
viruses

Review

Advances in HIV-1 Vaccine Development

Yong Gao 1, Paul F. McKay 2 ID and Jamie F. S. Mann 1,* ID

1 Department of Microbiology and Immunology, University of Western Ontario, London,
ON, N6A 5C1, Canada; ygao387@uwo.ca

2 Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place,
London, W2 1PG, UK; p.mckay@imperial.ac.uk

* Correspondence: jmann62@uwo.ca; Tel.: +1-519-661-2111

Received: 18 March 2018; Accepted: 30 March 2018; Published: 1 April 2018
����������
�������

Abstract: An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic.
However, despite significant efforts to develop a safe and effective vaccine, the modestly protective
RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition.
This review will outline the history of HIV vaccine development, novel technologies being applied
to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our
understanding of vaccine-induced immune correlates of protection.

Keywords: HIV-1; vaccine; antibodies; immunogen; neutralization

1. Introduction

The lentiviral retrovirus, Human Immunodeficiency Virus type 1 (HIV-1), is the etiological agent
behind the global Acquired Immunodeficiency Syndrome (AIDS) epidemic. Since the AIDS epidemic
was first identified in the early 1980s, approximately 70 million individuals have become infected,
resulting in 35 million deaths. The introduction of combination antiretroviral therapy (cART) has
dramatically altered the epidemic landscape and has been responsible for the 48% decline in AIDS
related deaths between 2005 and 2016 [1]. Despite this remarkable achievement, in 2016 it is estimated
36.7 million individuals are now living with HIV and approximately 800,000–1.2 million people died
due to AIDS-related deaths. Owing to comparative phylogenetic analysis, the origins of the HIV
epidemic are believed to be zoonotic transmission events occurring between select strains of wild
chimpanzee simian immunodeficiency virus (SIV) crossing over into human populations [2]. Currently
it is understood that this zoonosis might have happened on as many as 4 independent occasions,
giving rise to the four classifications of HIV, groups N, O, P, and the pandemic M group [3,4].

HIV-1 is primarily a sexually transmitted virus with transmission occurring through mucosal
surfaces. Less frequently, HIV can also be spread vertically by mother-to-child exposure and by direct
intravenous inoculation. HIV infection results in the progressive depletion of CD4 T cells, the very
cells that orchestrate the critically protective adaptive immune responses to pathogenic infections,
until such time as the immune constitution is severely eroded and opportunistic infections ensue.
While CD4 T cells serve as the primary targets for HIV infection and replication, not all CD4 T cells
are equally depleted. For instance, activated CD4 T cells are more susceptible to productive infection
than their naïve counterparts [5]. Initially it was assumed HIV-mediated CD4 T cell depletion was
occurring directly via viral cytopathic effects [6]; however, other studies suggested the cells dying in
lymph nodes in response to infection were uninfected bystander cells [7]. More recently, a form of cell
suicide mediated by caspase-1 dependent pyroptosis was attributed to the massive decline in CD4 T
cells [8]. Pyroptosis occurs in non-permissive CD4 T cells (~95% of cells), where infection leads to the
accumulation of incomplete reverse transcripts that are detected by endogenous DNA sensor IFI16,

Viruses 2018, 10, 167; doi:10.3390/v10040167 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0001-5195-6254
https://orcid.org/0000-0001-7037-1286
http://www.mdpi.com/journal/viruses
http://www.mdpi.com/1999-4915/10/4/167?type=check_update&version=1
http://dx.doi.org/10.3390/v10040167


Viruses 2018, 10, 167 2 of 26

leading to inflammasome assembly [8], with the end result being caspase-1 activation and the death of
abortively infected cells. This contrasts with permissive CD4 T cells (~5% of cells), in which infection
causes the productively infected cell to undergo caspase-3 mediated apoptosis [8]. While pyroptosis
is readily detected within infected lymph nodes, it is not seen in peripheral blood T cells, probably
due to their lower activation status compared to lymph node CD4 T cells [9]. In fact, the frequency
at which and the extent to which HIV viral replication occurs in lymph nodes is between ~5–10-fold
higher than in peripheral blood [10].

During the very early events post exposure, the HIV viral quasi-species experiences multiple
genetic bottlenecks before going on to establish a systemic infection. This dramatic contraction
in viral diversity between the sequences identifiable in the donor’s genital secretions, the vaginal
mucosa of the recipient, and the systemic compartment is due to a combination of physical and
immunological constraints on the virus. The result is a single viral variant establishing systemic
infection in >75% of individuals, with multiple variants (<5) involved in >20% of infections [11,12].
Evidence from non-human primate (NHP) studies using atraumatic inoculation of high doses of
SIV has provided a blue print for the critical early events during transmission. From such studies,
we now know the virus can cross the mucosal epithelium within hours and establish a founder
population of infected cells [13]. These founder populations rapidly expand and evolve into larger
foci of infection over the next few days, and within the first week the virus spreads to the local
draining lymph nodes and becomes a self-propagating infection. During vaginal transmission, vaginal
epithelial Langerhans cells (LCs) and dendritic cells (DCs) were identified as the major viral targets
for initial infection [13–15], while contradicting studies suggested T cells were the key targets for
early infection [16,17]. Due to their anatomical locations within mucosal tissues, CD1a+LCs and DCs
are perfectly situated to encounter invading pathogens quickly [18]. While the migratory properties
of antigen-loaded LCs are still being evaluated and appear to depend on the presence/absence of
stromal cells and TGF-β secretion [18,19], certain stromal DC subsets encountering HIV can capture
and transport virus to the local draining lymph nodes. The main DC population resident within the
female reproductive tract (FRT), the CD11chiCD11b+CD14+ cells co-expressing CD1c, is suggested as
important for HIV capture and transport to local draining lymph nodes [20].

Through the use of the NHP SIV infection model and phenotyping of infected cells, it has
become clear that the early cellular targets for infection are CCR6+ CD4+ T cells, which expressed
the RORγT transcriptional regulator [21], demonstrating that the initial targets for infection were
mucosal Th17 cells [21]. Interestingly, although the vagina had the greatest number of virally infected
cells, multiple foci of infections were established throughout the reproductive tract, challenging
earlier assumptions that the transformation zone and endocervix is the site for viral transmission and
infection [17,21,22]. Thereafter, infection spreads systemically via the thoracic duct to various organs
of the body including other secondary lymphoid tissues, brain, liver, lungs, and gut [23]. Studies on
antiretroviral therapy (ART)-treated NHPs infected intrarectally with SIVmac251 have shown that
the latent, replication-competent proviral reservoir is established within the first 3 days of infection
(i.e., the eclipse phase) before virus is detectable. This is substantially earlier than previously thought
and suggests that a viable preventative vaccine has a very narrow window of opportunity within
which to either prevent or contain infection before a pool of latent virus is established [24].

2. Immune Response to HIV Infection

Once HIV establishes infection, a strong host-mediated immune response is mounted. This initial
response is ultimately unable to contain viral replication. As mentioned previously, in the majority of
cases, only a single transmitted/founder (T/F) virus is responsible for disseminating infection. In these
early stages of infection, the virus effectively enters an evolutionary arms race with the counteracting
immune response, driving viral diversity and immune escape. Shortly after infection (~10–15 days),
the virus reaches a peak viral load before declining to a viral set point (~30 days), a prognostic marker in
the AIDS timeline. This decline in peak viremia coincides with a rapid amplification in anti-viral CD8 T
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cells, which places a downward selective pressure on the virus [25]. Despite the cytotoxic T lymphocyte
(CTL) pressure, HIV evades CD8 T cell control of viremia by rapidly evolving susceptible T cell target
epitopes via mutations that affect epitope-HLA binding, mutations that interfere with intracellular
epitope processing or mutations that prevent T cell receptor (TCR)-epitope-HLA recognition. This viral
evolution acts in concert with Nef-mediated downregulation of polymorphic HLA-A, B, and C
molecules on infected CD4 T cells, thereby reducing recognition of infected target cells. Within 6–7
days post-infection, a burst in B cell plasmablast (low affinity short-lived extrafollicular plasma cells
with minimal Ig-variable region diversification) numbers occurs, comprising as much as 13% of the
circulating B cells in the blood, of which less than only 1.5% has been reported to be HIV-specific [26].
This contrasts with other viral infections like dengue and RSV, in which plasmablast numbers
can constitute as much as 30% of the peripheral lymphocyte population, with the majority being
virus-specific, strongly indicating that significant indirect B cell activation occurs during early HIV
infection [26].

Production of plasmablasts signals the introduction of HIV-1 virions or viral antigens into
secondary lymphoid structures. Lymph nodes are characterized by the presence of follicles containing
IgM+IgD+ B cells that are separated by an interfollicular region. The T cell zone, containing an
abundance of T cells, strategically borders the B cell follicle. During adaptive immune responses,
germinal centers form within the B cell follicle, which contains a follicular dendritic cell network (FDC)
at its centre [27]. Early after infection, infectious viral particles can be located on the surface of FDCs in
the form of long-lived immune complexes. Although FDCs are not known to be productively infected,
they are believed to present infectious virus to CD4 T cells that is in close proximity. T follicular
helper cells (Tfh) also reside within lymph nodes, a subset of CD4 T cells that is tactically positioned
to provide the necessary help to resident B cells and a cell type regarded as a major HIV reservoir.
Generally speaking, exogenous antigenic interactions with the B cell receptor (BCR) on the B cell
surface result in BCR cross linking, antigen internalization, processing, and presentation in the context
of MHC class II. This results in the activation of the naive B cell, which then migrates to the T and B cell
zone border for interactions with T cells and to become fully activated [27]. The Tfh cells provide the
necessary cognate interactions (CD40-CD40L, MHCII-peptide-TCR) and secreted soluble mediators
(e.g., IL-4 + IL-21 cytokines) at the interface between the T and B cell zones [28], the consequences of
which are B cell clonal expansion, differentiation, and Ig class switching. Additional co-stimulatory
interaction through ICOS and activation of SLAM is important and gives rise to either low affinity
plasmablasts, which mature into memory B cells, or it continues to proliferate within the follicle and
generate germinal centres [28]. Tfh cells are critically important for the generation of high-affinity GC
B cells and to promote the back and forth interzonal migration of B cells for repeated rounds of somatic
hypermutation (SHM) [27]. Interestingly, Tfh cell accumulation in germinal centers of secondary
lymphoid tissues has been correlated with hypergammaglobulinemia and activated germinal center
B cells, with the frequency of Tfh cells secreting IL-21 and IL-4 correlating with the development of
broadly neutralizing antibody (bnAb) production [29,30].

