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Abstract: MicroRNAs (miRNAs) are small, non-coding RN As that regulate gene expression at the
post-transcriptional level. Through this activity, they are implicated in almost every cellular process
investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of
viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been
shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host
or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to
modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly,
viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific
targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review,
we focus on recent findings elucidating several key mechanisms employed by diverse virus families,
with a focus on miRNAs at the host—virus interface during herpesvirus, polyomavirus, retroviruses,
pestivirus, and hepacivirus infections.
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1. Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules, typically 21 to 25 nucleotides (nt) in
length, that are highly evolutionarily conserved, developmentally regulated and are expressed in a
tissue-specific manner. Since their description in the early 1990s, miRNAs have been found in over
200 species, with over 2000 human miRNAs and more than 24,000 entries in the Sanger database [1,2].
MiRNAs are typically transcribed by RNA polymerase II as long, highly structured primary miRNA
transcripts (pri-miRNAs), often found in the introns of protein-coding genes [3,4]. These pri-miRNAs
are then processed into short, ~70 nt hairpin-shaped precursor miRNAs (pre-miRNAs) by Drosha,
a nuclear RNase III enzyme [5]. In the cytoplasm, the pre-miRNAs are further processed by the
RNase III enzyme, Dicer, into mature ~22-nt miRNA duplexes [6-8]. Dicer interacts with the
transactivation response RNA-binding protein (TRBP) and the protein activator of PKR (PACT),
two dsRNA-binding proteins that play roles in miRNA processing efficiency and specificity [9].
Following Dicer cleavage, the mature miRNA is loaded into an Argonaute (Ago) protein, an essential
component of the RNA-induced silencing complex (RISC) [10]. The Ago protein unwinds the
mature miRNA duplex and uses one strand, known as the guide strand, to target mRNAs in a
sequence-specific manner. While miRNAs usually bind to the 3’ untranslated region (UTR) of
their target mRNAs, they have also been reported to target the 5 UTR and coding sequences of
mRNAs [11-13]. Although both strands of a duplex can serve as the guide strand, strand selection
is determined by the duplex stability at the 5" end of each miRNA arm, and highly abundant

Viruses 2018, 10, 440; doi:10.3390/v10080440 www.mdpi.com/journal/viruses


http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-8484-3632
http://www.mdpi.com/1999-4915/10/8/440?type=check_update&version=1
http://dx.doi.org/10.3390/v10080440
http://www.mdpi.com/journal/viruses

Viruses 2018, 10, 440 2 of 26

miRNAs typically originate more frequently from the 5p strand than the 3p strand [14,15]. Pairing
interactions between miRNAs and their target RNAs primarily involve nucleotides 2-8 of the miRNA,
which is referred to as the “seed sequence” [16]. However, additional pairing to the 3’ region of
the miRNA can compensate for mismatches in the seed region [17]. Perfect complementarity or
extensive centered pairing results in target mRNA cleavage, whereas imperfect base-pairing typically
results in translational inhibition and/or accelerated deadenylation, culminating in repression of
target gene expression [18,19]. In mammals, miRNAs are typically imperfectly complementary to their
targets, whereas in plants and insects they may have perfect complementarity [20]. Since miRNAs
can bind to their targets with imperfect complementarity, a single miRNA can target over 100 genes,
and a single gene may be regulated by multiple miRNAs [21,22]. In fact, it is predicted that over
two-thirds of all human genes are targeted by miRNAs [23]. Thus, it is not surprising that miRNAs
are implicated in many cellular processes, including cell proliferation, differentiation, apoptosis,
metabolism, host immunity, and viral infections [24-27].

MiRNA-mediated regulation of viral infection has been described in a wide variety of hosts
and across both DNA and RNA virus families. Several types of interactions have been observed,
including: cellular miRNAs directly targeting host or viral transcripts; evasion of cellular miRNAs;
broad impairment of the miRNA pathway; and even virally encoded miRNAs that regulate host or
viral gene expression. Such interactions have been described to play crucial roles in the regulation of
viral replication, maintenance of latency and/or reactivation, immune evasion, and cell transformation.
Herein, we highlight recent studies elucidating the role of miRNAs at the host—virus interface, with a
focus on several key canonical and non-canonical miRNA interactions that contribute to viral infection
and pathogenesis in a select group of well characterized DNA and RNA viruses.

2. Herpesviruses

Herpesviruses are large dsDNA viruses that can establish lifelong infections and cycle between
lytic (productive) and latent (non-productive) replication [28]. This family is divided into three
subfamilies with general differences in the cell types involved: the Alphaherpesvirinae latently
infect neurons; Betaherpesvirinae are found in the monocyte lineage; and Gammaherpesvirinae infect
lymphocytes [29]. Clinical manifestations of herpesvirus infections can range from skin and mucosal
lesions to severe malignancies and deadly encephalitis. The most well-studied herpesviruses
include five common human pathogens: herpes simplex viruses type 1 and 2 (HSV-1 and HSV-2),
human cytomegalovirus (HCMYV), Epstein-Barr virus (EBV), and human herpesvirus 8 (HHV-8),
also known as Kaposi’s sarcoma-associated herpesvirus (KSHV) [30]. The role of miRNAs in the
pathogenesis of herpesvirus infection has been extensively studied and provides a good overview
of both canonical and non-canonical interactions with the miRNA pathway during viral infection
(reviewed in [31]).

2.1. Cellular miRNAs in Herpesvirus Infection

2.1.1. MiRNAs Implicated in Latency Maintenance

Herpesviruses are characterized by their ability to carry out lytic replication or establish latency,
and several cellular miRNAs have been implicated in this process. HSV-1 latency is promoted by
two cellular miRNAs, miR-101 and miR-138 (Table 1). Expression of the HSV-1 immediate early
protein ICP4, a key transactivator of early and late viral genes, induces the expression of miR-101
by directly binding to and activating its promoter [32,33]. In turn, miR-101 directly downregulates
expression of the mitochondrial ATP synthase subunit beta (ATP5B), a protein known to promote
HSV-1 replication [34]. ATP5B depletion was shown to block HSV-1 DNA packaging and capsid
maturation, presumably by limiting the energy available to complete the viral life cycle [35]. MiR-101
also downregulates the RNA-binding protein G-rich sequence factor 1 (GRSF1), whose binding to
HSV-1 p40 mRNA typically enhances its expression, facilitating viral replication [33]. Therefore,
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induction of miR-101 expression during HSV-1 infection downregulates both ATP5B and GRSF1
expression, consequently attenuating viral replication and preventing lytic cell death. In addition, the
neuron-specific miR-138 directly downregulates the expression of another viral transactivator of lytic
gene expression, ICP0. Thus, both miR-101 and miR-138 have been demonstrated to inhibit lytic gene
expression and promote viral latency during HSV-1 infection [36].

