily developed a suite of IFN countermeasures that occupy a significant portion
of viral coding potential (summarized in Figure 1 and reviewed in [12,21,22]).
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2.1. The HCMV Tegument Proteins and Interferon Modulation

Given that the IFN response to infection is a swift anti-viral response set in motion by the first
interactions between virion glycoproteins and cellular receptors, it is logical that HCMV encodes
viral effectors that immediately antagonize these early anti-viral events, and downregulation of IFN
signaling during HCMV infection is well-documented [23–26]. Many of these early viral anti-interferon
factors are tegument proteins that are delivered to the cellular cytoplasm upon initial envelope fusion.
One of the first of these HCMV-encoded IFN modulators described was the UL83-encoded tegument
protein pp65, which is packaged into the virion in such abundance that it is the major constituent
of the infectious particle [27]. The pp65 protein plays a major role in inhibiting both innate and
adaptive immune responses to HCMV infection by interfering with antigen presentation [28] and
NK cell activation [29]. HCMV pp65 was initially characterized as a Type I IFN inhibitor through
early reports utilizing a UL83-deletion virus that induced IFN-associated transcriptional patterns
during infection. Varying hypotheses of pp65’s mechanistic function emerged as some groups reported
that pp65 was sufficient to block activation and nuclear localization of IRF3, a primary mediator of
Type I IFN signaling [30], while others reported no change in IRF3 activity but observed that pp65
loss significantly increased IRF1 and NFκB nuclear localization [31]. Subsequent studies suggested
that the pp65 deletion mutant virus exhibited impaired expression of other important HCMV genes,
including the immediate-early protein 2 (IE2), and found that a less-disruptive mutation of the pp65
ORF maintained viral inhibition of Type I IFN signaling during infection [32], indicating that pp65
may be more dispensable for inhibition of IFN signaling than was initially presumed.

The question of how pp65 contributes to HCMV-mediated inhibition of IFN activity is largely
still unresolved. While some IFN phenotypes originally attributed to pp65 appear to be due to the
actions of other viral gene products such as IE2, new roles for pp65 are continually being revealed,
such as the interaction between pp65 and activators of the stimulator of interferon genes (STING),
an IFN inducer. Signaling via STING and the dsDNA sensor cGAS has emerged as an important
cellular defense against viral infection [33]. A novel binding interaction between pp65 and cGAS
was recently identified as a mechanism through which pp65 inhibits the release of cGAMP, thereby
preventing STING recruitment to cGAS and impeding the expression of IFNβ [34]. STING signaling is
also reported to be inhibited by pp65 via interaction with the upstream STING activator interferon
gamma-inducible protein 16 (IFI16). Evidence suggests that pp65 binds to IFI16 and occludes the pyrin
domains required for IFI16 oligomerization in the nucleus, preventing STING activation and anti-viral
cytokine expression [35]. Contributing to this picture, pp65 has also been shown to form a complex
with UL97 [36], a conserved herpesviral modulator of IFN signaling that downregulates IFN secretion
via inhibition of IRF3 [37], and may have further direct or indirect effects on IFI16 activation mediated
through this interaction. These recent findings underscore the extent to which pp65’s interactions with
IFN signaling are continuing to be elucidated.

Evidence has emerged implicating several other tegument proteins in innate immune modulatory
activities. These include the UL23, UL26, and pp71 proteins. The pp71 tegument protein, encoded by the
UL82 gene, shares significant homology with its neighboring HCMV gene product pp65 [38,39] and has
been identified as a key activator of the HCMV major immediate-early promoter (MIEP) [40]. Known
to be required for high-titer viral replication [41], pp71 has been discovered to provide an integral
defense against silencing of the viral MIEP by the host innate immune effector Daxx [42]. Through
direct binding, pp71 functions to disrupt complex formation between Daxx and other transcriptional
repressors such as ATRX [43], as well as target Daxx itself for proteasomal degradation [44].
Underscoring the relevance of this interaction is the observation that ablation of pp71 results in
attenuated expression of HCMV immediate-early genes and impaired lytic replication, which can
be rescued via inhibition of Daxx [41,45]. pp71 has also recently been found to bind STING and
prevent the formation of complexes required for its translocation, sequestering it away from the
nucleus [46]. Further, RNAi-mediated knockdown or gene knockout of pp71 increases host anti-viral
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gene expression, further emphasizing the importance of pp71 for attenuating innate immunity during
infection [46].