The early antibody responses do not neutralize the infecting virus, are initially polyreactive,
and are directed towards the gp41 glycoprotein before anti-gp120 antibodies are raised [31,32].
Interestingly, priming of anti-gp41 B cell response has been shown to occur in the intestine and
in response to intestinal microbiome exposure [33]. This microbiome-gp41 cross-reactive priming
may be behind the early gp41 dominated antibody response in early HIV infection [33]. Mucosal
antibodies are often referred to as the front lines of immunological defense against pathogens exploiting
mucosal surfaces as portals of entry to the body. For this reason, their elicitation through infection
or vaccination can be important to ameliorate disease or prevent infection. Within mucosal fluids,
IgG, IgM, and IgA antibodies are found, with the latter two isotypes existing as both monomeric and
polymeric forms. While the protective properties of mucosal IgA in the context of HIV-1 infection
or acquisition prevention have not been proven, elicitation of anti-viral IgA against a number of
disease-causing organisms has been shown to augment or correlate with protection. This includes
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vaccinations against influenza, polio, and rotavirus [34]. Certainly, tantalizing evidence from highly
exposed, persistently seronegative individuals (HEPS) suggests that HIV-specific IgA responses
correlated with resistance to HIV acquisition [35]. As such, it is widely anticipated that local anti-HIV
IgA responses could play a significant role in protection against HIV infection, if present in mucosal
secretions prior to transmission. As discussed previously, the early antibody response is directed
towards the gp41 portion of Env with the plasma anti-gp41 IgA response being detectable (~13.5 days)
before any anti-Gag IgA antibodies (~25.5 days) [34]. Interestingly, during this acute stage of infection,
the anti-gp41 IgA response in plasma can be detected during Fiebig stage I/II in 25% of individuals,
which then climbs to 50% of individuals by Fiebig stage III. This contrasts with the delayed appearance
of anti-gp41 IgA in mucosal samples, which is normally only detectable in ~33% of individuals in
Fiebig stage IV [34]. Why such a delay in the appearance of IgA occurs in mucosal secretions is
currently unknown. In addition to a delay in the appearance of IgA in mucosal secretions, anti-gp41
IgA antibodies in mucosal secretions have been shown to have a relatively short half-life (~2.7 days)
when compared to plasma anti-gp41 IgA (~48.2 days) [34], raising questions as to how to extend
the residency of IgA in mucosal secretions when elicited through vaccination. Finally, the early
g41-specific IgG response can be found at much higher concentrations (11-fold higher) in genital
secretions compared to gp41-speific IgA.

Although HIV infection is associated with B cell dysfunction and a blunted antibody response,
during early infection autologous strain-specific neutralizing antibodies to the T/F virus and its
evolving variants arise within 3–12 months post infection (Figure 1) [36,37]. The generation of B
cell lineages producing autologous neutralizing antibody responses forces viral evolution to escape
the antibody mediated immune pressure. Ultimately, after a number of years of this continued
viral evolution and diversification in response to the relentlessly pursuing B cell immune response,
development of bnAbs in ~20–50% of HIV+ individuals can occur [38–41]. Within individuals
generating bnAbs, more than 1 lineage of B cell can be involved, widening the potential of
neutralization breadth of the antibody response [42,43]. Despite the generation of circulating bnAbs in
certain individuals, their presence is not associated with control of viremia in vivo. However, passive
infusion studies in NHPs have clearly demonstrated a protective role for bnAbs against challenge
infections [44–49]. Why all HIV infected individuals make autologous neutralizing antibodies against
the infecting viruses, but less than 50% of HIV+ individuals go on to make any level of bnAb response,
is unknown. One reason behind the failure of vaccines to recapture what is seen in natural HIV infection
is that host control mechanisms may disfavor bnAb production due to potential antigenic mimicry
and autoimmunity. Certainly, many bnAbs have been shown to bind to human proteins or have been
identified by diagnostic assays used for determination of autoimmune disease [50–53]. In addition to
autoreactivity, it is well known that bnAbs have extensive levels of SHM and/or long heavy chain
complementarity determining region 3 (HCDR3) loops, characteristics of B cells that would normally
be eliminated by central and peripheral tolerance [54,55]. What is clear is that bnAb lineages display
extraordinary levels of mutations. Under normal circumstances, somatic hypermutation (SHM) and B
cell selection enable rapid, high affinity antibody production in a matter of weeks [56]. This involves a
small number of variable region mutations in the developing antibody, which can diverge by as much
as 5% from the germline sequences. This is in stark contrast to certain bnAbs, in which in excess of
30% of variable region nucleotides can be exchanged [56]. Analysis of VRC01 lineage evolution over a
15-year period identified a rapid rate of bnAb evolution to an early autologous gp120 molecule, which
slowed down over time. Despite this deceleration in the mutation rate, antibody evolution appears to
continue in response to chronic persistence of antigen, thereby enabling continued SHM [56]. How
such extended levels of antigen persistence and B cell evolution can be achieved in the context of
prophylactic HIV-1 vaccines remains to be seen.
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Figure 1. The HIV-1 mucosal transmission bottle neck and developing antibody response. Early after
exposure, transmitted founder (T/F) viruses cross from the external mucosal lumen into the mucosal
stroma and establish a foci of infection. Within a period of hours to days, the virus then migrates
to local draining lymph nodes as either free virus or is carried there by migrating dendritic cells.
Within the lymph node, there is an abundance of CD4 target cells to propagate infection, resulting
in exponential viral amplification and systemic spread. During these initial few days and weeks,
the infecting virus is clonal in nature with little genetic diversification. The early humoral immune
response is characterized by the initial development of anti-gp41 antibodies before anti-gp120 are
detectable. Over the next few weeks and months, the virus enters into an evolutionary arms race with
the developing B cell response, resulting in genetic diversification of the transmitted founder into a
viral quasi-species. These viral escape mutants help drive the anti-HIV B cell response and ultimately
give rise to autologous neutralizing antibody responses and then to broadly neutralizing antibody
responses within a subset of these infected individuals.

3. Previous HIV-1 Vaccine Efficacy Trials

Since 1987, hundreds of vaccine candidates have been clinically tested as HIV-1 vaccines. However,
to date only six HIV-1 vaccine efficacy trials have been completed (Table 1). Most vaccines work
through elicitation of protective antibody responses. Furthermore, in a number of disease states,
vaccine conveyed immunity has been shown to correlate with both induction and the magnitude
of the vaccine elicited antibody titre. Therefore, in the 1990s, initial vaccine candidates were based
on Env glycoproteins and tested in preclinical NHP studies [57–59], as well as in human safety
and immunogenicity trials [60–64]. Such studies provided critical evidence that Env-based vaccines
could be safely administered and were immunogenic in humans and NHPs. Yet, studies in NHPs
soon identified a significant flaw in early recombinant Env vaccines. Although the elicited immune
responses were protective against homologous challenge infections, they were not protective against
heterologous challenge [65,66]. In 1999, the randomized, double blind, placebo-controlled efficacy
trial of AIDSVAX B/E (VAX003) was initiated and involved the enrollment of 2546 injection drug user
(IDU) cohort in Thailand. The AIDSVAX B/E vaccine contained two recombinant gp120 HIV Env
antigens from a CXCR4 lab-adapted clade B strain and a CCR5 primary subtype CRF01_AE isolate
adjuvanted in alum [67]. Despite induction of anti-gp120 antibodies, VAX003 did not provide any
protection from infection, with 8.3% in the placebo and 8.4% in the vaccine arm becoming infected [67].



Viruses 2018, 10, 167 6 of 26

In VAX003, vaccine efficacy was estimated at 0.1%. Another Env-based efficacy trial named VAX004
was a randomized, double blind, test of AIDSVAX B/B. This formulation was the first phase 3,
placebo-controlled efficacy study against HIV acquisition and contained subtype B recombinant gp120
in alum. VAX004 was administered to 5403 men who have sex with men (MSM) and women at high
risk of infection in North America and the Netherlands [68]. Despite inducing neutralizing and CD4
blocking antibody in all vaccines, HIV seroconversion rates were 6.7% in the vaccine arm and 7% in the
placebo arm, with overall vaccine efficacy estimated at 6% [68]. In short, despite being immunogenic,
VAX003 and VAX004 recombinant Env-based vaccines failed to demonstrate any level of protection
from infection.

Table 1. Previous HIV-1 vaccine efficacy trials.

Trial ID Vaccine Description Phase Number of
Participants Year Results

AIDSVAX B/E
(VAX003)

Two clade B and one
CRF01_AE gp120
antigens in alum

III 2546 1999.3–2003 No protection

AIDSVAX B/B
(VAX004)

Clade B recombinant
gp120 antigens in alum III 5417 1998.6–2003 No protection

HVTN502
(STEP)

MRKAd5 HIV-1
Gag/Pol/Nef IIb 3000 2004.12–2007.9

Halted at interim analysis
for futility; early transient

increased infection
in vaccinees

HVTN503
(Phambili)

MRKAd5 clade B
Gag/Pol/Nef IIb 801 2007.1–2007.9

No effect, late increased
HIV infection in

unblinded male vaccinees

RV144
ALVAC-HIV vCP1521,
AIDSVAX B/E rgp120

in alum
III 16,402 2003.10–2006.7 31.2% protection

HVTN505 DNA, rAd5 (A, B, C) IIb 2504 2009.6–2017.8 No protection

The previously completed human efficacy trials designed to prevent HIV acquisition are shown. Ad = Adenovirus;
gp = glycoprotein; HVTN = HIV Vaccine Trials Network; MRK = Merck; MVA = modified vaccinia virus Ankara;
NCT = National Clinical Trials identifier; vCP = canarypox vector; CRF = circulating recombinant form.

In contrast to the previous disappointing Env-based efficacy trials, the STEP (HIV Vaccine Trials
Network 502, HVTN502) and Phambili (HVTN503) trials were designed to elicit cellular immune
responses. This was done as a considerable body of research was being generated; suggested cell
mediated immunity was important in the control of both HIV replication and disease progression in
long term non-progressors [69–71]. This body of evidence was also supported from NHP challenge
models [72–74]. The STEP study was a phase II, double-blind, randomized, placebo-controlled trial
using the MRKAd5 HIV-1 Gag/Pol/Nef vaccine in high-risk of infection, HIV-1 seronegative women
and MSM [75]. This multicenter trial enrolled 3000 individuals with study sites in North America, the
Caribbean, South America, and Australia [75]. The closely related phase II Phambili trial involved
MRKAd5 clade B Gag/Pol/Nef administered to 801 of a scheduled 3000 heterosexual men and women
in South Africa [76]. Although both vaccines were immunogenic and well tolerated, an exploratory
multivariate interim analysis from the STEP trial revealed an alarming increased incidence of HIV-1
acquisition in male vaccinees versus placebo recipients who had adenoviral seropositivity (5.1% vs.
1.4% per year, respectively) or were uncircumcised (5.2% vs. 1.4% per year, respectively). On the
basis of this negative news, both trials were stopped. Interestingly, a follow up sieve analysis was
performed on HIV-1 genome sequences from 68 newly infected volunteers from the STEP trial to
evaluate if the vaccine exerted any selective pressure on breakthrough viruses. Indeed, a genetic
imprint was identified on the founder viral strains. The sieve effect was only seen in predicted epitopes
and only in proteins that were components of the vaccine, indicating the possibility of T cell pressure
post-infection [77]. Therefore, despite the failure to protect and being stopped early, the STEP trial
MRKAd5 HIV-1 Gag/Pol/Nef vaccine was the first to place a selective pressure on the infecting virus.