Similarly, HCMYV is a ubiquitous pathogen that is able to establish latent infection upon resolution
of acute infection [37]. Reactivation of the HCMV lytic cycle during times of immunological stress
can result in severe disease and mortality [38]. The HCMV immediate early transcript, UL112, one of
the two early proteins known to initiate viral reactivation, is the direct target of three human miR-200
family members: miR-200b, miR-200c, and miR-429 (Table 1) [39]. This cluster of miRNAs is highly
expressed in undifferentiated cells such as monocytes, but lost during differentiation, and this is
thought to act as a switch for viral reactivation [39].

Following primary infection, EBV can also establish a latent infection in the nucleus of memory B
cells. Although usually benign, EBV infections are known for their ability to transform infected cells
and have been associated with many cancer types, including several lymphomas [40]. Similarly to the
suggested role of the miR-200 family in HCMYV reactivation, miRNAs from the miR-200 cluster have
also been shown to induce EBV reactivation (Table 1) [41]. Specifically, miR-200b and miR-429 directly
downregulate the expression of the two host proteins, ZEB1 and ZEB2, that repress the transcription
of the EBV immediate-early transcription factor, BZFL1 [42]. Thus, miR-200b and miR-429 indirectly
allow expression of BZFL1, which induces early lytic gene expression and binds to the origin of
replication of the EBV genome promoting viral replication. In contrast, miRNAs are also implicated in
EBV latency and expression of the viral protein EBNA1 transactivates the expression of let-7a primary
transcripts during infection [43]. EBNA1 is expressed during both lytic and latent infections and
is required for EBV replication as well as segregation of episomal genomes during latency [44,45].
EBNAl-mediated upregulation of let-7a results in direct downregulation of Dicer gene expression,
thereby decreasing overall cellular miRNA levels and reinforcing latency [43]. EBNA1 expression also
results in a significant decrease in BZFL1 expression without modulating miR-200b or miR-429 levels,
suggesting that EBNA1-mediated upregulation of let-7a may reinforce latency independently of ZEB1
and ZEB2 levels.

Finally, although less is known regarding the role of cellular miRNAs in KSHYV latency, miR-320d,
miR-498 and miR-1258 have all been shown to bind to the 3’ UTR of the KSHYV replication and
transcription activator (RTA) transcript (Table 1). Downregulation of this important reactivation factor
results in a repression of KSHV reactivation [46,47]. Thus, by targeting both host and viral transcripts
(Table 1), cellular miRNAs appear to be major regulators of latency and/or viral reactivation during
infection with several human herpesviruses.
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Table 1. Cellular miRNAs with putative roles in herpesvirus infection.
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Virus miRNA Targets ! Predicted Roles References

HSV-1 miR-101 ATP5B Blocks DNA packaging and capsid maturation [34]
GRSF1 Attenuates viral replication [33]
miR-138 ICPO (v) Inhibits lytic cycle gene expression [36]
miR-199a ARHGAP21 Alters Golgi function disturbing viral envelopment [48]
miR-146a Complement factor H Immune evasion [49]

Arachidonic cascade Alzheimer-type neurological changes [49,50]

miR-23a IRF1 Innate immune evasion [51,52]

miR-649 MALT1 Innate and adaptive immune evasion [53,54]
miR-132 p300 Innate immune evasion [55]
HCMV miR-200 family UL112 (v) Inhibits viral reactivation [39]
miR-21-5p Cdc25a Inhibits viral replication [56]
miR-27b EN2 Alters glioma cell morphology, neurological disorders [57]
miR-132 p300 Innate immune evasion [55]

EBV miR-200b, -429 ZEB1, ZEB2 Reactivation of lytic cycle, viral replication [41,42]
let-7 Dicer Promotes latency [43]
miR-190 NR4A3 Inhibits lytic cycle [58]
TP53INP1 Enhances cell survival [58]
miR-424 SIAH1 Inhibits apoptosis [59]
miR-127 BLIMP1, XBP-1 Lymphomagenesis, blocks B-cell differentiation [60]

KSHV miR-320d, -498, -1258 RTA (v) Inhibition of reactivation [46,47]
miR-132 p300 Innate immune evasion [55]

miR-21 Pdcd4, PTEN Cell migration, invasion, angiogenesis [61-63]

miR-31 FAT4 Cell migration [61,64]
miR-146a CXCR4 Cell migration [65]
miR-221/222 cluster ETS1, ETS2 Cell migration [64]
miR-30b/c DLL4 Angiogenesis [66]

1 Viral targets are indicated (v).
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2.1.2. MiRNAs Implicated in Immune Evasion

Whether latency is an immune evasion strategy or a form of tolerance is subject to some
debate (reviewed in [67]). The restriction of gene expression during latency significantly reduces
the abundance of viral antigens available for presentation to immune cells. However, herpesviruses
have also evolved distinct strategies to more directly inhibit host immune responses using miRNAs.
For example, miR-23a is upregulated during HSV-1 infection, and downregulates interferon regulatory
factor 1 (IRF1) gene expression, impairing the interferon pathway and leading to innate immune
evasion [51]. This also results in the downregulation of the antiviral gene RSAD2, known to limit
HSV-1 replication [52]. MiR-649 further promotes HSV-1 replication by directly targeting the mucosa
associated lymphoid tissue lymphoma translocation gene 1 (MALT1) [53]. Downregulation of MALT1
results in evasion of both innate and adaptive immune responses through inhibition of the NF-«B
pathway [54]. Of note, miR-649 levels were shown to be downregulated following HSV-1 infection
in HeLa cells, and hence its downregulation may play a role in limiting HSV-1 replication through a
negative feedback loop.

Similarly, during KSHV infection, upregulation of miR-132 results in repression of
interferon-stimulated genes (ISGs) by targeting an important transcriptional coactivator [55]. A similar
function for miR-132 has also been described in HSV-1 and HCMYV infection [55]. Thus, as these
examples illustrate, cellular miRNA-directed immune evasion during herpesvirus infection mainly
occurs through downregulation of key signaling proteins in antiviral immune pathways.