Tegument proteins have also been shown to modulate the Type II IFN response to infection.
Type II signaling, induced by IFNγ, is heavily dependent on STAT1 transcription factor homodimers
that bind and activate transcription at promoters containing gamma interferon activation sequences
(GAS) [47]. Recent work using UL23-deficient HCMV mutants shows that Type II IFN gene targets are
upregulated during infection in the absence of UL23. These mutants are also more sensitive to challenge
with IFNγ [48]. A putative binding interaction between UL23 and the STAT effector molecule N-myc
interactor (NMI), identified via yeast two-hybrid screening, is hypothesized to prevent the proper
activation and translocation of the STAT1 homodimers required for Type II IFN signaling [48]. These
early results provide insight into HCMV’s modulation of Type II IFN, which is less well-characterized
than its interplay with Type I signaling.

Complex relationships between tegument proteins and individual interferon stimulated genes
are also currently being elucidated. The ubiquitin-like modifier ISG15 is a Type I IFN target that is
covalently bound to target molecules, thereby altering their function (reviewed in [49]). Multiple
reports have implicated ISGylation as an anti-viral defense mechanism that is triggered early during
HCMV infection via cGAS-STING viral DNA sensing and restricts HCMV replication [50,51]. UL26
was recently found to interact with ISG15 as well as multiple enzymes involved in the activation
and ligation of ISG15 to target proteins [51]. Interestingly, some of these ISG15 enzymes have other
potentially relevant roles in the immune response outside of their ISG15-proximal functions, such
as UBP43, which ligates ISG15 to target proteins but also binds IFNAR2 and occludes its interaction
with JAK1 to downregulate IFN signaling [52]. During infection in the absence of immediate-early
protein 1 (IE1), UL26 appears to play a role in suppressing the accumulation of ISGylated proteins [51].
Notably, UL26 itself is subject to ISG15 modification [51]; however, many questions remain about how
the interactions between UL26 and the ISG15-machinery contribute to viral infection.

In addition to proteins involved in cytoplasmic DNA sensing, e.g., IFI16, ZBP1, and cGAS,
the host cell also encodes proteins that sense cytoplasmic dsRNA and activate similar responses,
with one of the most prominent being PKR (reviewed in [53]). PKR is an ISG with an N-terminal
dsRNA-binding domain that can be activated by the presence of dsRNA as well as by a host of other
stimuli including oxidative stress, cytokines, and other cellular kinases [54]. Active PKR functions by
homodimerizing and autophosphorylating itself to enable a binding interaction between its C-terminal
domain and the eukaryotic transcription initiation factor eIF2α, globally repressing transcription of
both viral and cellular genes by interfering with the formation of the eIF2α-tRNAMet-GTP transcription
initiation complex [55,56]. PKR signaling can result in a diverse array of immune outcomes including
upregulated Type I IFN signaling [57] as well as increased NFκB pathway activity [58]. HCMV encodes
two immediate-early gene products that specifically target PKR as a means of downregulating the IFN
response and maintaining high levels of viral gene transcription during infection: IRS1 and TRS1.

Co-infection of HCMV was found to be sufficient to rescue protein translation of a Vaccinia virus
mutant (VV∆E3L) that is sensitive to PKR activity [59], which ultimately led to the identification
of IRS1 and TRS1 as key PKR modulatory factors [60]. Further investigation into TRS1 found that
two distinct regions of this protein modulate PKR in separable fashions, with the C-terminal region
capable of directly binding dsRNA and presumably preventing it from binding PKR and other dsRNA
sensors, and the N-terminal region binding PKR directly and sequestering it in the nucleus to prevent
its activation and downstream signaling [61–63]. Interestingly, both regions of TSR1 are required to
fully rescue VV∆E3L-PKR related phenotypes, which include viral replication and host cell range [61],
though more recent results suggest that the N-terminal region is responsible for the majority of the
PKR inhibition phenotype [64].

To assess the contribution of these proteins to overall HCMV replication, mutants containing
deletions of IRS1 and TRS1 both individually and in tandem were used to show that loss of either
gene product in isolation did not strongly affect viral growth, but infection with an IRS1/TRS1 double
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deletion mutant resulted in an extreme reduction in protein synthesis and failure to replicate in primary
human fibroblasts [65]. A follow up study showed that this pattern of growth correlated to levels of
PKR activation as well as that viruses harboring individual mutations of IRS1 and TRS1 maintained
the ability to suppress PKR activation during infection, whereas siRNA silencing of PKR rescued
viral growth in the context of simultaneous loss of IRS1 and TRS1 [66]. These results indicate that
modulation of IFN signaling by IRS1 and TRS1 directly contributes to infectious outcomes. As future
inquiries continue to dissect the different functions of IRS1 and TRS1, it will be important to elucidate
the nuances of IRS1 function, which has received less scrutiny to date than TRS1.