In 2009, the results from a randomized, multicenter, placebo-controlled efficacy trial involving
recombinant canarypox vector (ALVAC-HIV) plus two recombinant gp120 boosts (AIDSVAX B/E)
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were released [78]. The RV144 “Thai Trial” enrolled 16,402 healthy individuals at heterosexual risk of
HIV acquisition, who were divided into vaccine and placebo arms. In the intention-to-treat analysis,
a trend towards prevention of HIV-1 infection among vaccine was seen (vaccine efficacy = 26.4%).
However, in the modified intention-to-treat protocol, in which seven individuals were removed from
the study for being HIV+ at initiation of the study, vaccine efficacy rose to 31.2% [78]. Interestingly,
a post hoc analysis in behavioral risk and vaccine efficacy revealed an early peak in vaccine efficacy
estimated to be 60.5% in the first year, which declined to 31.2% thereafter [79]. Protection in this study
was attributed to development of non-neutralizing IgG against the V1/V2 region of HIV-1 Env and not
the low-level induction of neutralizing antibody. Comparing the genetic sequences of breakthrough
viruses in vaccine recipients by sieve analysis identified that HIV strains isolated from vaccinees had
genetic signatures of vaccine-induced immune pressure within V1/V2 [80]. The escape depended
on class I HLA A*02 and A*11 restricted epitopes in the recombinant gp120, with vaccine efficacy
greater in A*02+ (54%) individuals than A*02− (3%) individuals [80]. Within A*02+ individuals,
vaccine efficacy of breakthrough viruses containing K169 within V1/V2 was 74% compared to A*02−
with 15%, thereby emphasizing that HLA A*02 may have played a significant role in RV144 and the
overall importance of HLA genotypes in HIV vaccine trials [80]. Finally, the V2 binding antibody from
vaccines was able to mediate ADCC activity, and this was dependent on K169 in the breakthrough
Envs [81].

More recently, the randomized, double-blind, placebo-controlled efficacy trial (HVTN505) of the
Vaccine Research Centre’s (VRC’s) DNA/Ad5 HIV-1 vaccine was halted by recommendations from
the data and safety monitoring board for lack of efficacy. The trial enrolled 2504 men and transgender
women who have sex with men to receive either vaccine (n = 1253) or placebo (n = 1251) [82]. In this
study, the baseline Ad5 serum neutralizing antibody titre was to be less than 1:18, and men had to
be circumcised. The DNA vaccine contained clade B gag/pol/nef and clade A, B, and C env while the
recombinant Ad5 expressed clade B gag-pol and clade A, B, and C env. HIV acquisition was detected in
27 vaccinees at week 28+, while only 21 infections were recorded in the placebo arm (vaccine efficacy
= −25%) [82]. Overall, 41 individuals became HIV+ in the vaccine arm, while 31 became infected in
the placebo arm, supporting a lack of vaccine efficacy [82]. Despite an increase in HIV infection in
the vaccine arm vs. placebo, the number of infection in the week 28+ primary analysis and the total
number of infections in the modified-intention-to-treat analysis revealed no statistical significance [82].
Subsequent analysis of breakthrough viral genomes in vaccinees vs. placebo recipients revealed that
HIV-1 diversity was significantly lower in gag, pol, vif, and env genes, with Env sequences significantly
more distant from the subtype B vaccine insert in vaccines [83]. Interestingly, these signatures of
immune pressure were mapped to the CD4bs [83]. Since the sieve analysis was identified primarily
in Env, it is argued that the selective pressure on breakthrough virus in vaccinees was in Env regions
associated with infectivity, with indications that antibodies might be partially responsible. Taken
together, this suggests that although no protection from HIV acquisition was seen (i.e., no vaccine
efficacy), the vaccine might have induced a rapid Env diversification post-HIV acquisition due to
elicited immune pressure, or the vaccine did protect against HIV acquisition from strains that were
more closely related the vaccine strains [83].

In summary, of the six HIV-1 vaccine efficacy trials that have been carried out, only the RV144
study has demonstrated a modest reduction in HIV-1 infection rates using a modified intention to treat
protocol. Post Hoc analyses on the STEP and HVTN505 trials revealed enhanced viral evolution in
response to vaccination, suggesting immune pressure was being exerted on the virus. Collectively,
a great wealth of information has been accrued from these studies, with vaccines based on just viral
vectors or heterologous viral vector prime protein-boost protocols appearing to perform better than
multi-dose protein-based vaccines. A rich HIV-1 vaccine clinical trials pipeline, along with the initiation
of HVTN702, a repeat of the RV144 trial in South Africa, provides much hope that additional correlates
of protection will be elucidated and that an HIV-1 vaccine might yet become a reality.
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4. Preclinical Evaluation of Novel Protein Based Immunogens

Shortly after establishing that the HIV retrovirus was the cause of AIDS, the field was wildly
optimistic that a vaccine would be quickly and easily found to either prevent or alter the disease
course, a promise that has not yet been fulfilled. After some very early work in the newly established
non-human primate models that used various nef or multiple gene deleted viral strains, it was clear
that the live-attenuated vaccine strategy was unlikely to produce an acceptable vaccine, as the virus
demonstrated great powers of deletion repair and enhancement of viral fitness [84–86]. Next, vaccine
development studies concentrated on creating a subunit vaccine, a strategy that was considered to
have major advantages in terms of potential safety profile over the more traditional live-attenuated or
even a heat-killed whole virus vaccine. Work focused on producing recombinant proteins of various
Env gp160 or gp120 versions from various viral strains and clades, as well as the assessment of the
immunogenicity of such proteins produced from a multitude of gene expression (mainly viral) systems.
Indeed, pre-clinical studies have examined the potential of countless permutations of vaccination
regimens consisting of expression vectors, recombinant proteins, and delivery schedules, as well
as delivery methods and routes. These pre-clinical studies fed through to clinical trials, and it has
become increasingly clear that while it is relatively straightforward to elicit appreciable immune
responses in people, the immunity generated by the first or second generation vaccine proteins is
not protective and lacks neutralization breadth. What has also become clearer over the intervening
years is that a relatively large percentage (10–30%) of infected people are able to produce bNabs and,
indeed, about 1% will go on to naturally produce antibodies that are extremely broad and that are
highly potent, and are effective at very low serum levels [87,88]. Therefore, the natural experiment has
been performed; people can make potent and broadly neutralizing antibodies, which is particularly
impressive, as these are generated in the setting of infection and a potentially waning immune system.
These observations have pushed the field of vaccinology to focus on antigen design to produce
proteins that most accurately reflect the native HIV Env trimer and also to target the pathway of bNab
development from the early reactive germline sequences to the final hypermutated bNab clones.

The Env protein present on a viral particle can exhibit a number of structural forms, whether
due to the conformational movements typical of all protein complexes or the various intermediates
caused by co-receptor binding and the fusion of the viral Env to the cellular receptor, or from the
overall metastability of the trimeric protein complex. In addition, the viral particle ages the surface
glycoproteins, which undergo degradation by proteases, in which even a small break in the protein
chains can lead to a dramatic loosening of the integrity of the trimer, in which torsional forces in the
Env structure distort the molecule presenting a large (currently undefined) number of Env structure
variants to the humoral immune system [89].

This heterogeneity of potential Env immunogens pushed the field to accelerate the design and
development of stable HIV-1 Env trimers that are soluble and have a native trimer tertiary and
quaternary structure. These designer Envs incorporated a number of stabilizing mutations and
cross-linkages that forced the protein into a native-like shape, mostly retaining the glycan moieties
but essentially locking the Env into a stable non-infectious trimer (Figure 2). The primary exemplar
of the optimal native-like trimer to date is the BG505 SOSIP.664 molecule, although this recombinant
molecule has recently been shown to possess an unusual ‘glycan hole’ shared by only 3% of global
isolates, allowing access of bnAbs to the native-like structure [90]. These glycan holes are present in
many HIV Env isolates, at various glycosylation sites, and are potential weaknesses to target in the Env
glycan shield. However, while it is apparent that many designed Env trimers, as well as Env isolates,
have these alterations in the glycosylation residues to create holes in the ‘glycan shield’ that allow the
generation of neutralising tier 2-type antibodies, it has been observed that these Env generate sera
with reasonable autologous potency but little heterologous or breadth of activity. Therefore, while
these designed Env are clearly highly native and demonstrate strong structural integrity, they have not
yet been able to elicit bnAbs of the type that can be isolated form infected patients.
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Figure 2. Structural models of the BG505.SOSIP.664 HIV Env protein. The HIV-1 BG505.SOSIP.664
protein PDB data file (PDB file 4ZMJ: Crystal Structure of Ligand-Free BG505 SOSIP.664 HIV-1 Env
Trimer [91,92]) was imported to UCSF Chimera program [93] to visualize the molecular structure.
The hydrophobicity model on the left (looking at the protein from the top) shows the typical
propeller-shape of the BG505.SOSIP.664 HIV Env trimeric molecule, while the ribbon diagram on
the right gives detail of the positions of the beta-pleated sheets, alpha-helices and loops that make the
structure. The BG505.SOSIP.664 HIV Env exhibits a mature and pre-fusion closed trimer, a conformation
recognised by bnAbs that would be expected to target the native trimer presented on infectious HIV.
Further design modifications of the BG505 molecule and other Envs have increasingly succeeded
in creating stabilised and more native-like trimer structures that are likely to be the next generation
vaccine candidates to generate bnAbs.

Of the six well described broadly neutralising Ab clusters in the trimer HIV Env molecule, three
are highly dependent on the quaternary structure of the Env and also have a strong bias for binding to
both protein and glycan elements of the Env structure. Depending upon the final trimer quaternary
conformation, there can be more or less exposure of glycan moieties leading to higher or lower degrees
of glycan processing, and therefore the final protein-glycan complex can appear strikingly different to a
potentially reactive B cell from just a small relaxation or tightening of the overall trimer. Indeed, some
50% of the mass of the HIV Env trimer are glycans, most of which are of the incompletely processed
high-mannose type, indicating that the constrained structure of the trimer complex is protecting these
glycans from being processed into complex sugars during golgi transit.

Rational vaccine antigen design has been informed by the isolation of a number of bnAbs against
the HIV Env protein; these naturally occurring antibodies are effectively telling us what we need
to make, and, of course, each one of these antibodies contains a ‘negative imprint’ of a part of the
Env molecule and the tertiary structure of that epitope. It is clear that the continued isolation and
analysis of these bnAbs will further advance our knowledge of the antigen–glycan structures required
that match the final matured and somatically hypermutated bnAb clone, but these observations
will not necessarily inform us as to how the bnAb clone developed. The heavy and light chain
variable domain (VH and VL) family usage of a bnAb will tell us the preferential antibody (Ab) gene
family usage of the germline ancestor. However, for HIV it has been shown that most germline
ancestors do not in fact bind to HIV Env [94] and have undergone a high degree of somatic mutations,
insertions, or deletions, though logically the germline progenitor must have bound to one of the
versions of HIV Env to have been initially selected [38,95–97]. Furthermore, a vaccine antigen that may
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effectively stimulate a bnAb germline precursor may be quite different from an Env carefully designed
to replicate the native-like and infectious trimer, and thus an effective vaccine regimen may require
multiple designed immunogens (native-like or not) to drive bnAb development and maturation [98].
Recent work utilizing germline reverted bnAbs to screen mammalian cell expressed libraries of BG505
related gp140/gp120 molecules has identified a number of stabilized HIV Env trimers that bind to
both germline and mature bnAb versions [99]. Furthermore, several key studies have detailed that
structural and/or glycan heterogeneity, localized precursor frequency, and BCR affinity each have an
interdependent role to play in the stimulation and expansion of bnAb precursors [100,101]. This work
is highly likely to lead to a clearer definition of the key protein/glycan moieties that trigger the
initial antigen-specific B cell activation that leads to the fully mature bnAb capable of neutralizing the
virus, and it will be critical to move these designed Env, capable of stimulating precursor bnAbs and
promoting their continued maturation into high affinity viral neutralisers, as quickly as possible into
clinical trials.