2.1.3. MiRNAs Implicated in Cell Cycle Control and Tumorigenesis

Cellular miRNAs are also key players in the regulation of herpesvirus-induced tumors.
For example, upregulation of miR-190 expression during EBV infection directly results in
downregulation of TP53INP1, leading to enhanced cell survival by inhibiting apoptosis and cell
cycle arrest [58]. Furthermore, upregulation of miR-424 and miR-127 during EBV infection promotes
lymphomagenesis by downregulating the tumor suppressor ubiquitin ligase SIAH1 and blocking B-cell
differentiation, respectively [59,60,68]. Interestingly, the viral protein EBNA1, previously discussed
for its role in promotion of the latency by inducing let-7a expression, also leads to upregulation of
miR-127 [60].

Like EBV, KSHYV is the etiologic cause of tumorigenesis, including Kaposi’s sarcoma, a tumor
of lymphatic endothelial lineage [69]. One mechanism by which KSHV is known to induce cancer
involves interleukin-6 (IL-6), a cytokine that promotes cell growth, angiogenesis and lymphoma
formation. KSHV infection induces tumorigenesis through upregulation of host interleukin-6 (IL-6),
a cytokine that promotes cell growth, angiogenesis, and lymphoma formation [70,71]. In addition,
KSHYV also encodes a viral mimic of human IL-6 (vIL-6). However, cellular miR-608 and miR-1293,
respectively, can downregulate human IL-6 and vIL-6 expression directly through binding to sequences
in their open reading frames (ORFs) [72]. On the other hand, the viral ORF57 protein can compete with
these miRNAs for binding to these sequences on the IL-6 and vIL-6 mRNAs [73]. ORF57 binding thus
masks these miRNA sites, and subsequently results in stabilization of these transcripts, promoting IL-6
and vIL-6 gene expression. Furthermore, KSHV infection results in upregulation of miR-21 and miR-31,
which directly target two tumor suppressors linked to neoplastic transformation, cell migration and
angiogenesis [61-64]. Upregulation of miR-146a is also implicated in KSHV-infected cell migration and
spread by directly targeting the chemokine receptor CXCR4, which promotes the premature release of
endothelial cell progenitors into the blood stream [65]. Of note, both miR-21 and miR-146 have been
detected inside KSHV virions and were reported to retain their biological functionality during de novo
infections [74]. Evidence suggests that these so-called “virional” miRNAs are selectively packaged
inside virions during encapsidation or envelopment, but it is still unclear if they directly contribute
to infection or pathogenesis in vivo. However, similar virional miRNAs have been reported in other
viral infections, including HCMV and HIV-1, suggesting that this may be a common strategy used to
control gene expression early in infection [75,76].
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Thus, it is clear that herpesviruses modulate cellular miRNA expression in order to regulate
latency, evade antiviral immune responses and promote tumorigenesis. The identification of virional
miRNAs provides an additional layer of complexity and further research will be required to elucidate
whether this provides a distinct advantage to the virus during de novo infection.

2.2. Herpesvirus-Encoded miRNAs

An important characteristic of herpesviruses that distinguishes them from many other virus
families is their ability to express several virally encoded miRNAs [77,78]. Since the discovery of the
first viral miRNA of EBV in 2004, more than 500 viral miRNAs have been identified across several
diverse virus families [2,79,80]. To date, 8 of the 9 human herpesviruses have been shown to encode at
least one miRNA [81]. These miRNAs have been reported to target both cellular and viral transcripts
and play significant roles in regulating latency and evading host immune responses, both of which
will be described in more detail below.

2.2.1. Viral miRNAs with Cellular Targets

Although most identified targets of the 27 mature HSV-1 miRNAs are viral transcripts, recent
research has described roles for these viral miRNAs in targeting cellular transcripts to promote immune
evasion, viral replication, cell proliferation, and pathogenesis [82,83]. One such example is the targeting
of PIGT by miR-H8. PIGT is an important component of the glycosylphosphatidylinositol anchoring
pathway that allows proteins to be presented on the cell surface. MiR-HS8 represses PIGT expression
resulting in a reduction in presentation of many immune-related proteins, including NK-cell ligands
and the viral restriction factor, tetherin [83]. Thus, by targeting PIGT, miR-H8 efficiently counteracts
the host immune response at several key points. In addition, the HSV-1 miR-H1 directly targets
the ubiquitin protein ligase 3 component, Ubrl, a crucial component of the ubiquitin-proteasome
system [84,85]. MiR-H1-mediated downregulation of the ubiquitin-proteosome system results in
accumulation of neurodegenerative-associated protein fragments, and thus may play a role in HSV-1
pathogenesis [84].

In contrast to HSV-1, most of the 21 mature HCMV-encoded miRNAs are thought to target
cellular transcripts, with well-defined roles in immune evasion from NK cell-mediated killing [31].
HCMV-miR-UL112 targets the major histocompatibility complex (MHC) class-I related chain B (MICB),
a NKG2D ligand, to reduce NK-mediated killing [86]. The viral miRNA binding site overlaps with
that of the cellular miR-367a, which suggests that HCMV may have evolved to prevent target site
mutations by targeting highly conserved sequences [87]. Of note, EBV BART-2-5p and KSHV K-12-1
were also reported to target MICB to promote immune evasion [88]. Two other viral miRNAs,
miR-US25-3p and miR-UL148D, also contribute to evasion from NK cell recognition by targeting tissue
inhibitors of metalloprotease 3 (TIMP3) and the chemokine receptor CCL5, respectively, resulting in
increased shedding of MHC class-I related chain A (MICA) and inhibition of NK cell proliferation
and activation [89-91]. Additional roles for HCMV miRNAs have been reported in cell cycle control,
regulation of latent and lytic infection, and in vesicle trafficking to support virion assembly [31,92].