2.2. HCMV Immediate-Early Genes (IE) and Interferon Modulation

Immunomodulatory tegument proteins enjoy a temporal advantage over viral genes that must
be expressed de novo during infection as there is no delay between the onset of infection and their
time of action. However, studies investigating the role of de novo viral protein synthesis in influencing
the interferon response to HCMV infection using UV-inactivated virus [30,32] and cycloheximide
treatment [67] have found that, in addition to the suite of tegument-delivered viral proteins, newly
synthesized viral proteins are also required for wild-type interferon pathway modulation. Recently
identified as an HCMV-encoded regulator of ISG15 and ISGylation, IE1 (IE72, pUL123) was observed
to strongly inhibit ISG15 transcription levels during viral infection and enable viral evasion of the
ISGylation response [51]. This discovery is just the latest in a collection of work pointing to IE1’s
ability to modulate Type I IFN signaling. Initial studies found that a recombinant virus lacking IE1
was vulnerable to Type I IFN treatment [68]. Further work revealed that IE1 binds to STAT2 via its
carboxy-terminal acidic domain, which is also required for high-titer viral replication, and that this
interaction interferes with the ability of STAT2-IFN-stimulated gene factor 3 (STAT2-ISGF3) complexes
to bind to interferon stimulated response elements (ISRE) and increase the transcription of Type I
IFN targets [69]. Interestingly, IE1 appears to prevent STAT2-ISGF3 complex loading onto ISRE sites
without altering the abundance, phosphorylation, or complex formation ability of STAT2, relying on a
mechanism of interference that has yet to be fully described [68,69]. Additionally noteworthy is that
SUMOylation of IE1’s acidic domain has been shown to inhibit the IE1-STAT2 interaction and mitigate
the impact of IE1 on IFN target gene expression, indicating that the cell has evolved countermeasures
to respond to the activities of IE1 during infection [69].

In addition to modulation of the Type I pathway, IE1 expression has been reported to alter Type
II IFN signaling. Multiple studies show that endogenous expression of IE1 in human fibroblasts is
sufficient to shift the host transcriptional profile to one resembling IFNγ-treated cells [70,71] This
transcriptional response was shown to occur independently of IFNγ [70], and IE1 does not appear to
directly interact with STAT1, the major Type II transcription factor [72]. Further investigation led to a
model in which IE1 binds STAT3 and sequesters it in the nucleus, preventing its phosphorylation [71].
In the absence of cytoplasmic STAT3, STAT1 phosphorylation and activation by the cytoplasmic kinase
JAK1 is increased, resulting in higher levels of phosphorylated STAT1 localizing to the nucleus and
inducing transcription of Type II IFN target genes [70]. However, other recent findings indicate that
endogenous IE1 is capable of reducing STAT1 homodimer binding to Type II GAS promoter elements,
complicating the story [72]. Collectively, it is clear that many questions about the interplay between
IE1 and Type II IFN signaling remain to be resolved.

IE2 (IE86, pUL122) has also been closely linked with IFN modulation during infection. IFNβ
production during infection is strongly inhibited by the presence of IE2 [73], which has been found to
suppress IFNβ levels by binding NFκB and preventing its interaction with NFκB sites located on the
IFNβ promoter, thereby inhibiting transcription [32]. Notably, a more current analysis has broadened
the scope of potential interactions between IE2 and Type I IFN by showing that IE2 also targets the IFN
activating molecule STING for proteasomal degradation and attenuates STING-induced transcription
of IFNβ, potentially through two distinct mechanisms [74]. While many questions remain, evidence
of modulation of interferon signaling by IE1 and IE2 strongly supports the notion that targeting
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interferon signaling at immediate-early times of infection is critical for successful HCMV infection
and persistence.