5. Inferring from Transmitted Founder (T/F) Viruses to Guide HIV Vaccine Development

One of the major goals for HIV vaccine development is to prevent HIV-1 acquisition at mucosal
surfaces. Therefore, understanding the mucosal infection process is critical and is receiving much
attention. During sexual transmission of HIV-1, the donor exposes the recipient to a viral swarm
consisting of billions of copies of genetically diverse virus. In the vast majority of cases (60–80%
of infections), a single virus successfully evades mucosal secretions in the mucosal vault, crosses
the mucosal epithelium, binds to and infects a susceptible target cell, avoids immune mediated
clearance, and goes on to establish a systemic infection. The fact that a single virus successfully
overcomes these host-obstacles out of the billions of virions the recipient is exposed to suggests this is
a relatively inefficient process. As such, questions surrounding the success of transmitted/founder
(T/F) viruses are being asked. Is this just a stochastic event where every virus has an equal opportunity
to establish infection, or are there phenotypic properties associated with T/Fs that predispose them
towards successful infection? It is important to understand that nature has provided us with the
necessary proof of concept that bnAbs responses can be generated in humans and that autologous
neutralizing antibody responses are precursors to the bnAb response. Therefore, the T/F Envs and
related breakthrough viruses may provide essential insights into novel vaccine strategies and improved
immunogen design.

In a study involving heterosexual transmission pairs from largely monogamous cohabitating
couples in Zambia, Derdeyn et al. evaluated the nature of heterosexually transmitted HIV-1 infection
in a bid to better understand the infecting virus. In seven transmission pairs, the transmitted virus
clustered with subtype C reference strains, and in one transmission pair, infecting virus clustered with
subtype G [102]. They evaluated a 257 nucleotide sequence stretch spanning positions 391–1254 of
the HIV Env (HXB2 numbering) coding region and then focused only on sequences that spanned the
V1–V4 region. By comparing the frequency of sequences below at or above the median donor length,
recipients from 6 of the 8 pairs had V1–V4 lengths that were below the donor median [102], suggesting
that viruses encoding Env glycoproteins with shorter V1–V4 regions may be transmitted more easily
or are fitter in recipients. Further analysis revealed the transmitted virus in 5 of the 8 pairs contained
a statistically significant lower number of potential N-linked glycan (PNLG) sites than the median
number in the corresponding donor [102], thereby providing tantalizing evidence that T/F viruses
may indeed express certain phenotypic characteristics that distinguishes them from the rest of the
inoculating viral swarm. A subsequent study in Kenya evaluated the viral Env V1–V2 length and
looked for evidence of reduced N-linked glycosylation in viruses samples from 27 women and eight
men within 70 days of heterosexually acquired infection [103]. Again, the subtype A sequences from
early infection were found to have significantly shorter V1–V2 loop sequences and fewer potential
N-linked glycosylation (PNLG) sites [103], collectively strengthening support for shorter hypervariable
regions, with fewer PNLG sites being important for T/F viruses. Conversely, in the later study, the T/F
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viruses from a cohort of 13 men and women infected with subtype B HIV-1, within 142 days post
seroconversion, did not show evidence of having shorter V1–V2 sequences than those found in the
Los Alamos database. Furthermore, they did not find any reduction in the number of potential PNLG
sites, indicating that shorter hypervariable regions and fewer N-linked glycan might not play a role in
mediating HIV transmission in subtype B infection [103].

Most HIV-infected patients develop neutralizing antibody responses (nAb) against the autologous
infecting strain early in infection. However, this nAb response displays no cross-strain neutralizing
activity. To better understand how T/F viruses can generate neutralizing antibody responses, Li et al.
evaluated the course and magnitude of the nAb response against Env glycoproteins present at acute
and early infection with subtypes B and C HIV-1 [104]. While the course of nAb responses in plasma
were similar between the two cohorts, subtype C infected individuals developed plasma nAb responses
that were 3.5-fold higher than those seen in subtype B-infected individuals [104]. Critically, the higher
titres in the subtype C cohort were associated with viruses having significantly shorter V1–V4 amino
acid lengths with fewer glycosylation sites than the B cohort [104]. The fact that subtype C virus
triggered autologous nAbs and that the T/F virus had shorter and less glycosylated Envs suggests this
phenotype could be exploited for rationale vaccine design. However, for an efficacious clade C vaccine
to be realized, increasing the neutralizing breadth of the nAb response would be necessary.

The HIV Env spike is a metastable complex composed of surface gp120 subunits noncovalently
linked to gp41 transmembrane domains. The trimerization of the Env complex are the result
of noncovalent interaction between the gp41 subunits with additional interactions arising from
gp120-gp120 contacts near the trimers apex [105]. The Env oligomers function is to facilitate target
cell binding and entry by engaging CD4 and the coreceptor CCR5. As with other viruses, surface Env
density plays an important role in mediating cell fusion. However, HIV is set apart from most viruses in
that there is a relative sparsity of intact Env trimers displayed on the viral surface (~7–14 spikes/virion),
and spontaneous shedding of Env oligomers is known to occur. As such, HIV displays far fewer
Env than other viruses such as SIV (~70 spikes/virion), Influenza (~300 spikes/virion), Adenovirus
(240 hexon trimers/virion), and Hepatitis B Virus (~120 spikes/virion) [106]. The precise numbers of
intact surface Envs necessary to mediate target cell infection is not known, but various reports range
from 1–8 trimers [107–110]. Therefore, it is important to note that T/F viruses have been described
to display a greater Env density than viruses analyzed at later timepoints in infection. A study by
Gnanakaran et al. searched for amino acid signatures in subtype B Env sequences that were associated
with transmission and sequences that were recurring in chronic infection [111]. By assessing thousands
of sequences from hundreds of patients, a number of signatures were identified as promising. The
first was located at position 12 in the Env signal peptide (SP), and the second was the loss of an
N-linked glycosylation site at position 413–415 [111]. Both signatures were described to potentially
influence Env expression and incorporation into virions. The Env SP is fairly long (~30 amino acids)
and contains a polar N-terminus followed by a hydrophobic core. The role of the SP is directing Env
in its translocation to the endoplasmic reticulum (ER), where it undergoes, folding, glycosylation,
and trimerization. When compared to the cleavage of the SP of other glycoproteins, the cleavage
of the HIV SP is slow [112,113]. Therefore, a histadine (H) at position 12, despite being present in
both early and chronic viruses, was found to be statistically significantly enriched in early viruses
compared to chronic viruses, which in the latter case was commonly mutated to arginine (R) or proline
(P). As for loss of a probably N-linked glycosylation site (PNLG) at position 413–415, a mutation
away from 415Threonine (T) was found to be enriched within acute samples or early after infection.
The 415T is part of the PNLG sequon at N413 and is normally glycosylated [111]. This is near the
c-terminal end of the V4 loop and proximal to the CCR5 coreceptor binding site and CD4 binding site.
Critically, PNLG at 413–415 correlates with reduced b12 binding [111]. This work was supported by a
computational approach described by Asmal et al., who showed that in T/F viruses, 415H or a similar
positive charged amino acid such as arginine (R), as opposed to non-basic residues at this locus, is
associated with higher Env expression and incorporation into virions [114], thereby further setting the
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stage for phenotypic differences in T/F viruses compared to chronic viruses. Interestingly, Parrish et al.
found that clade B and C T/F viruses contained 1.9 times more Env per unit of reverse transcriptase
(RT) activity than chronic viruses, and that T/F viruses were 1.7-fold more efficiently captured by
monocyte derived DC [115]. It could be speculated that higher Env density on T/F viruses may help
them to bind and infect both tissue resident and infiltrating CD4 T cells, thereby giving them a higher
chance of establishing infection. It is also plausible to assume that HIV modulates its glycan content
to evade immune responses and to also specifically target mucosal resident DCs for lectin-mediated
binding (e.g., DC-SIGN) and transport them to regional draining lymph nodes. Taken together,
although still a controversial topic, T/F viruses appear to have significant phenotypic properties
that could be exploited for the purposes of an efficacious HIV-1 vaccine. From an immunological
and vaccine point of view, understanding Env density and the glycan shield on the HIV virus is
critical, as it influences B cell activation through BCR cross linking and down-stream processes such
as clonal expansion and antibody affinity maturation, thereby giving potential insights into how
autologous neutralizing antibodies might be generated and what is special about the individuals
that generate broadly neutralizing antibody responses. In essence, studying the continual arms race
between infecting virus and the humoral immune response could illuminate antibody lineages and
their associated viral escape mutants that eventually allow specific Envs, amongst the circulating
quasi-species, to promote autologous and broadly neutralizing antibody production.

With that in mind, McCurly et al., constructed and tested T/F based vaccine constructs using
sequential clade C Envs from a south African Individual (CH0505) known to elicit CD4bs neutralizing
antibody in NHPs [116]. The CH0505 T/F Env, week 53, week 78, and week 100 Envs were presented
by virus like particles (VLPs) with or without co-administered gp120. It was speculated that the
conformation of the T/F Env would enable the correct angle of approach for engagement of B cells
targeting the CD4bs [116]. The outcome was neutralization of autologous tier 2 T/F virus, but the
vaccine had no breadth for other tier 2 viruses despite Abs being mapped to the CD4bs. This study
demonstrated that using sequential Env vaccinations could initiate a B cell lineage with potential to
evolve towards heterologous neutralization [116].

By studying viral-host coevolution over a 0–5 year period of a clade C infection, Bonsignori et al.
were able to identify key events in the ontogeny of V3 glycan bnAb response within a Malawian
individual CH848. Sequential sampling of the virus over this time revealed neutralization was
restricted to virus that contained an N332 N-linked glycosylation site [117]. In this instance, the length
of the V1 loop of the T/F virus was 34 residues, while the average V1 amino acid length in the Los
Alamos database was 28 residues. The viral quasi-species was then shown to undergo a transition from
a long V1 loop in the T/F to a short loop (~16–17 amino acids) when escaping from the autologous
neutralizing antibody response [117]. This truncated V1 loop caused the expansion of the DH270 bnAb
lineage, placing significant pressure on the virus, causing it to select for viral escape mutants with
longer V1 loops. This ultimately increased bnAb breadth by enabling DH270 to recognize a broader
spectrum of Envs. It is noteworthy that the DH270 unmutated common ancestor did not bind the T/F
Env but did bind to peptides from the base of the V3 loop [117]. Thus, vaccine priming with T/F virus
Env, V3 based structures, or peptide antigens from V3, followed by Envs with progressive longer V1
lengths, might induce V3-glycan bnAbs [117]. Indeed, changes to the V1/V2 length over the course of
HIV infection have previously been reported to increase along with the number of PNLG sites [118].
This latter example highlights that sequential vaccinations strategies with multiple Env modalities
might be necessary to harness the necessary B cell lineages that can lead to the generation of bnAbs.

In another study, vaccination of NHPs with a cocktail of gp140 oligomeric Envs from an HIV-1
T/F and 6 of its variants, all derived from an HIV-1 infected African (CAP206) who generated bnAbs
against the gp41 MPER region, was carried out [119]. In this study, potent neutralizing antibody titres
were generated against tier 1 viruses in all animals, while the vaccine also managed to produce a
neutralizing antibody lineage that had tier 2 neutralization in some animals [119]. The neutralization
profile resembled the plasma response seen at 6 months within the CAP206 individual but was shown
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to bind to the V5 region of Env, thereby demonstrating that T/F Env and variants can generate
autologous tier 2 neutralizing antibody [119].