EBV encodes at least 44 mature miRINAs with described roles in immune evasion, inhibition of
apoptosis, cell transformation, and maintenance of latency [31,93-95]. As examples, miR-BHRF1-3
targets CXCLL11, a T-cell attracting chemokine [96]; miR-BART2-5p (as discussed above) targets the
NK cell ligand MICB [88]; and miR-BART6-3p downregulates the expression of the antiviral RNA
helicase, retinoic acid-inducible gene I (RIG-I) [97]; all contributing to EBV-mediated evasion of host
innate immune responses. On the other hand, one of the most well characterized targets of EBV
miRNAs is the pro-apoptotic protein PUMA, which is downregulated by miR-BART-5p to avoid
apoptosis of EBV-infected cells [98]. Targeting of at least three other pro-apoptotic genes as well as
multiple tumor suppressors by several EBV miRNAs has also been reported, suggesting they contribute
to EBV-induced tumorigenesis and cell transformation [31,99]. Interestingly, EBV miR-BART6-5p,
may also play a critical role in maintenance of latency by directly targeting the human Dicer transcript,
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resulting in repression of miRNA biogenesis and reinforcing the previously discussed strategy of
let-7-mediated repression of miRNNA expression during EBV infection [43,95]. Since Dicer is also
required for viral miRNA processing, this suggests a negative feedback loop may tightly regulate
miRNA levels. The downregulation of Dicer also results in decreased expression of EBV lytic
transactivators (Zta and Rta) and EBNA2, which further reinforce latency. Thus, EBV encoded miRNAs
act on host transcripts to promote both immune evasion and viral latency [100,101].

Finally, KSHV encodes at least 25 mature miRNAs that are implicated in immune evasion and
tumorigenesis. Three KSHV miRNAs (miR-K12-1, -K12-6 and -K12-7) have been demonstrated
to target MCP-1-induced protein 1 (MCPIP1) transcripts, a protein implicated in suppression of
miRNA biosynthesis (through cleavage of pre-miRNAs) and negative regulator of inflammation
through cleavage of IL-6 mRNA [102-104]. In addition, miR-K12-3 and miR-K12-7 downregulate
the expression of C/EBPf, a translational repressor of IL-6 and IL-10 [105]. Thus, combined with
previously discussed effects of viral ORF57 competition for cellular miRNA target sites on expression
of vIL-6 and IL-6 mRNAs, this leads to a further upregulation of IL-6 expression, further promoting
cell growth, angiogenesis and lymphoma formation. These three mechanisms demonstrate how viral
products, including several miRNAs, can have both cooperative and redundant functions during
viral infection.

In addition to de novo targeting, three KSHV miRNAs share seed sequences with cellular
miRNAs, making them functional orthologs able to tap into established cellular miRNA target
networks [106-109]. Through this activity, miR-K12-10 (miR-142-3p ortholog) inhibits the TGF-3
pathway to promote cell survival [110]; miR-K12-3 (miR-23 ortholog) inhibits caspases 3 and 7 to inhibit
apoptosis [109]; and miR-K12-11 (miR-155 ortholog) represses several signaling pathway components
of the interferon response and promotes cell survival [111-115]. Thus, KSHV modulates cellular gene
expression through de novo targeting, but also uses miRNA mimicry to tap into established cellular
miRNA target networks. Through these activities, KSHV miRNAs promote immune evasion, cell
survival, and tumorigenesis.

2.2.2. Viral miRNAs Regulating Viral Transcripts

While cellular miRNAs play crucial roles in maintaining latency, several virally encoded miRNAs
have also been shown to promote latency through targeting viral transcripts. HSV-1 miR-H6 represses
expression of the viral protein ICP4, an immediate early gene that normally promotes the lytic cycle
through transcriptional activation of early and late genes as well as through downregulation of
LAT expression [116]. Moreover, similarly to miR-138, miR-H12 represses ICP0O expression, a viral
transactivator of early gene expression [117,118]. Two other HSV-1 miRNAs have also been shown
to promote latency by targeting a lytic neurovirulence factor (ICP34.5), and all four of these HSV-1
miRNAs implicated in viral latency were found to be upregulated during the latent cycle [117,119-121].
In contrast to HSV-1, very few HCMV or EBV miRNAs have been reported to target viral transcripts.
However, HCMV miR-UL112-1 was shown to downregulate the major immediate early transactivator,
IE72, resulting in a reduction of viral replication and promotion of latency [122]. During EBV
infection, miR-BART-5p, miR-BART15 and miR-BART17-5p all downregulate expression of the
viral latency-associated membrane protein, LMP1 [123]; while miR-BART22 targets LMP2A [124].
Since LMP1 and LMP2A are known viral antigens that can induce potent cytotoxic CD4* and CD8" T
cell responses and NF-«B signaling, their downregulation by EBV miRNAs is predicted to play a role
in both latency maintenance and immune evasion [123,125,126].

Like HSV-1, KSHV miRNAs that target viral transcripts have well-described roles in the
maintaining latency (reviewed in [127]). This role is in accordance with their location in the viral
genome as all KSHV miRNAs are encoded within the latency-associated region [128]. MiR-K12-7 and
miR-K12-9 both directly downregulate the viral protein RTA, a protein essential for initiation of lytic
replication [129,130]. In addition, several other KSHV miRNAs indirectly inhibit RTA expression, by
silencing the RTA promoter or repressing known RTA activators [131,132]. Taken together, the majority
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of herpesvirus miRNAs that target viral transcripts appear to play important roles in latency
maintenance. However, although viral targets have not been confirmed for the vast majority of
herpesvirus miRNAs, their differential expression during latent and lytic cycles suggest additional as
of yet unidentified roles for these miRNAs in regulation of latency [133].

In summary, while the targets of herpesvirus-encoded miRNAs are still being elucidated, it is
clear that these miRNAs play a major role in regulating gene expression in infected cells. Through
their cellular targets, herpesvirus miRNAs promote immune evasion, cell survival and tumorigenesis;
while the viral targets appear to be crucial for latency maintenance. The variety of diverse mechanisms
utilized by herpesviruses, including broad regulation of the miRNA pathway, virally encoded
miRNAs and miRNA mimicry, is likely a reflection of the long co-evolution of herpesviruses with the
miRNA pathway.