2.3. HCMV-Mediated Modulation of Interferon at Later Times of Infection

The unique short region of the HCMV genome contains a series of adjacent genes with limited
sequence similarity, US2–US11, that encode a set of glycoproteins implicated in a variety of activities
including immune modulation [75,76]. US9 is expressed with early kinetics during viral infection and
localizes to the mitochondria and endoplasmic reticulum [77], where it appears to modulate Type
I IFN signaling and IFNβ production through two distinct interactions with the MAVS and STING
adaptor proteins [78]. MAVS and STING both function similarly as adaptors that recruit the TBK1
kinase with its substrate, IRF3, which is then activated and localized to the nucleus to upregulate ISG
transcription [78]. Expression of US9 in cells results in a strong downregulation of IRF3 activation and
nuclear accumulation [78]. US9 appears to achieve this effect by damaging the cell’s mitochondria
and preventing its retention of MAVS, as well as by directly binding STING and preventing its
dimerization and downstream activation of IRF3 [78]. As a non-tegument HCMV protein expressed
with early kinetics, US9 is of particular interest because most HCMV-encoded IFN modulatory proteins
discovered to date are either delivered with the tegument or expressed immediately upon infection.
In contrast, US9 is scarcely detectable within the cell prior to 6 hpi and reaches its highest level of
accumulation around 48 hpi [23], appearing to be exclusively dedicated to protecting and enabling the
later phases of the viral life cycle.

As discussed above, the identification of pp71 as a cGAS-STING interactor was achieved through
the use of an HCMV gene expression library containing 131 constructs each encoding a unique HCMV
protein [46]. Another HCMV gene product that emerged from this screen was UL31, a true-late protein
required for wild-type viral growth [79,80] that was found to be capable of binding both viral DNA and
host cell cGAS via its N- and C-terminal regions, respectively. UL31’s high binding affinity for cGAS,
but not for DNA, suggests a non-competitive mechanism of action wherein UL31 preferentially binds
cGAS in a manner that dissociates DNA from the molecule. UL31 fails to inhibit cGAMP induction of
Type I ISGs but is capable of inhibiting the interferon-associated gene transcription stimulated by both
HCMV infection and dsDNA, signifying that this key interaction with cGAS is critical for modulating
downstream immune signaling [81]. Further, knockdown of cGAS is capable of rescuing the growth
defect of UL31-deficient viral infection, indicating that the UL31/cGAS interaction has implications for
overall viral growth [81]. Notably, UL31-mediated inhibition of cGAS appears to have a broad immune
footprint, affecting multiple immune signaling archetypes, as infection with a UL31-deficient HCMV
mutant strongly induced both ISG’s and NFκB target genes, and plasmid overexpression of UL31 in
fibroblasts inhibited the activation of both ISRE-containing and NFκB reporter elements [81].

Another upstream inducer of STING, IFI16, is targeted for inhibition by the HCMV early-late
gene UL97. Conserved among herpesviruses, UL97 is a viral kinase that has been shown to bind and
phosphorylate IFI16, inducing its relocalization out of the nucleus of infected cells into the cytoplasm,
where it is prevented from inducing an IFN response [82]. Nuclear retention of IFI16 can be rescued by
treatment with an inhibitor that reduces UL97 kinase function or by removing the UL97 reading frame
from the HCMV genome, further establishing this link between UL97 and IFI16 export [82].

2.4. Modulation of Interferon during Latency

Work using an IRS1 and TRS1 double mutant (∆IRS1/∆TRS1) to investigate PKR modulation
during infection was instrumental in uncovering another HCMV gene product that alters the host
cell’s ability to sense viral dsRNA: ORF94 (UL126a). Oligoadenylate synthetase (OAS) proteins are
dsRNA-binding enzymes that activate cellular RNases in response to dsRNA detection, degrading
host and viral RNA and down regulating overall rates of protein synthesis (reviewed in [83]). HCMV
infection institutes a block to OAS signaling, and it was observed that while HCMV-encoded TRS1
and IRS1 are capable of downregulating this pathway in certain contexts [60], a mutant HCMV lacking
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both of these open reading frames still inhibited OAS activation [65]. HCMV ORF94 was identified as
a potential candidate that may be mediating this OAS block by inhibiting the expression of OAS1 in
multiple contexts, including during productive infection and in the face of interferon stimulation [84].
Notably, HCMV ORF94 is a latency-associated ORF encoded by transcripts expressed during latent
infection [85]. While extremely intriguing, it still remains to be seen how ORF94 and its modulation of
the IFN response contributes to latency establishment, maintenance, or reactivation.