Collectively, these observations indicate that the phenotypic properties of T/F viruses appear
sufficiently distinct from the rest of the viral swarm and that their Env glycoproteins could be important
for a protective vaccine. Future vaccine studies investigating sequential vaccination strategies, starting
with T/F Envs and finishing with accurately constructed Env trimers, might induce the necessary
B cell ontogenesis by immuno-focusing on the necessary structural components that culminate in
bnAb responses.

6. Ongoing Clinical and Preclinical Testing of HIV Vaccines

Viral vectors are the best delivery tools for vaccine development, because they have intrinsic
adjuvant capability and unique cellular tropism, and they are able to trigger robust adaptive immune
responses. A number of new vectors, including Ad26 (adenovirus serotype 26), Ad35, poxvirus
(e.g., canarypox virus-based ALVAC vector), replication competent Ad4, and CMV vectors, are
currently being developed (Table 2) [120–124]. However, viral vector vaccine platforms do have some
limitations, such as preexisting immunity. It is also noticed that different vectors, even derived from
phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quality,
quantity, and location, which can ultimately affect protection efficacy. The two-viral vector-based
vaccine trials, Imbokodo and HVTN 702, have resulted from years of scientific testing and clinical
development, currently representing the best efforts in HIV vaccine development. Both HVTN 702
and Imbokodo trials are described in more detail below.

Table 2. Recent and ongoing HIV clinical trials.

Trial ID Vaccine Description Category Phase Duration

NCT01084343 Virosome (IRIV) expressing lipidated
gp41 peptide

Virosome
based I 2009.11–2010.09

RV305 ALVAC-HIV (vCP1521) and/or AIDSVAX
gp120 B/E late boost RV144-related II 2012.04–2017.05

RV306 ALVAC-HIV (vCP1521) prime,
ALVAC-HIV/AIDSVAX gp120 B/E boost RV144-related II 2013.09–2017.11

RV328 AIDSVAX gp120 B/E prime and boost RV144-related II 2014.07–2018.12

HVTN100
ALVAC-HIV (vCP2438) prime,
ALVAC-HIV (vCP2438)/bivalent clade C
gp120/MF59 boost

RV144-related I/II 2015.01–2017.01

HVTN702
ALVAC-HIV (vCP2438) prime,
ALVAC-HIV (vCP2438)/bivalent clade C
gp120/MF59 boost

RV144-related IIb/III 2016.10–2021.07

X001 CN54gp140 with GLA-AF Env
immunogens I 2013.10–2015.11

CR104488/HIV-V-A003/IPCAVD008 Trimeric gp140 with/without
aluminum phosphate

Env
immunogens I 2014.12–2016.04

FLSC-001 Full length single chain gp120-CD4
complex vaccine

Env
immunogens I 2015.11–2018.07

CR100965/HIV-V-A002/IPCAVD006 MVA Mosaic HIV in individuals
with/without prior Ad26.ENVA.01

Mosaic
vaccine I 2014.09–2015.11

CR106152/HIV-V-A004/IPCAVD009
Ad26 Mosaic HIV prime, Ad26 Mosaic HIV
or MVA Mosaic (env or gag-pol) and/or
clade C gp140/aluminum phosphate boost

Mosaic
vaccine I/II 2014.12–2019.04

CR108152/VAC89220HPX2004

Ad26 Mosaic HIV or Ad26 Mosaic4 HIV
prime (env or gag-pol), clade C
gp140/aluminum phosphate and Ad26
Mosaic HIV or Ad26 Mosaic4 HIV boost

Mosaic
vaccine II 2016.07–2018.09

CR108068/VAC89220HPX1002
Ad26 Mosaic HIV (env or gag-pol) with
clade C gp140/aluminum phosphate prime
and boost

Mosaic
vaccine I 2016.03–2019.01

HVTN 090/NCT01438606 VSV-Indiana HIV gag vaccine Replicating
vectors I 2011.10–2013.01

NCT01989533 Ad4-mgag and Ad4-envC150 Replicating
vectors I 2013.11–2020.02
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Table 2. Cont.

Trial ID Vaccine Description Category Phase Duration

HVTN 110
Ad4-mgag and/or Ad4-envC150 prime,
AIDSVAX gp120 B/E/aluminum
hydroxide boost

Replicating
vectors I 2015.03–2017.02

rcAd001/IAVI R001 RcAd26.Mosaic1.HIV-env Replicating
vectors I 2015.01–2016.06

HVTN076/NCT00955006

VRC-HIVDNA-016-00-VP prime (clade B
gag, pol, nef, clade ABC env)
VRC-HIVADV014-00-VP boost (clade B
gag-pol and clade ABC env)

DNA-based I 2011.05–2013.09

HVTN 087
HIV-MAG vaccine with/without IL-12
pDNA adjuvant electroporation prime,
VSV HIV gag boost

DNA-based I 2012.05–2014.09

CRO2059
HIV DNA (CN54ENV/ZM6GPN) prime,
MVA-/CN54rgp140/GLA-AF
adjuvant boost

DNA based I 2014–2016

HVTN 092
DNA-HIV-PT123 prime with/without
NYVAC-HIV-PT1 and NYVAC-HIV-PT4
boost

DNA-based I 2013.04–2014.09

HIV-CORE 004/IAVI N004
Ad35-GRIN/MVA.HIVconsv with/without
pSG2. HIVconsv DNA with/without
electroporation

DNA-based I/II 2014.03–2015.08

HVTN 106 DNA Nat-B env or DNA CON-S env or
DNA Mosaic env prime, MVA-CMDR boost DNA-based I 2015.01–2020.09

HVTN 098
PENNVAX®-GP HIV-1 DNA (gag, pol, env)
vaccine with electroporation with/without
IL-12 DNA adjuvant

DNA-based I 2015.04–2016.08

CUTHIVAC002 HIV DNA-C CN54env prime with and
without electroporation, CN54gp140 boost DNA-based I 2015.11–2017.04

VRI01
LIPO-5 or MVA HIV-B LIPO-5 or MVA
HIV-B or GTU-Multi HIV B prime and
LIPO-5 or MVA HIV-B boost

Lipopeptides I/II 2014.03–2016.03

Some of the current ongoing and recently completed human clinical trials are shown. Note: This is not a complete
list. Ad = Adenovirus; CN = Chinese; CUTHIVAC = Cutaneous and Mucosal HIV Vaccination; Env = viral
envelope; FLSC = full-length single chain; GLA-AF = glucopyranosyl lipid adjuvant–aqueous formulation; GP
= glycoprotein; HVTN = HIV Vaccine Trials Network; IAVI = International AIDS Vaccine Initiative; IPCAVD =
Integrated Preclinical/Clinical AIDS Vaccine Development Program; MVA = modified vaccinia virus Ankara; NCT
= National Clinical Trials identifier; vCP = canarypox vector; VRC = Vaccine Research Centre (USA); VRI = Vaccine
Research Institute.

6.1. HVTN702

The HVTN 702 study is a Phase 2b/3 clinical trial based on the modestly protective RV144 clinical
trial [78,125]. The vaccine regimen consists of two experimental vaccines: a canarypox-vector based
vaccine called ALVAC-HIV and a two-component gp120 protein subunit. Based on the vaccines used
in RV144, both ALVAC-HIV and the protein subunit have been modified to be HIV subtype C-specific.
In addition, MF59 (an adjuvant different from the one used in RV144) was combined with the protein
component in order to elicit a more robust immune response. Finally, the participants will receive
booster shots at the one-year mark in the hope of prolonging the early protective effect observed
in RV144.

The HVTN 702 study is the most advanced and largest HIV vaccine clinical trial initiated thus far
and will be carried out in South Africa. It will enroll 5400 healthy, sexually active men and women
aged 18 to 35 years old. Half of the participants will be randomly assigned to receive the experimental
HIV vaccine regimen, and the other half will receive a placebo. A total of five injections will be given
to participants over one year and then will be followed up for another two years. Results from the
study are expected in late 2020.

6.2. Imbokodo Efficacy Trials

Imbokodo is a Phase 2b proof-of-concept study, and the vaccine regimen is based on “mosaic”
immunogens in an effort to induce immune responses targeting the diverse global HIV strains, which
differs from HVTN 702 study. Prior studies in NHP with these mosaic-based vaccines were able
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to protect monkeys from SHIV challenge [126]. Furthermore, two early-stage human clinical trials,
APPROACH and TRAVERSE, showed that these vaccines are well-tolerated and can generate HIV
specific immune responses in the vaccinees. Based on the findings from these two early-stage clinical
trials, a lead candidate regimen was selected for further evaluation [127].

The APPROACH study was a phase I/II clinical trial initiated in Dec. 2014 and was scheduled
for completion in April 2019 [128]. It enrolled 400 participants (18–50 years). The purpose of this
study is to evaluate the safety/tolerability of different regimens containing Ad26.Mos.HIV, Modified
Vaccinia Ankara (MVA)-Mosaic, and/or HIV-1 Clade C gp140 drug product (gp140 DP) components
through intramuscular route and to compare Env specific antibody responses between the different
vaccine regimens.

The TRAVERSE study is a double-blind clinical trial phase I/II started in Jun. 2016 and completed
in May 2018 [129]. It enrolled 198 participants (18–50 years) in the United States and Rwanda.
The purpose of this study is to assess the safety/tolerability of the 2 different vaccine regimens;
it first aims to prime with trivalent Ad26.Mos.HIV and boost with trivalent Ad26.Mos.HIV and Clade
C gp140 plus adjuvant; secondly, it aims to prime with tetravalent Ad26.Mos4.HIV and boost with
Ad26.Mos4.HIV and Clade C gp140 plus adjuvant. Interim data indicate that both are well-tolerated
and can elicit anti-HIV immune responses [127].

The Imbokodo trial is to evaluate the quadrivalent mosaic vaccine based on the TRAVERSE
study. It will enroll 2600 HIV-negative women in sub-Saharan Africa. All participants will receive four
vaccinations of either the experimental vaccine regimen or placebo over one year. The final two doses
will be given together with an HIV clade C gp140 protein and an adjuvant (aluminum phosphate).
Participants will be followed up over two years. Results from Imbokodo are expected in 2021.

The ASCENT trial is another ongoing adenovirus vector-based HIV mosaic vaccine trial. It is a
double-blind phase I/II clinical trial initiated in Mar. 2017. It enrolled 150 participants (18–50 years).
The primary purpose of the study is to assess safety/tolerability and Env-specific antibody responses
of two different mosaic-based vaccine regimens, i.e., Ad26.Mos4.HIV vaccine through intramuscular
route at Week 0 and 12, followed by Ad26.Mos4.HIV vaccine + Clade C glycoprotein 140 vaccine
containing 250 mcg (microgram) of total protein mixed with adjuvant (aluminium phosphate) at Week
24 and 48, or Ad26.Mos4. HIV vaccine at Week 0 and 12 followed by Ad26.Mos4.HIV vaccine and a
combination of 125 mcg Mosaic gp140 and 125 mcg Clade C gp140. Results from ASCENT are expected
in early 2019 [130].