3. Polyomaviruses

Polyomaviruses (PyVs) are non-enveloped viruses with a circular dsDNA genome of ~5 kb [134,
135]. The PyV family includes >70 species classified in 4 genera that infect a wide range of hosts
including humans, primates, birds, rodents, and cattle [136]. Although most infections by PyVs are
asymptomatic, PyV infection increases the overall incidence of tumor formation (reviewed in [137]).
The PyV family shares a similar genomic organization in which the genome is divided into an early and
late region encoded on opposite strands (Figure 1A) [138]. The betapolyomaviruses BK virus (BKV),
JC virus (JCV), and simian virus 40 (SV40), encode two mature miRNAs originating from a single
pre-miRNA found at the 3’ end, antisense to the large tumor antigen (LTAg) gene [135]. The miRNAs
encoded by BKV (BKV-miR-B1-5p and 3p) and JCV (JCV-miR-J1-5p and 3p) have a very high sequence
similarity, while the 5p and 3p arms of the SV40 miRNA (5V40-miR-51) have only 50 and 75% sequence
identity to the BKV and JCV miRNAs, respectively [139].

early ori late B .[\
MRNA ‘/l\mRNA [ | | I
L NCCR |

A

VDNA replication /

N

NK cells p53 NF-kB

CD8+ T cells Hif-1

0”'4’/1/4 late  early Immune evasion Transformation
pA pA Latency (Sv40)

Figure 1. Betapolyomaviruses encode a miRNA in the LTAg region of the genome. (A) Genomic
organization of the beta polyomaviruses BKV, JCV and SV40. The genome is divided into an early and
late region encoded on opposite strands and separated by a non-coding control region (NCCR). The late
strand of the genome encodes three capsid proteins (VP1-3) and two mature miRNAs originating
from the same pre-miRNA located at the 3’ end and antisense to the large tumor antigen (LTAg) gene.
The polyadenylation sites (pA) are involved in the early-to-late switch. (B) Perfect complementarity
of the miRNA to the early viral LTAg mRNA results in direct cleavage and inhibition of LTAg
expression to promote latency. The 3p arm of the miRNA directly downregulates expression of
the stress-induced ligand ULBP3, contributing to immune evasion. The SV40-encoded miRNA 5p arm
mimics hsa-miR-423 and is therefore suggested to contribute to cell transformation by downregulating
the tumor suppressor ING-4.

The 5p BKV and JCV-encoded miRNAs are more abundantly expressed than the 3p miRNAs,
and all PyV miRNAs show expression late during infection [139-141]. This observation is consistent
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with PyV miRNAs being encoded on the late strand. Each miRNA is perfectly complementary to
a region of the early viral LTAg mRNA and can therefore direct cleavage, resulting in inhibition
of LTAg expression [135,139,142,143]. This downregulation of LTAg results in impairment of viral
DNA replication and reduced recognition of PyV-infected cells by cytotoxic T lymphocytes [140].
Additionally, the 3p BKV and JCV miRNAs downregulate stress-induced cell surface markers,
reducing NK and CD8" T cell mediated killing of PyV-infected cells and contributing to immune
evasion (Figure 1B) [144,145]. PyV-encoded miRNAs are therefore considered to play an important
autoregulatory role in limiting viral replication, as well as in suppression of the immune response
to infection [140]. These mechanisms may thus control the establishment of viral latency and/or
persistence. However, recent data suggests that murine PyV miRNAs do not only play a role in
limiting viral replication, but are also required to promote acute infection, suggesting that PyV
miRNAs function in both persistent and acute phases of infection [146].

The virally encoded SV40-miR-S1-5p contains a seed region identical to that of the human
miR-423-5p and is therefore suggested to negatively regulate the expression of several miR-423-5p
target genes [147]. While little is known regarding the functions of these host proteins, the Inhibitor
of Growth-4 (ING-4) gene is a tumor suppressor that regulates tumor growth and angiogenesis by
directly binding and modulating p53, NF-«B, and HIF-1« activity [148-150]. Therefore, expression of
SV40-miR-S1-5p may inhibit ING-4 expression, leading to tumor cell growth, invasion, angiogenesis,
and activation of the AKT and ERK1/2 signaling pathways, similarly to miR-423-5p [151]. Reciprocally,
human miR-423-5p might act as a functional ortholog of the viral miRNA, causing downregulation of
LTAg, limiting viral replication [140]. A recent study also revealed a high level of similarity between
SV40-miR-51-3p and human miR-1266-3p, a miRNA known to promote breast and pancreatic cancer
by targeting multiple negative regulators of the STAT3 and NF-«kB signaling pathways, promoting
cell survival and helping to confer resistance to chemotherapy [152-155]. However, whether this viral
miRNA can serve as a functional ortholog remains to be shown.

Finally, increased expression of a cellular miRNA, miR-27a, was observed during SV40
infection. Overexpression of miR-27a in SV40-infected human bronchial epithelial cells results
in dysregulation of cell cycle progression and contributes to malignant transformation [156,157].
Increased expression of miR-27a has also been shown to enhance expression of proinflammatory
cytokines in TLR2/4-activated macrophages via targeting IL-10, and is often associated with adverse
outcomes of malignancy [158,159]. Therefore, the potent tumorigenesis induced by SV40 infection
might be due to both expression of virally encoded miRNAs, miR-51-5p and -3p, as well as the
induction of an oncogenic cellular miRNA, miR-27a. Thus, like herpesviruses, polyomavirus infection
induces the expression of both cellular and viral miRNAs that promote viral latency and immune
evasion, and these miRNAs may also underlie the potent cellular transformation and tumorigenesis
induced by polyomaviruses.

4. Retroviruses

Retroviruses are ssRNA viruses that encode a reverse transcriptase and an integrase responsible for
insertion of the proviral DNA into the host genome (Figure 2A) [160,161]. Human immunodeficiency
virus 1 (HIV-1) is one of the most well-studied retroviruses due to its pathogenicity in human CD4*
T-cells. Interestingly, potential links between miRNA expression levels and permissiveness to HIV-1
infection have been reported. Resting memory CD4* T-cells, which are less permissive to infection
than activated CD4" T-cells, display increased levels of five cellular miRNAs that target and inhibit
several HIV-1 mRNAs [162]. Accordingly, these miRNAs are highly expressed in monocytes, a cell
subset that is refractory to HIV-1 infection, but that progressively becomes more susceptible upon
differentiation [163]. On the other hand, several cellular miRNAs have been shown to promote
HIV-1 replication and their expression levels often correlate with permissiveness to HIV-1 infection
(reviewed in [164]). One such example is miR-132, which is upregulated in activated CD4* T-cells when
compared to resting cells [165]. MiR-132 expression promotes viral replication in Jurkat T-cells, as well
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as reactivation in latently infected cells. Results suggest that promotion of HIV-1 replication by miR-132
is mediated via the downregulation of a cellular transcriptional regulatory protein, MeCP2 [166,167].
However, reactivation of HIV-1 in latently infected cells was shown to be independent of MeCP2
downregulation, indicating that another mechanism is implicated in miR-132-mediated reactivation
of HIV-1.