3. HCMV Modulation of NFκB Signaling

The NFκB signaling network regulates a wide variety of pro-inflammatory processes that
ultimately shape innate and adaptive immune responses via transcriptional regulation of numerous
NFκB responsive genes. NFκB signaling can be activated by a myriad of inducers including infectious
agents, paracrine signaling factors, or environmental stress [86]. Highlighting its importance as
a defense against infection, a wide variety of evolutionarily diverse viruses including Human
Immunodeficiency Virus-1 (HIV-1), HCMV, Herpes Simplex Virus-1 (HSV-1), and Epstein Barr Virus
(EBV) have evolved mechanisms to modulate NFκB signaling [87]. Numerous interactions between
HCMV and NFκB signaling have been described over the years (Figure 2, and reviewed in [87,88]).
HCMV gene products have been shown to both inhibit NFκB signaling and activate facets of the NFκB
pathway to support lytic replication or induce reactivation from latency [89,90], suggesting a nuanced
relationship. This highlights the reality that NFκB signaling is not simply binary, but rather that NFκB
endpoint signaling is capable of multiple distinct transcriptional landscapes depending on specific
upstream stimuli. The relationship between HCMV and NFκB is shaped by multiple HCMV gene
products, including both proteins and miRNAs, which serve to modulate various aspects of NFκB
signaling. Less clear are how the various facets of HCMV-mediated modulation of NFκB contribute to
the variety of biological contexts of HCMV infection, including viral persistence, shedding, latency,
reactivation, tropism, and pathogenesis.

Most effectors of the NFκB response converge upon the activation of a serine-specific IκB kinase
(IKK) complex comprised of different combinations of three distinct subunits: IKKα, IKKβ and
IKKγ/NEMO (Figure 2). Canonical NFκB signaling relies on a tripartite complex consisting of one of
each IKK subunit, while non-canonical NFκB functions through an IKKα dimer [86]. The mechanisms
through which the cytoplasmic NFκB subunit complexes are activated represent a major difference
between these two sub-pathways (Figure 2). In canonical NFκB signaling, an IKK complex containing
NEMO phosphorylates the repressor protein IκB, marking it for ubiquitination and degradation. IκB
represses the canonical NFκB transcription factors p50 and p65 (RelA) in the cytoplasm, which are
freed upon IκB phosphorylation/degradation, resulting in their nuclear translocation and subsequent
transcriptional activation of NFκB targets [80]. During non-canonical NFκB signaling an IKKα
homodimer acts as the kinase that phosphorylates the C-terminus of p100, which resides in an
inhibitory complex with RelB in the cytoplasm. This phosphorylation of p100 results in its processing
to p52, which in complex with RelB, can enter the nucleus to modulate NFκB target transcription [91]
(Figure 2).

During HCMV infection of fibroblasts NFκB activation appears to follow a specific sequence in
which the pathway is active early in infection, but is then repressed from middle to late time points of
the viral life cycle. At the earliest time of infection, i.e. envelope fusion, the HCMV glycoproteins B and
H (gB/gH), encoded by UL55 and UL75, respectively, bind to Toll-like receptor 2 (TLR-2) on the surface
of the cell and induce a canonical NFκB signaling cascade resulting in the excretion of pro-inflammatory
and anti-viral cytokines [92]. This immediate enhancement of NFκB activation appears to be pro-viral,
as HCMV’s MIEP possesses NFκB binding motifs [93] that facilitate the expression of IE genes, an
effect that can be enhanced by TNFα stimulation [94]. Further evidence supporting a pro-viral aspect
of early NFκB activation for infection include the findings that dominant-negative constructs targeting
key NFκB constituents such as IKKα, IKKβ, and IκBα reduce MIEP activation [95]. These findings
suggest that NFκB activation at early times is important for optimal transactivation of the MIEP.
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However, the utilization of HCMV mutants lacking the NFκB motifs in the MIEP did not result in
significant attenuation of infection or IE gene product accumulation [96], suggesting that additional
host transcription factor binding motifs present in the MIEP, including CREB (cAMP response element
binding) and ATF (activating transcription factor) sites [97], may be sufficient to activate IE gene
transcription even in the absence of p65/p50 binding. This remains an unresolved issue, and further
inquiries have suggested that this nuanced interaction between viral transcription and NFκB signaling
can be influenced by numerous factors including the host cell’s progression through the cell cycle [89],
the adaptation of HCMV strains to laboratory passage conditions [98], and host cell lineage [99].
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3.1. HCMV Tegument Proteins and NFκB Modulation