7. Application of Systems Biology and Serology for Improved Vaccines

Systems serology approach offers an unbiased and comprehensive approach to systematically
survey humoral immune responses, capturing the array of functions and humoral response
characteristics that may be induced following vaccination with high resolution. Coupled to machine
learning tools, large datasets that explore the “antibody-ome” can help in the identification
of features associated with humoral immunity that distinguish protective from non-protective
responses [131]. Systems serology is able to associate antibody features and functions with protection
from HIV infection, which is now becoming a powerful tool with which to investigate the humoral
immune system.

A number of different data-driven computational approaches or “machine learning” have been
applied to systems biology, systems vaccinology [132,133], and, more recently, systems serology [134].
These applications have identified correlations between certain immune signatures and vaccine
efficacy for a number of diseases such as yellow fever [135], influenza [136], and malaria [137,138].
Chung, et al. utilized a variety of modelling and data clustering techniques to outline the antibody
profiles of two non-efficacious HIV vaccine trials: VAX003 (AIDSVAX B/E [67]) and HVTN204
(DNA/rAD5 [139]) [140], and the moderately protective RV144 trial (ALVAC and AIDSVAX B/E [78]).
Application of correlation networks analysis to these different vaccine trials revealed that, in RV144
trial, Env-specific IgG1 and IgG3 responses were correlated with multiple antibody effector functions,
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such as ADCC, ADCP, and ADCDC. On the contrary, these correlations were not found in the two
non-efficacious vaccine trials. Furthermore, they used the immune correlate analysis to separate
RV144 recipients into two groups with either high or low V1/V2 responses [141]. As expected,
the former, with predicted low risk of infection, had high HIV-specific IgG1 levels and polyfunctional
Fc effector functions including ADCP, ADCC, and antibody-dependent NK cell activation. On the
other hand, the low IgG V1/V2 responders, with predicted higher risk of infection, were correlated
with HIV-specific IgA, which is consistent with previous immune correlate studies [141]. This includes
the analysis of risk of infection by Tomaras et al. that revealed plasma IgA/IgG ratios were higher in
infected individuals than in uninfected vaccine recipients and that Env-specific IgA antibodies from
RV144 vaccinees could block binding of ADCC-mediating mAb to HIV-1 gp120 [142]. Further analysis
showed that the high IgG3-V1/V2 responders were associated with activating FcγRIIa and FcγRIIIa,
receptors required for ADCP and critical for NK cell activation and ADCC, respectively, which was also
confirmed to be associated with protection by other studies [143]. Although IgA has been correlated
with lack of protection in RV144, it is important to note that other studies have identified protective
effects of vaccine-elicited anti-HIV IgA [144]. Therefore, it is worth mentioning that a phase I, double
blinded study published by Leroux-Roels et al. and conducted in 24 healthy HIV-uninfected women
demonstrated the safety, tolerability, and immunogenicity of a virosomal vaccine expressing HIV-1
gp41-derived P1 lipidated peptides (MYM-V101) [144]. In this study, vaginal and rectal P1-specific IgG
was induced, and in ~50% of the participants vaginal anti-P1 IgA was elicited. Although the induced
vaginal IgA was non-neutralizing, it was shown to inhibit HIV-1 transcytosis, thereby providing
evidence that anti-HIV IgA responses may be protective against HIV transmission. Taken together, the
systems serology and related bioinformatics analyses provided an ideal tool with which to study the
network for Fc functions and their pathway analyses [145,146].

Systems serology approaches in non-human primate (NHP) models and efficacy trials: Several
SIV and SHIV vaccine trials have also adopted systems serology approaches to analyze the vaccine
efficacy [147–149]. One example is an NHP study with an RV144-like vaccine consisting of an ALVAC
prime-followed by gp120 protein boost vaccine strategy. This study was analyzed by a combination
of systems biology and systems serology, which revealed the association of RAS activation, mucosal
IL-17-producing innate lymphoid cells, and V2 antibodies with delayed acquisition of infection [149].
In another NHP vaccine study, an Ad26 prime and Env protein boost resulted in 50% protection
efficacy from repeated SIV challenges. The systems serology analysis revealed that this protection was
associated with polyfunctional Fc effector functions including ADCP, ADCC, and ADCD, as well as
antibody-mediated NK cell activation [147].

The systems serology is still in its early developmental stages, and there is no doubt that it will
be further improved to better characterize comprehensive humoral immune responses. However,
by using systems serology, we have already been able to dissect the humoral immune responses in NHP
vaccine trials which provide us with a unique opportunity to understand the vaccine-elicited immune
responses to a much deeper degree. These approaches will eventually enable us to build parallels
between NHP and human protective responses, and help us design better vaccines for human trials.

8. Summary

Although over 35 years have passed since the discovery that HIV-1 was the etiological agent
behind the AIDS epidemic, a preventative vaccine has not yet been realized. During that time,
significant conceptual and technological advances have been made in HIV vaccinology, resulting
in efficacy studies of candidate vaccines that aimed to reduce the likelihood of HIV acquisition or
to increase the immune pressure on the virus and its escape mutants. Collectively, these studies
have provided critical insights into the potential correlates of protection that have been missing for
decades. HIV-1 is a highly mutable virus owing, in part, to its rapid replication and low fidelity reverse
transcriptase activity. From a historical standpoint, vaccinology has been successful at preventing
infections from organisms that express stable/invariant antigenic structures that can be targeted
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by antibodies. For this reason, the HIV-1 virus has essentially presented vaccine researchers with
a “moving target” for which to create a vaccine, necessitating the development of novel vaccine
approaches. It is important to understand that, despite the history of failures in HIV vaccine
development, the preclinical and early phase clinical vaccine pipeline is rich in both novel and
diverse anti-HIV vaccine strategies. This, coupled with the on-going efficacy trials designed to improve
upon RV144, leads many to see a bright future for HIV vaccine development.

Acknowledgments: This work was funded by awards from CIHR to Jamie F. S. Mann (PJT 149075) and
Yong Gao (HBF143165), support of Paul F. McKay by the European Community’s European 7th Framework
Programs—Advanced Immunization Technologies (AdiTech) (HEALTH-F4-2011-18 280873) and Biomarkers
for Enhanced Vaccine Safety (BioVacSafe) (FP7/2007-2013—Innovative Medicines Initiative—Joint Undertaking
IMI-JU 115308 and EFPIA companies in-kind contribution) ,and an award by SynbiCITE, Engineering and Physical
Research Council (BPSRC) (Award number BMPF_P5220) to Paul F. McKay. Molecular graphics and analyses
were performed with the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).
The authors would like to thank Katja Klein, Jessica Prodger, and Richard Gibson for helping edit this manuscript.

Author Contributions: Yong Gao, Paul F. McKay, and Jamie F. S. Mann wrote sections of the manuscript,
and Yong Gao, Paul F. McKay, and Jamie F. S. Mann edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joint United Nations Programme on HIV/AIDS (UNAIDS). UNAIDS DATA 2017. Available online:
http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf (accessed on
10 January 2018).

2. Yuan, Z.; Kang, G.; Ma, F.; Lu, W.; Fan, W.; Fennessey, C.M.; Keele, B.F.; Li, Q. Recapitulating Cross-Species
Transmission of Simian Immunodeficiency Virus SIVcpz to Humans by Using Humanized BLT Mice. J. Virol.
2016, 90, 7728–7739. [CrossRef] [PubMed]

3. Paraskevis, D.; Lemey, P.; Salemi, M.; Suchard, M.; Van De Peer, Y.; Vandamme, A.M. Analysis of the
evolutionary relationships of HIV-1 and SIVcpz sequences using bayesian inference: Implications for the
origin of HIV-1. Mol. Biol. Evol. 2003, 20, 1986–1996. [CrossRef] [PubMed]

4. Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011, 1,
a006841. [CrossRef] [PubMed]

5. Cavrois, M.; Banerjee, T.; Mukherjee, G.; Raman, N.; Hussien, R.; Rodriguez, B.A.; Vasquez, J.; Spitzer, M.H.;
Lazarus, N.H.; Jones, J.J.; et al. Mass Cytometric Analysis of HIV Entry, Replication, and Remodeling in
Tissue CD4+ T Cells. Cell Rep. 2017, 20, 984–998. [CrossRef] [PubMed]

6. Alimonti, J.B.; Ball, T.B.; Fowke, K.R. Mechanisms of CD4+ T lymphocyte cell death in human
immunodeficiency virus infection and AIDS. J. Gen. Virol. 2003, 84, 1649–1661. [CrossRef] [PubMed]

7. Finkel, T.H.; Tudor-Williams, G.; Banda, N.K.; Cotton, M.F.; Curiel, T.; Monks, C.; Baba, T.W.; Ruprecht, R.M.;
Kupfer, A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-
and SIV-infected lymph nodes. Nat. Med. 1995, 1, 129–134. [CrossRef] [PubMed]

8. Doitsh, G.; Galloway, N.L.; Geng, X.; Yang, Z.; Monroe, K.M.; Zepeda, O.; Hunt, P.W.; Hatano, H.; Sowinski, S.;
Munoz-Arias, I.; et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014,
505, 509–514. [CrossRef] [PubMed]

9. Munoz-Arias, I.; Doitsh, G.; Yang, Z.; Sowinski, S.; Ruelas, D.; Greene, W.C. Blood-Derived CD4 T Cells
Naturally Resist Pyroptosis during Abortive HIV-1 Infection. Cell Host Microbe 2015, 18, 463–470. [CrossRef]
[PubMed]

10. Pantaleo, G.; Graziosi, C.; Butini, L.; Pizzo, P.A.; Schnittman, S.M.; Kotler, D.P.; Fauci, A.S. Lymphoid organs
function as major reservoirs for human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1991, 88,
9838–9842. [CrossRef] [PubMed]

11. Abrahams, M.R.; Anderson, J.A.; Giorgi, E.E.; Seoighe, C.; Mlisana, K.; Ping, L.H.; Athreya, G.S.;
Treurnicht, F.K.; Keele, B.F.; Wood, N.; et al. Quantitating the multiplicity of infection with human
immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J. Virol.
2009, 83, 3556–3567. [CrossRef] [PubMed]

http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf
http://dx.doi.org/10.1128/JVI.00860-16
http://www.ncbi.nlm.nih.gov/pubmed/27307566
http://dx.doi.org/10.1093/molbev/msg207
http://www.ncbi.nlm.nih.gov/pubmed/12949143
http://dx.doi.org/10.1101/cshperspect.a006841
http://www.ncbi.nlm.nih.gov/pubmed/22229120
http://dx.doi.org/10.1016/j.celrep.2017.06.087
http://www.ncbi.nlm.nih.gov/pubmed/28746881
http://dx.doi.org/10.1099/vir.0.19110-0
http://www.ncbi.nlm.nih.gov/pubmed/12810858
http://dx.doi.org/10.1038/nm0295-129
http://www.ncbi.nlm.nih.gov/pubmed/7585008
http://dx.doi.org/10.1038/nature12940
http://www.ncbi.nlm.nih.gov/pubmed/24356306
http://dx.doi.org/10.1016/j.chom.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26468749
http://dx.doi.org/10.1073/pnas.88.21.9838
http://www.ncbi.nlm.nih.gov/pubmed/1682922
http://dx.doi.org/10.1128/JVI.02132-08
http://www.ncbi.nlm.nih.gov/pubmed/19193811