In addition to cellular miRNAs influencing HIV-1 infection, recent studies have reported the
identification of HIV-1-derived miRNAs originating from coding and non-coding regions of the viral
genome. Although there is controversy regarding whether these RNAs are authentic viral miRNAs
based on criteria such as length and genome distribution (reviewed in [164]), several have been shown
to functionally repress or promote HIV-1 replication (Figure 2A). For example, miR-N367, a negative
regulatory factor (Nef)-derived miRNA, reduces HIV-1 transcription by inhibiting Nef gene expression
and transcription of the long terminal repeat (LTR) region, while transactivation response element
(TAR)-miR-5p and -3p both enhance infected cell survival by downregulating host genes implicated in
apoptosis [168-171]. Finally, miR-H1 inhibits cellular miR-149 expression, which has been shown to
downregulate viral protein R (Vpr) expression [172].
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ﬁ € Rev > i?
|LTR 5' h Gag Vif < Tat > LTR3'
— Pol V| V| E Nef
TAR-miR —| apoptosis - | Py Py ny ( S ] ’%
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miR-H1 = hsa-miR-149 miR-N367
B . A
pre-miRNA mature miRNA
S —
z —_——

T )
O Tat / RRE

Dicer inhibition TRBP sponging

TRBP

Dicer

Figure 2. Genome organization of HIV-1 and strategies for suppression of RNA silencing. (A) The
proviral DNA genome of HIV-1 encodes three structural genes (gag, pol and env) and several accessory
genes (vif, vpr, vpu, tat, rev and nef) which regulate expression of viral proteins and play roles in immune
evasion. The genome is flanked by long terminal repeats (LTRs), required for genome integration.
Three functional miRNAs are encoded in the LTR region and Nef, which inhibit host and viral gene
expression. The LTRs include the transactivation response (TAR) element stem-loop structure which
can also be recognized by Dicer and TRBP and processed into TAR-miR-5p and -3p. (B) HIV-1 acts
as a suppressor of RNA silencing. The Tat protein inhibits processing of pre-miRNAs by inhibiting
Dicer activity. The Rev-response element (RRE) is a structured RNA element that resembles precursor
miRNAs, able to compete with pre-miRNAs for TRBP binding.

Interestingly, HIV-1 has also been demonstrated to suppress the cellular RNA silencing pathway
through multiple mechanisms (Figure 2B). The HIV-1 transactivator (Tat) protein was shown to act as
a suppressor of RNA silencing through an RNA-dependent interaction with Dicer [173,174]. Although
this interaction functionally abrogates Dicer activity, Tat binding appears to inhibit only a subset
of miRNAs and leads to phenotypic changes in the central nervous system associated with HIV-1
neuropathogenesis [175]. Therefore, it is possible that Tat binds to specific precursor miRNAs in a
sequence-dependent manner, inhibiting Dicer processing of this subset of miRNAs. Additionally,
a structured RNA element of the HIV-1 genome, the Rev-response element (RRE), binds to the TRBP,
a central component of the Dicer complex [176-178]. This interaction further inhibits the RNA silencing
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pathway by competing with TRBP-bound RNAs [177]. Similarly to HIV-1, the primate foamy virus
type 1 (PFV-1) encoded transactivator (Tas) also interferes with miRNA processing, and might function
to overcome suppression of PFV-1 replication mediated by the cellular miRNA, miR-32 [179]. Thus,
like the herpesviruses, retroviruses have been demonstrated to both encode viral miRNAs and modify
cellular RNA silencing by inhibiting the processing of subsets of cellular miRNAs. This suppression of
the cellular RNA silencing pathway may contribute to viral pathogenesis as well as cell permissibility.

5. Pestiviruses

Pestiviruses are small linear (+) ssRNA viruses of the Flaviviridae family. They commonly
infect mammals, including cattle and pigs, and represent a serious threat to the food industry.
Pestivirus infection can lead to diarrhea, respiratory symptoms, and reproductive dysfunctions, such
as abortion [180]. In 2016, crosslinking immunoprecipitation (CLIP) studies of the Ago protein in the
context of 15 different RNA virus infections revealed the functional binding of miR-17 and let-7 to
the 3’ UTR of pestivirus genomic RNAs (Figure 3A,B) [181]. Canonical miR-17 and let-7 binding sites
were identified in the 3’ UTR of the bovine viral diarrhea virus (BVDV) genome, specifically in the
single-stranded region between SLI and SLII, and in the loop of SLII, respectively (Figure 3B) [181-183].
An additional non-canonical let-7 site, overlapping the miR-17 site, was supported by chimera-specific
crosslinking-induced mutation site (CIMS) analysis [181]. This interaction involves extensive base
pairing with the 3’ end of let-7 with only two nucleotides in the seed region (Figure 3B). Interestingly,
these miR-17 and let-7 sites were both shown to be highly conserved among pestiviruses and the
near-universal tropism of pestiviruses is concurrent with the ubiquitous expression of both these
miRNAs across a range of tissues.

Contrasting with the canonical roles of miRNAs, binding of let-7 and miR-17 to the BVDV 3
UTR was shown to increase both viral translation and RNA stability, with miR-17 playing a more
predominant role in this regulation. Of note, Ago binding to the 3’ UTR of BVDV RNA was only
observed at late time points (12-24 h post-infection) and not on replication-defective pol (-) mutant
RNAs, which may suggest a role in the switch from translation to replication [181]. Mutational analyses
of the non-canonical let-7 binding site revealed no effect on BVDV translation; thus, additional work is
required to determine its role in the viral life cycle [181]. Binding of the miRNAs near the 3’ terminus
might provide protection against 3’ exosome-mediated decay or suppress a long-range RNA-RNA
interaction that is detrimental to internal ribosomal entry site (IRES) formation, similarly to models of
miRNA regulation during hepatitis C virus (HCV) infection (discussed below) [184].