Concurrent with envelope fusion, the virion releases viral tegument proteins into the cytoplasm
which disseminate and begin to modulate a number of cellular pathways. The pp65 protein, as
discussed above, likely plays a role in blocking the host IFN response during early infection that is
not yet fully understood. In addition to this IFN modulatory role, infection with a pp65-deficient
mutant HCMV increases the accumulation of NFκB target genes and induces the nuclear binding
activity of NFκB transcription factors [31], suggesting an important contribution to NFκB regulation.
Mechanistically, however, it is unclear how pp65 modulates NFκB activity. Further, the extent to which
pp65’s modulation of IFN and NFκB signaling might be functionally related is uncertain.

The UL26 protein is also delivered with the tegument and has been shown to antagonize NFκB
activity. A UL26 deletion mutant virus is severely attenuated, and UL26 has been shown to be necessary
to inhibit IKK complex phosphorylation and RelB translocation during infection [100,101]. Further,
expression of UL26 by itself is sufficient to block TNFα-mediated NFκB activation [100,101]. However,
despite its presence in the tegument, UL26 does not block the activation of NFκB at the earliest times of
infection. UL26 is thought to have a stronger role in the attenuation of NFκB activity that occurs later
during infection, when UL26 localizes to the cytoplasm, as opposed to early times when it localizes
in the nucleus [102]. However, the possibility of an interaction between UL26 and NFκB at early



Viruses 2018, 10, 447 9 of 18

times during infection cannot be ruled out, as UL26-deficient virus is more sensitive to challenge
with TNFα [100]. Notably, UL26 is capable of inhibiting IKK complex activation in the face of diverse
upstream stimuli including TNFα signaling and Sendai virus infection, suggesting that it is acting at
the level of the IKK complex, where these signaling cascades converge [100], but the exact mechanism
of UL26’s inhibition of NFκB signaling remains to be elucidated

HCMV tegument proteins are also capable of inducing pro-viral NFκB signaling. UL76,
a tegument-associated endonuclease, is reported to activate the canonical NFκB pathway through
the DNA damage response and induce IL-8 production [103]. This UL76-mediated increase in IL-8
production was shown to be dependent on the cellular kinases Ataxia-telangiectasia mutated (ATM)
and IKKβ; however, ablation of ATM expression in cells or of the key endonuclease motif amino
acids present in UL76 failed to completely restore IL-8 production back to wild-type levels during
infection [103], implying that additional aspects of NFκB signaling might be contributing to this
phenotype. A UL76 deletion mutant has a significant growth defect [104], but the contributions of
increased IL-8 production to this attenuation are not clear.

HCMV virions have been found to incorporate cellular mRNAs and proteins [27,105]. This
raises the possibility that, in addition to viral factors, virion-associated cellular factors could also be
modulating NFκB signaling. One such example is the virion packaging of casein kinase II (CKII),
which has been found in the virion tegument and is reported to activate NFκB signaling through
phosphorylation of the IκB repressor, thereby releasing the associated NFκB subunits to localize to
the nucleus and induce NFκB-dependent transcription [106]. The extent to which cellularly-derived,
virion-associated NFκB modulators contribute to the various facets of HCMV infection is still largely
not known.

3.2. HCMV Immediate-Early Genes and NFκB Modulation

The IE proteins expressed upon MIEP stimulation interact with the NFκB pathway in diverse ways.
IE1, a promiscuous transactivator of NFκB pathway constituents and their downstream targets during
infection, has been implicated in the upregulation of p65, IL-6, TNF-α and IL-8 as well as the induction
of p52/RelB heterodimer binding activity in the nucleus [88]. At immediate-early times, the virus
also produces UL144, a TNF-receptor-like transmembrane receptor with immediate-early expression
kinetics [107], which activates expression of the immune cytokine CCL22 [108]. Mechanistically,
UL144 complexes with TRAF6 in perinuclear regions of the cell to enable NFκB transcription factor
translocation and binding, and siRNA targeting UL144, TRAF6, or NFκB all ablate the downstream
CCL22 expression induced by infection [108]. The CCL22 cytokine has been noted to play a
chemoattractant role in recruiting Th2 and regulatory T-cells (Tregs) to mediate adaptive immune
responses [108]. The UL144 open reading frame is lost in extensively laboratory passaged strains of
HCMV, potentially due to its activation of NFκB signaling, which could be a detriment to viral fitness
during in vitro fibroblast infection [109,110].