Viruses 2018, 10, 167 18 of 26

12. Keele, B.F.; Giorgi, E.E.; Salazar-Gonzalez, J.F.; Decker, J.M.; Pham, K.T.; Salazar, M.G.; Sun, C.; Grayson, T.;
Wang, S.; Li, H.; et al. Identification and characterization of transmitted and early founder virus envelopes in
primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008, 105, 7552–7557. [CrossRef] [PubMed]

13. Hu, J.; Gardner, M.B.; Miller, C.J. Simian immunodeficiency virus rapidly penetrates the cervicovaginal
mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. J. Virol. 2000, 74, 6087–6095.
[CrossRef] [PubMed]

14. Miller, C.J.; Hu, J. T cell-tropic simian immunodeficiency virus (SIV) and simian-human immunodeficiency
viruses are readily transmitted by vaginal inoculation of rhesus macaques, and Langerhans’ cells of the
female genital tract are infected with SIV. J. Infect. Dis. 1999, 179 (Suppl. 3), S413–S417. [CrossRef] [PubMed]

15. Spira, A.I.; Marx, P.A.; Patterson, B.K.; Mahoney, J.; Koup, R.A.; Wolinsky, S.M.; Ho, D.D. Cellular targets
of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency
virus into rhesus macaques. J. Exp. Med. 1996, 183, 215–225. [CrossRef] [PubMed]

16. Zhang, Z.; Schuler, T.; Zupancic, M.; Wietgrefe, S.; Staskus, K.A.; Reimann, K.A.; Reinhart, T.A.; Rogan, M.;
Cavert, W.; Miller, C.J.; et al. Sexual transmission and propagation of SIV and HIV in resting and activated
CD4+ T cells. Science 1999, 286, 1353–1357. [CrossRef] [PubMed]

17. Li, Q.; Estes, J.D.; Schlievert, P.M.; Duan, L.; Brosnahan, A.J.; Southern, P.J.; Reilly, C.S.; Peterson, M.L.;
Schultz-Darken, N.; Brunner, K.G.; et al. Glycerol monolaurate prevents mucosal SIV transmission. Nature
2009, 458, 1034–1038. [CrossRef] [PubMed]

18. Ballweber, L.; Robinson, B.; Kreger, A.; Fialkow, M.; Lentz, G.; McElrath, M.J.; Hladik, F. Vaginal langerhans
cells nonproductively transporting HIV-1 mediate infection of T cells. J. Virol. 2011, 85, 13443–13447.
[CrossRef] [PubMed]

19. Mohammed, J.; Beura, L.K.; Bobr, A.; Astry, B.; Chicoine, B.; Kashem, S.W.; Welty, N.E.; Igyarto, B.Z.;
Wijeyesinghe, S.; Thompson, E.A.; et al. Stromal cells control the epithelial residence of DCs and memory T
cells by regulated activation of TGF-beta. Nat. Immunol. 2016, 17, 414–421. [CrossRef] [PubMed]

20. Rodriguez-Garcia, M.; Shen, Z.; Barr, F.D.; Boesch, A.W.; Ackerman, M.E.; Kappes, J.C.; Ochsenbauer, C.;
Wira, C.R. Dendritic cells from the human female reproductive tract rapidly capture and respond to HIV.
Mucosal Immunol. 2017, 10, 531–544. [CrossRef] [PubMed]

21. Stieh, D.J.; Matias, E.; Xu, H.; Fought, A.J.; Blanchard, J.L.; Marx, P.A.; Veazey, R.S.; Hope, T.J. Th17 Cells Are
Preferentially Infected Very Early after Vaginal Transmission of SIV in Macaques. Cell Host Microbe 2016, 19,
529–540. [CrossRef] [PubMed]

22. Pudney, J.; Quayle, A.J.; Anderson, D.J. Immunological microenvironments in the human vagina and cervix:
Mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod. 2005, 73,
1253–1263. [CrossRef] [PubMed]

23. Haase, A.T. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 2010, 464, 217–223.
[CrossRef] [PubMed]

24. Whitney, J.B.; Hill, A.L.; Sanisetty, S.; Penaloza-MacMaster, P.; Liu, J.; Shetty, M.; Parenteau, L.; Cabral, C.;
Shields, J.; Blackmore, S.; et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys.
Nature 2014, 512, 74–77. [CrossRef] [PubMed]

25. Goonetilleke, N.; Liu, M.K.; Salazar-Gonzalez, J.F.; Ferrari, G.; Giorgi, E.; Ganusov, V.V.; Keele, B.F.;
Learn, G.H.; Turnbull, E.L.; Salazar, M.G.; et al. The first T cell response to transmitted/founder virus
contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 2009, 206, 1253–1272. [CrossRef]
[PubMed]

26. Buckner, C.M.; Moir, S.; Ho, J.; Wang, W.; Posada, J.G.; Kardava, L.; Funk, E.K.; Nelson, A.K.; Li, Y.;
Chun, T.W.; et al. Characterization of plasmablasts in the blood of HIV-infected viremic individuals:
Evidence for nonspecific immune activation. J. Virol. 2013, 87, 5800–5811. [CrossRef] [PubMed]

27. De Silva, N.S.; Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015, 15, 137–148.
[CrossRef] [PubMed]

28. Borrow, P.; Moody, M.A. Immunologic characteristics of HIV-infected individuals who make broadly
neutralizing antibodies. Immunol. Rev. 2017, 275, 62–78. [CrossRef] [PubMed]

29. Petrovas, C.; Yamamoto, T.; Gerner, M.Y.; Boswell, K.L.; Wloka, K.; Smith, E.C.; Ambrozak, D.R.;
Sandler, N.G.; Timmer, K.J.; Sun, X.; et al. CD4 T follicular helper cell dynamics during SIV infection.
J. Clin. Investig. 2012, 122, 3281–3294. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.0802203105
http://www.ncbi.nlm.nih.gov/pubmed/18490657
http://dx.doi.org/10.1128/JVI.74.13.6087-6095.2000
http://www.ncbi.nlm.nih.gov/pubmed/10846092
http://dx.doi.org/10.1086/314795
http://www.ncbi.nlm.nih.gov/pubmed/10099109
http://dx.doi.org/10.1084/jem.183.1.215
http://www.ncbi.nlm.nih.gov/pubmed/8551225
http://dx.doi.org/10.1126/science.286.5443.1353
http://www.ncbi.nlm.nih.gov/pubmed/10558989
http://dx.doi.org/10.1038/nature07831
http://www.ncbi.nlm.nih.gov/pubmed/19262509
http://dx.doi.org/10.1128/JVI.05615-11
http://www.ncbi.nlm.nih.gov/pubmed/21976645
http://dx.doi.org/10.1038/ni.3396
http://www.ncbi.nlm.nih.gov/pubmed/26901152
http://dx.doi.org/10.1038/mi.2016.72
http://www.ncbi.nlm.nih.gov/pubmed/27579858
http://dx.doi.org/10.1016/j.chom.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27078070
http://dx.doi.org/10.1095/biolreprod.105.043133
http://www.ncbi.nlm.nih.gov/pubmed/16093359
http://dx.doi.org/10.1038/nature08757
http://www.ncbi.nlm.nih.gov/pubmed/20220840
http://dx.doi.org/10.1038/nature13594
http://www.ncbi.nlm.nih.gov/pubmed/25042999
http://dx.doi.org/10.1084/jem.20090365
http://www.ncbi.nlm.nih.gov/pubmed/19487423
http://dx.doi.org/10.1128/JVI.00094-13
http://www.ncbi.nlm.nih.gov/pubmed/23487459
http://dx.doi.org/10.1038/nri3804
http://www.ncbi.nlm.nih.gov/pubmed/25656706
http://dx.doi.org/10.1111/imr.12504
http://www.ncbi.nlm.nih.gov/pubmed/28133804
http://dx.doi.org/10.1172/JCI63039
http://www.ncbi.nlm.nih.gov/pubmed/22922258


Viruses 2018, 10, 167 19 of 26

30. Yamamoto, T.; Lynch, R.M.; Gautam, R.; Matus-Nicodemos, R.; Schmidt, S.D.; Boswell, K.L.; Darko, S.;
Wong, P.; Sheng, Z.; Petrovas, C.; et al. Quality and quantity of TFH cells are critical for broad antibody
development in SHIVAD8 infection. Sci. Transl. Med. 2015, 7, 298ra120. [CrossRef] [PubMed]

31. Tomaras, G.D.; Yates, N.L.; Liu, P.; Qin, L.; Fouda, G.G.; Chavez, L.L.; Decamp, A.C.; Parks, R.J.; Ashley, V.C.;
Lucas, J.T.; et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: Virion-binding
immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective
control of initial viremia. J. Virol. 2008, 82, 12449–12463. [CrossRef] [PubMed]

32. Liao, H.X.; Chen, X.; Munshaw, S.; Zhang, R.; Marshall, D.J.; Vandergrift, N.; Whitesides, J.F.; Lu, X.; Yu, J.S.;
Hwang, K.K.; et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and
highly mutated. J. Exp. Med. 2011, 208, 2237–2249. [CrossRef] [PubMed]

33. Trama, A.M.; Moody, M.A.; Alam, S.M.; Jaeger, F.H.; Lockwood, B.; Parks, R.; Lloyd, K.E.; Stolarchuk, C.;
Scearce, R.; Foulger, A.; et al. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that
share cross-reactivity with commensal bacteria. Cell Host Microbe 2014, 16, 215–226. [CrossRef] [PubMed]

34. Yates, N.L.; Stacey, A.R.; Nolen, T.L.; Vandergrift, N.A.; Moody, M.A.; Montefiori, D.C.; Weinhold, K.J.;
Blattner, W.A.; Borrow, P.; Shattock, R.; et al. HIV-1 gp41 envelope IgA is frequently elicited after transmission
but has an initial short response half-life. Mucosal Immunol. 2013, 6, 692–703. [CrossRef] [PubMed]

35. Kulkarni, V.; Ruprecht, R.M. Mucosal IgA Responses: Damaged in Established HIV Infection-Yet, Effective
Weapon against HIV Transmission. Front. Immunol. 2017, 8, 1581. [CrossRef] [PubMed]

36. Wei, X.; Decker, J.M.; Wang, S.; Hui, H.; Kappes, J.C.; Wu, X.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Kilby, J.M.;
Saag, M.S.; et al. Antibody neutralization and escape by HIV-1. Nature 2003, 422, 307–312. [CrossRef]
[PubMed]

37. Richman, D.D.; Wrin, T.; Little, S.J.; Petropoulos, C.J. Rapid evolution of the neutralizing antibody response
to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 2003, 100, 4144–4149. [CrossRef] [PubMed]

38. Liao, H.X.; Lynch, R.; Zhou, T.; Gao, F.; Alam, S.M.; Boyd, S.D.; Fire, A.Z.; Roskin, K.M.; Schramm, C.A.;
Zhang, Z.; et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013, 496,
469–476. [CrossRef] [PubMed]

39. Tomaras, G.D.; Binley, J.M.; Gray, E.S.; Crooks, E.T.; Osawa, K.; Moore, P.L.; Tumba, N.; Tong, T.; Shen, X.;
Yates, N.L.; et al. Polyclonal B cell responses to conserved neutralization epitopes in a subset of HIV-1-infected
individuals. J. Virol. 2011, 85, 11502–11519. [CrossRef] [PubMed]