Interestingly, previous work suggests that the NFAR proteins bind to both the 5" and 3’ UTRs
of BVDV and help mediate genome circularization, a process promoting viral RNA translation [185].
Binding of miR-17 and let-7 at later time points during infection could therefore compete with
NFAR proteins or induce conformational changes resulting in NFAR dissociation, followed by
genome linearization and the switch to RNA replication. Binding of NFAR proteins to the BVDV
genome involves SLII and SLIII of the 3’ UTR, with specific interactions mapped to the UGA box
sequence elements [185]. Interestingly, the canonical let-7 site overlaps with the SLII UGA box
element (Figure 3A,B). However, previous work demonstrated that while SLI is indispensable for
pestivirus replication, deletion of either SLII or SLIII had no effect on viral translation, RNA replication,
translation, packaging or particle production [186]. These results suggest that the canonical let-7 site
(in SLII) is not essential for BVDV replication and that either SLII or SLIII is sufficient for recruitment
of NFAR.

During viral replication, ~40% of the cellular miR-17 pool is sequestered by the BVDV genome,
resulting in de-repression of many cellular miR-17 targets [187]. Conversely, let-7 sponging was <10%,
likely due to the high abundance of this miRNA. However, the functional sequestration of miR-17 by
BVDV did not appear to influence infection kinetics. Thus, it is unclear whether miRNA sponging
by pestiviruses is simply a by-product of their dependence on a direct interaction with the viral
genome, or if this mechanism also influences host gene expression in a manner that supports viral
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replication. The miR-17/92 cluster is highly expressed in embryonic cells and, along with let-7, might
be implicated in the high rate of abortion during BVDV infection due to its key role in embryonic
development [188-190]. The miR-17/92 cluster is also involved in lymphocyte proliferation and its
overexpression can lead to cancer and autoimmune disease [191]. Since pestiviruses primarily replicate
in proliferating lymphocytes, miR-17 sponging in these cells could also result in lymphocyte apoptosis
or decreased proliferation. Therefore, pestivirus-induced miRNA sponging could be a mechanism
of immune evasion. On the other hand, both lymphopenia and BVDV tropism could simply be a
by-product of the viral dependency on miR-17, as this miRNA is abundantly expressed in proliferating
lymphocytes [192]. Additional putative miRNA binding sites were also identified by Ago CLIP across
the BVDV OREF, including a let-7 site in the core coding region [181]. However, the read depth of the
peaks across the ORF constituted only 3-4% of the reads, calling into question the relative importance
of these potential additional interactions. Thus, taken together, let-7 and miR-17 binding accounts for
>50% of the miRNA binding on the BVDV genome, and >80% of the binding to the 3’ UTR. Thus, let-7
and miR-17 are important regulators of viral translation and RNA stability in pestivirus infection, and
further research will help to reveal their precise mechanism(s) of regulation.
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Figure 3. Genome organization and miRNA binding sites in the BVDV and HCV genomes. The coding
regions of BVDV and HCV are flanked by 5 and 3’ untranslated regions (UTRs) characterized by
specific stem-loop (SL) structures. (A) The BVDV genome includes UGA box sequence elements
(boxed), a single-stranded (ss) RNA region, let-7 (blue) and miR-17 (green) binding sites. (B) Model
of the binding interactions between the BVDV 3’ UTR and miR-17 and let-7. (C) The HCV genome
contains two miR-122 binding sites (green) and an IRES element, which includes SLII-IV in the 5 UTR.
The 3’ UTR includes a hypervariable region (HV), a polyU/UC tract of variable length and a highly
conserved 3’ X-tail, comprised of SL1-3. MiR-122 binds to two tandem sites in the 5 UTRs of (D) HCV
and (E) GBV-B. The nucleotides binding to the miRNA seed regions are underlined.

6. Hepaciviruses

The hepacivirus genus constitutes a group of hepatotropic, positive-sense, single-stranded RNA
viruses of the Flaviviridae family that have been demonstrated to have a unique interaction with a
liver-specific miRNA, miR-122. MiR-122 accounts for up to 72% of all the miRNAs found in the liver,
with approximately 66,000 copies per cell, and it is highly conserved across vertebrates [193-195].
Although its normal role is in the regulation of cholesterol and fatty acid metabolism, it interacts with
the 5" UTR of several hepaciviruses and this interaction promotes viral RNA accumulation [196].
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6.1. The Role of miR-122 in the Hepatitis C Virus (HCV) Life Cycle

Human miR-122 has been demonstrated to promote viral RNA accumulation in both HCV-infected
cells, and in the livers of infected patients, independently of its effects on cholesterol and lipid
metabolism [197-199]. Moreover, HCV RNA accumulation is dependent upon the miRNA biogenesis
pathway, presumably due to this reliance on miR-122, as the depletion of any of the four human Ago
proteins, or other key players involved in miRNA biogenesis, leads to a significant decrease in viral
RNA abundance in cell culture [200,201]. MiR-122 binds to two “tandem” seed match sequences in the
5’ UTR of the HCV genome, and has additional interactions with nucleotides 1-3 and 29-31, creating
a 3/ overhang at the 5 terminus of the viral genome (Figure 3C,D) [202,203]. Stepwise mutational
analyses suggest that both miR-122 binding sites are important for viral RNA accumulation and that
they cooperatively support viral RNA accumulation. These analyses also indicated that nucleotides
in the bulge and 3’ tail of miR-122 are important for maintaining HCV RNA abundance as mutation,
truncation, or exchange of the 3’ terminal ribonucleotides of miR-122 for deoxynucleotides reduces
HCV RNA accumulation. However, these nucleotides were not required for canonical miRNA activities
(i.e., target cleavage and translational inhibition) [202]. These results suggest that sequences in the
3’ tail of miR-122 may mediate important interactions with viral or cellular factors involved in HCV
RNA accumulation. Although the precise mechanism(s) of miR-122-mediated viral RNA accumulation
have remained elusive, recent studies have suggested two major mechanisms in the viral life cycle:
protection of the viral genome from 5" decay and modification of the viral RNA structure in a manner
that promotes HCV IRES-mediated translation (discussed in more detail below).