In addition to immediate-early expression of the NFκB agonists IE1 and UL144, IE2 inhibits host
NFκB signaling at all points during HCMV infection through a still-controversial model: either by
blocking NFκB subunit dimer interactions or preventing subunit interactions with specific NFκB
target promoters, e.g., IL-6 [32,111]. Interestingly, the antagonistic effects of IE2 do not prevent UL144
from inducing NFκB [112], which highlights the specificity with which HCMV is able to tailor NFκB
signaling. Collectively the data suggest that at early points of infection the virus seems to be operating
within an optimal pro-inflammatory signaling window, with just enough NFκB transcription factor
binding to transactivate the viral MIEP, but still staying below a threshold that might trigger a broader
anti-viral immune response.

3.3. HCMV-Mediated Modulation of NFκB at Later Times of Infection

At some point during the transition from the immediate-early stages of infection, where active
NFκB signaling is observed, to the later stages of infection, the viral actions towards NFκB become
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much more inhibitory. This transition coincides with the increased expression of multiple HCMV genes
that antagonize NFκB activity. One such gene is UL111a, also known as cmvIL-10 for its functional
similarity to the cellular cytokine IL-10. cmvIL-10 shares only approximately 27% homology with
host IL-10, but binds as a homodimer to the human IL-10 receptor and blocks NFκB signaling by
preventing IκBα degradation in a similar manner to IL-10 [113–115]. In addition, cmvIL-10 also has
a significant immunosuppressive effect on interferon signaling. In peripheral blood mononuclear
cells (PBMCs), TLR-agonist treated media from wild-type AD169 infection is sufficient to inhibit the
production of IFNα when compared to similarly treated media from a cmvIL-10 knockout virus [116].
Further, cmvIL-10 alone is sufficient to do the same in plasmacytoid DCs [117]. The mechanism behind
these inhibitions appears to involve activation of STAT3 [118], but is still poorly understood. It remains
unknown if the suppressive effects of cmvIL-10 on IFN and NFκB signaling are separable. Studies of
the cmvIL-10/interferon signaling axis suggest that the molecule may be acting in a paracrine manner
to activate defenses in uninfected cells, which could represent a promising avenue of further inquiry.

3.4. HCMV miRNAs and NFκB Modulation

Viral miRNAs represent additional tools that HCMV employs to undermine host cell defenses
at later points of infection. HCMV encodes 26 miRNAs, each approximately 22nt in length, that
have been implicated in modulating a wide variety of cellular pathways and processes including
vesicle transport, cytokine secretion, immune signaling, and progression through the cell cycle,
(reviewed in [119] and [120]). Throughout the course of infection, beginning with immediate-early
gene expression, HCMV miRNAs begin to accumulate, becoming abundant by late infection [119,121].
HCMV miR-US5-1 and miRUL112-3p have been shown to prevent NFκB cytokine signaling by
specifically downregulating the expression of the key kinases IKKα and IKKβ [122]. In addition
to blocking the NFκB signal relay set off by cytokine detection, miR-US5-2 is able to block the infected
cells’ secretion of cytokines [123], thereby ceasing the positive feedback loop of NFκB activation and
ultimately returning the pathway to its initial inactive state. During latent infection, miR-UL148D
is one of the most highly expressed miRNAs, and has been demonstrated to block NFκB upstream
adapters and repress IL-6 production [124], thus allowing the infected cell to evade host immunity.

3.5. Latency-Associated NFκB Modulators

A hallmark of all herpesviruses is the ability to enter latency, persisting with limited lytic viral
replication in the face of a primed immune response and capable of reactivation during times of
stress or immunosuppression, resulting in viral dissemination and potential pathologies. The signals
that reactivate HCMV from latency remain incompletely understood, but immunosuppression and
inflammation are thought to play major roles (reviewed in [125]). Consistent with this view, reports
indicate that viral genes activate NFκB during reactivation [126], and, further, NFκB activation has
been linked to HCMV reactivation via NFκB subunit enhancement of MIEP expression [127,128]. The
viral chemokine receptor US28, expressed with early kinetics during lytic infection, is one of the few
viral proteins expressed during latency as demonstrated in latently infected THP-1 monocytes [128].
US28 has been implicated in activating the MIEP through NFκB signaling [126]; it is possible that
during latent expression, US28 activates the MIEP and aids in reactivation from latency. US28 induces
constitutive NFκB activation through its interaction with the Gq/11 G protein, which mediates the
release of Gβγ subunits that induce downstream NFκB activity [129]. Although in general US28 has
appeared to stimulate NFκB activity, recent work suggests that US28 attenuates multiple cell signaling
pathways including NFκB, which is required to maintain latency as mutants lacking US28 return to
their lytic phase and infected cells are subsequently targeted by T-cells [130]. It is clear that US28 plays
a complicated role in the HCMV life cycle; and, like other viral factors, possesses more than one role
that may seem counterintuitive, but that are likely important in different infectious contexts.

Another viral protein expressed during latency, UL138, acts by activating and stabilizing the
cell surface expression of TNFR1 [131–133]. Interestingly, while UL138 appears to promote the
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sensitivity of latently infected cells to TNFα, reporter assays show that UL138 strongly represses
MIEP transactivation [134] and ChIP (chromatin-immunoprecipitation) assays suggest it prevents
cellular demethylases from interacting with the MIEP [135], leading to the conclusion that this protein
is also playing a central role in maintaining HCMV’s latent state. These results represent some of
the first forays into exploring the immunomodulatory potential of HCMV latency-associated genes,
and the data suggest that there is a complex interplay between pro- and anti-viral manipulations of
immune signaling as the virus maintains latent infection despite silencing much of its transcription.

4. Conclusions and Future Perspectives

Reports over the past 25 years have made it abundantly clear that HCMV devotes substantial
genetic resources towards manipulation of interferon and NFκB signaling. The list of involved genes
is large and still growing, with a variety of HCMV gene products playing modulatory roles in various
contexts. While a multitude of questions remain, certain themes and patterns have emerged. For
example, with respect to IFN signaling, while some ISGs such as viperin and Cox2 (reviewed in [12])
appear to be co-opted by the virus for pro-viral activities, almost all HCMV gene products that have
been identified to play a role in IFN signaling serve to attenuate this host cell response to support robust
infection, suggesting that HCMV goes to great lengths to inhibit IFN signaling to enable infection.

In contrast, the literature regarding HCMV’s modulation of NFκB suggests a more complex picture.
NFκB activation during lytic infection of fibroblasts appears to be biphasic with a pro-inflammatory,
pro-viral NFκB signaling environment instituted during the earliest times of infection, which
subsequently shifts to broadly inhibitory of NFκB at later time points of infection. As discussed
above, current data suggest a model in which early NFκB activation supports infection through
increased MIEP transcription, whereas later NFκB inhibition prevents the secretion of NFκB-regulated
anti-viral factors, e.g., cytokines. However, many questions remain. For one, the sheer number of
HCMV gene products that modulate NFκB inflammatory signaling in diverse ways suggests a more
nuanced story. It seems likely that these NFκB modulatory gene products work in different infectious
contexts to support varied aspects of viral infection, including robust lytic infection, the establishment
of latency, and reactivation from the latent state. In this regard, the activities of NFκB-modulatory viral
proteins will likely be sensitive to a variety of cellular states including cell type, differentiation status,
and the inflammatory environment.

A typical in vivo infection progresses from the mucosal epithelial cells to responding immune
cells, with subsequent seeding of lymph nodes and infection of progenitor cells that will serve as
latency reservoirs, followed by some level of either subclinical or pathogenic reactivation back in the
mucosal epithelia. We propose that cell-type and context specific HCMV-mediated modulation of
NFκB will be critical at each step of this process. Furthering our understanding of how the relationship
between HCMV and NFκB shapes viral biology and pathogenesis will require elucidating how specific
mechanisms of HCMV-mediated modulation of NFκB contribute to key events during the in vivo viral
life cycle in physiologically relevant cell types. While this will be challenging given the limitations of
our current in vivo and in vitro models, recent developments in humanized mice, as well as explant
and organoid culture techniques will yield exciting, novel opportunities to address these issues. The
field has made substantial progress, likely identifying the majority of the viral players involved in NFκB
modulation. It is time to turn our attention to identifying how these viral NFκB modulators contribute
to various infectious contexts, and to developing the tools and experimental systems required to do
so. Given the importance of these interactions to infectious outcomes, further elucidating how they
contribute to infection will likely provide novel avenues to limit HCMV-associated pathogenesis.
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