6.2. MiR-122 Protects the HCV Genome from Cellular Pyrophosphatase and 5" Exonuclease Activities

The finding that miR-122 binds to the 5 terminus of the viral RNA creating a 3’ overhang
suggested a role for miR-122 in protection from nucleases or recognition by cellular sensors of
RNA [202]. Recent work suggests that miR-122 binding to the 5’ terminus of the HCV genome
protects the viral 5 triphosphate moiety from recognition by cellular pyrophosphatases DOM3Z and
DUSP11, and subsequent 5 exonuclease-mediated decay [204]. Knockdown of both these cellular
pyrophosphatases was shown to significantly increase viral RNA accumulation in cell culture and was
also demonstrated to stabilize the HCV genome in the absence of miR-122. Moreover, knockdown
of the pyrophosphatases in combination with the 5" exonuclease (Xrn1) further increased viral RNA
accumulation [204]. These observations were further confirmed by enhanced HCV replication and
decreased miR-122 dependency in DUSP11 knockout cells [205]. Taken together, these results support a
model whereby in the absence of the miR-122, DOM3Z and/or DUSP11 can mediate conversion of the
5’ triphosphate of the HCV genome to a monophosphate. This renders the viral genome susceptible to
decay mediated by the cellular 5 exonucleases, Xrn1 and /or Xrn2 [206-210]. Thus, miR-122 promotes
HCV RNA stability by protecting the viral RNA from both pyrophosphatase activity and subsequent
5’ exonuclease-mediated decay.

6.3. MiR-122 Binding to the 5 UTR Alters the Structure of the HCV Genome

Recent studies have also revealed that miR-122 binding to the HCV genome alters the structure
of the 5 UTR in a manner that promotes viral RNA translation. Schult et al. demonstrated that
miR-122 binding to the viral 5 UTR contributes to the folding of a functional IRES in an RNA
chaperone-like manner [184]. In silico structure predictions, as well as selective 2’ hydroxyl acylation
analyzed by primer extension (SHAPE) and nuclear magnetic resonance (NMR) analyses of the 5’
UTR in the absence of miR-122, identified an alternative structure for the SLII region that is more
energetically favorable (SLIT!Y). This structure includes parts of SLII, preventing formation of a
functional IRES element and impairing viral translation. Binding of miR-122 prevents the formation
of SLIT*!, thereby favoring SLII formation which drives the assembly of the pre-initiation complex.
Indeed, polysome-profiling indicates more efficient association of the viral RNA with the 80S ribosome
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on either wild-type HCV RNA in the presence of miR-122, or on HCV mutants which favor SLII
formation in the absence of miR-122 [211]. These observations are supported by previous studies,
where in vitro characterization of a miR-122-sensitive double-helical switch element in the 5 region
of HCV genome indicated that a structural transition in HCV RNA conformation might impact viral
translation [212]. The proposed model suggests that the IRES resides within a locked conformation,
which switches to an open conformation upon interactions with miR-122. Moreover, the eukaryotic
translation initiation factor 4 All (eIF4AIl), which is normally implicated in miRNA-mediated mRNA
translational repression, was recently shown to interact with the HCV genome in a miR-122-dependent
manner and to contribute to IRES-mediated translation [213,214]. Taken together, these results support
the model whereby miR-122 binding to the 5 UTR promotes SLII formation, leading to 80S ribosome
assembly and translation initiation. MiR-122 dependency can also be further explained by the dual
function of the 5 terminal sequences in the negative strand, which represents the positive-strand
promoter region. Indeed, the 3’ end of the negative strand forms an extensive set of stem-loop
structures, similar to that of SLII?!t, which are crucial for viral RNA replication [215,216]. Finally,
several mutations have been identified in the HCV 5’ UTR that confer low levels of viral RNA
replication in a miR-122-independent manner, and in support of this model, these mutations would be
predicted to favor formation of SLII, even in the absence of miR-122 [217-219].

6.4. Dysregulation of miR-122 May Contribute to Viral Pathogenesis

Like the pestiviruses, a genome-wide miR-122 binding profile revealed functional sequestration
of miR-122 during HCV infection [220]. This “sponge” effect results in de-repression of canonical
miR-122 targets and deregulation of collagen production, enhanced cell proliferation and survival,
and activation of hepatic stellate cells, resulting in a proinflammatory response [221-223]. Furthermore,
miR-122 has been demonstrated to be a tumor suppressor [224,225]. Thus, in addition to promoting
HCV RNA accumulation, miR-122 sequestration by the HCV genome may promote cell transformation
and development of hepatocellular carcinoma.

6.5. MiR-122 Binding May Be a Common Strategy for Viral RNA Accumulation among Hepaciviruses

In addition to binding to the HCV genome, miR-122 binding sites have been found in the 5 UTR
of several other hepaciviruses, including GB virus B (GBV-B) (Figure 3E), non-primate hepacivirus
(NPHYV), several rodent hepaciviruses (RHV), and bovine hepacivirus (BovHepV) [226-229]. Although
culture systems are not available for many of these novel hepaciviruses, the presence of conserved
miR-122 binding sites provides hints with regard to their likely liver tissue tropism, and may suggest a
conserved mechanism for viral RNA accumulation across this genus. Accordingly, both GBV-B and
NPHYV have been shown to be miR-122 responsive [226]. These results suggest that miR-122 binding
may be a conserved mechanism for viral RNA accumulation in hepaciviruses and might help them to
exploit the tolerogenic liver environment [219,230].

7. Conclusions

Since miRNAs are involved in all facets of cellular activities, they have major influences on viral
infections and can both restrict or promote viral replication and pathogenesis. Accordingly, several
viral families have evolved multiple mechanisms to take advantage of miRNAs and/or the miRNA
pathway. DNA viruses, namely the herpesviruses and polyomaviruses, encode their own miRNA(s)
that along with cellular miRNAs play important roles in latency maintenance, immune evasion, and
tumorigenesis. Retroviruses have also been shown to encode miRNAs that modulate viral replication
and pathogenesis, but are also known to encode proteins that modulate cellular miRNA processing,
which is linked to viral pathogenesis and cell permissivity. In contrast, RNA viruses do not typically
encode their own miRNAs; however, the pestiviruses and hepaciviruses bind to specific host miRNAs
to promote viral translation, replication and /or genome stability. Of note, the ability of HCV and BVDV
to use miRNAs to stabilize their genome by binding to the 5" or 3’ UTRSs, respectively, suggests that
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these interactions may have evolved independently [231]. Overall, these results highlight the different
mechanisms by which miRNAs can influence DNA and RNA virus infection and be exploited by
viruses to promote viral infection and pathogenesis. Studying these diverse interactions has provided
unique insights into the canonical and non-canonical roles of miRNAs in the regulation of host and
viral gene expression.
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