40. Walker, L.M.; Huber, M.; Doores, K.J.; Falkowska, E.; Pejchal, R.; Julien, J.P.; Wang, S.K.; Ramos, A.;
Chan-Hui, P.Y.; Moyle, M.; et al. Broad neutralization coverage of HIV by multiple highly potent antibodies.
Nature 2011, 477, 466–470. [CrossRef] [PubMed]

41. Doria-Rose, N.A.; Klein, R.M.; Daniels, M.G.; O’Dell, S.; Nason, M.; Lapedes, A.; Bhattacharya, T.;
Migueles, S.A.; Wyatt, R.T.; Korber, B.T.; et al. Breadth of human immunodeficiency virus-specific
neutralizing activity in sera: Clustering analysis and association with clinical variables. J. Virol. 2010,
84, 1631–1636. [CrossRef] [PubMed]

42. Bonsignori, M.; Montefiori, D.C.; Wu, X.; Chen, X.; Hwang, K.K.; Tsao, C.Y.; Kozink, D.M.; Parks, R.J.;
Tomaras, G.D.; Crump, J.A.; et al. Two distinct broadly neutralizing antibody specificities of different clonal
lineages in a single HIV-1-infected donor: Implications for vaccine design. J. Virol. 2012, 86, 4688–4692.
[CrossRef] [PubMed]

43. Walker, L.M.; Simek, M.D.; Priddy, F.; Gach, J.S.; Wagner, D.; Zwick, M.B.; Phogat, S.K.; Poignard, P.;
Burton, D.R. A limited number of antibody specificities mediate broad and potent serum neutralization in
selected HIV-1 infected individuals. PLoS Pathog. 2010, 6, e1001028. [CrossRef] [PubMed]

44. Baba, T.W.; Liska, V.; Hofmann-Lehmann, R.; Vlasak, J.; Xu, W.; Ayehunie, S.; Cavacini, L.A.; Posner, M.R.;
Katinger, H.; Stiegler, G.; et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect
against mucosal simian-human immunodeficiency virus infection. Nat. Med. 2000, 6, 200–206. [CrossRef]
[PubMed]

45. Hessell, A.J.; Rakasz, E.G.; Poignard, P.; Hangartner, L.; Landucci, G.; Forthal, D.N.; Koff, W.C.; Watkins, D.I.;
Burton, D.R. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal
SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 2009, 5, e1000433. [CrossRef] [PubMed]

46. Klein, K.; Veazey, R.S.; Warrier, R.; Hraber, P.; Doyle-Meyers, L.A.; Buffa, V.; Liao, H.X.; Haynes, B.F.;
Shaw, G.M.; Shattock, R.J. Neutralizing IgG at the portal of infection mediates protection against vaginal
simian/human immunodeficiency virus challenge. J. Virol. 2013, 87, 11604–11616. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/scitranslmed.aab3964
http://www.ncbi.nlm.nih.gov/pubmed/26223303
http://dx.doi.org/10.1128/JVI.01708-08
http://www.ncbi.nlm.nih.gov/pubmed/18842730
http://dx.doi.org/10.1084/jem.20110363
http://www.ncbi.nlm.nih.gov/pubmed/21987658
http://dx.doi.org/10.1016/j.chom.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25121750
http://dx.doi.org/10.1038/mi.2012.107
http://www.ncbi.nlm.nih.gov/pubmed/23299618
http://dx.doi.org/10.3389/fimmu.2017.01581
http://www.ncbi.nlm.nih.gov/pubmed/29176985
http://dx.doi.org/10.1038/nature01470
http://www.ncbi.nlm.nih.gov/pubmed/12646921
http://dx.doi.org/10.1073/pnas.0630530100
http://www.ncbi.nlm.nih.gov/pubmed/12644702
http://dx.doi.org/10.1038/nature12053
http://www.ncbi.nlm.nih.gov/pubmed/23552890
http://dx.doi.org/10.1128/JVI.05363-11
http://www.ncbi.nlm.nih.gov/pubmed/21849452
http://dx.doi.org/10.1038/nature10373
http://www.ncbi.nlm.nih.gov/pubmed/21849977
http://dx.doi.org/10.1128/JVI.01482-09
http://www.ncbi.nlm.nih.gov/pubmed/19923174
http://dx.doi.org/10.1128/JVI.07163-11
http://www.ncbi.nlm.nih.gov/pubmed/22301150
http://dx.doi.org/10.1371/journal.ppat.1001028
http://www.ncbi.nlm.nih.gov/pubmed/20700449
http://dx.doi.org/10.1038/72309
http://www.ncbi.nlm.nih.gov/pubmed/10655110
http://dx.doi.org/10.1371/journal.ppat.1000433
http://www.ncbi.nlm.nih.gov/pubmed/19436712
http://dx.doi.org/10.1128/JVI.01361-13
http://www.ncbi.nlm.nih.gov/pubmed/23966410


Viruses 2018, 10, 167 20 of 26

47. Mascola, J.R.; Lewis, M.G.; Stiegler, G.; Harris, D.; VanCott, T.C.; Hayes, D.; Louder, M.K.; Brown, C.R.;
Sapan, C.V.; Frankel, S.S.; et al. Protection of Macaques against pathogenic simian/human immunodeficiency
virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 1999, 73, 4009–4018. [PubMed]

48. Parren, P.W.; Marx, P.A.; Hessell, A.J.; Luckay, A.; Harouse, J.; Cheng-Mayer, C.; Moore, J.P.;
Burton, D.R. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human
immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 2001, 75, 8340–8347.
[CrossRef] [PubMed]

49. Xu, W.; Hofmann-Lehmann, R.; McClure, H.M.; Ruprecht, R.M. Passive immunization with human
neutralizing monoclonal antibodies: Correlates of protective immunity against HIV. Vaccine 2002, 20,
1956–1960. [CrossRef]

50. Yang, G.; Holl, T.M.; Liu, Y.; Li, Y.; Lu, X.; Nicely, N.I.; Kepler, T.B.; Alam, S.M.; Liao, H.X.; Cain, D.W.;
et al. Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies.
J. Exp. Med. 2013, 210, 241–256. [CrossRef] [PubMed]

51. Liu, M.; Yang, G.; Wiehe, K.; Nicely, N.I.; Vandergrift, N.A.; Rountree, W.; Bonsignori, M.; Alam, S.M.; Gao, J.;
Haynes, B.F.; et al. Polyreactivity and autoreactivity among HIV-1 antibodies. J. Virol. 2015, 89, 784–798.
[CrossRef] [PubMed]

52. Bonsignori, M.; Wiehe, K.; Grimm, S.K.; Lynch, R.; Yang, G.; Kozink, D.M.; Perrin, F.; Cooper, A.J.;
Hwang, K.K.; Chen, X.; et al. An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes
HIV-1. J. Clin. Investig. 2014, 124, 1835–1843. [CrossRef] [PubMed]

53. Haynes, B.F.; Fleming, J.; St Clair, E.W.; Katinger, H.; Stiegler, G.; Kunert, R.; Robinson, J.; Scearce, R.M.;
Plonk, K.; Staats, H.F.; et al. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1
antibodies. Science 2005, 308, 1906–1908. [CrossRef] [PubMed]

54. Meffre, E.; Milili, M.; Blanco-Betancourt, C.; Antunes, H.; Nussenzweig, M.C.; Schiff, C. Immunoglobulin
heavy chain expression shapes the B cell receptor repertoire in human B cell development. J. Clin. Investig.
2001, 108, 879–886. [CrossRef] [PubMed]

55. Meffre, E.; Wardemann, H. B-cell tolerance checkpoints in health and autoimmunity. Curr. Opin. Immunol.
2008, 20, 632–638. [CrossRef] [PubMed]

56. Wu, X.; Zhang, Z.; Schramm, C.A.; Joyce, M.G.; Kwon, Y.D.; Zhou, T.; Sheng, Z.; Zhang, B.; O’Dell, S.;
McKee, K.; et al. Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1
Infection. Cell 2015, 161, 470–485. [CrossRef] [PubMed]

57. Berman, P.W.; Gregory, T.J.; Riddle, L.; Nakamura, G.R.; Champe, M.A.; Porter, J.P.; Wurm, F.M.;
Hershberg, R.D.; Cobb, E.K.; Eichberg, J.W. Protection of chimpanzees from infection by HIV-1 after
vaccination with recombinant glycoprotein gp120 but not gp160. Nature 1990, 345, 622–625. [CrossRef]
[PubMed]

58. El-Amad, Z.; Murthy, K.K.; Higgins, K.; Cobb, E.K.; Haigwood, N.L.; Levy, J.A.; Steimer, K.S. Resistance of
chimpanzees immunized with recombinant gp120SF2 to challenge by HIV-1SF2. AIDS 1995, 9, 1313–1322.
[CrossRef] [PubMed]

59. Berman, P.W.; Murthy, K.K.; Wrin, T.; Vennari, J.C.; Cobb, E.K.; Eastman, D.J.; Champe, M.; Nakamura, G.R.;
Davison, D.; Powell, M.F.; et al. Protection of MN-rgp120-immunized chimpanzees from heterologous
infection with a primary isolate of human immunodeficiency virus type 1. J. Infect. Dis. 1996, 173, 52–59.
[CrossRef] [PubMed]

60. Belshe, R.B.; Clements, M.L.; Dolin, R.; Graham, B.S.; McElrath, J.; Gorse, G.J.; Schwartz, D.; Keefer, M.C.;
Wright, P.; Corey, L.; et al. Safety and immunogenicity of a fully glycosylated recombinant gp160 human
immunodeficiency virus type 1 vaccine in subjects at low risk of infection. National Institute of Allergy and
Infectious Diseases AIDS Vaccine Evaluation Group Network. J. Infect. Dis. 1993, 168, 1387–1395. [CrossRef]
[PubMed]

61. Keefer, M.C.; Graham, B.S.; Belshe, R.B.; Schwartz, D.; Corey, L.; Bolognesi, D.P.; Stablein, D.M.;
Montefiori, D.C.; McElrath, M.J.; Clements, M.L.; et al. Studies of high doses of a human immunodeficiency
virus type 1 recombinant glycoprotein 160 candidate vaccine in HIV type 1-seronegative humans. The AIDS
Vaccine Clinical Trials Network. AIDS Res. Hum. Retrovir. 1994, 10, 1713–1723. [CrossRef] [PubMed]

62. Gorse, G.J.; Rogers, J.H.; Perry, J.E.; Newman, F.K.; Frey, S.E.; Patel, G.B.; Belshe, R.B. HIV-1 recombinant
gp160 vaccine induced antibodies in serum and saliva. The NIAID AIDS Vaccine Clinical Trials Network.
Vaccine 1995, 13, 209–214. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/10196297
http://dx.doi.org/10.1128/JVI.75.17.8340-8347.2001
http://www.ncbi.nlm.nih.gov/pubmed/11483779
http://dx.doi.org/10.1016/S0264-410X(02)00077-4
http://dx.doi.org/10.1084/jem.20121977
http://www.ncbi.nlm.nih.gov/pubmed/23359068
http://dx.doi.org/10.1128/JVI.02378-14
http://www.ncbi.nlm.nih.gov/pubmed/25355869
http://dx.doi.org/10.1172/JCI73441
http://www.ncbi.nlm.nih.gov/pubmed/24614107
http://dx.doi.org/10.1126/science.1111781
http://www.ncbi.nlm.nih.gov/pubmed/15860590
http://dx.doi.org/10.1172/JCI13051
http://www.ncbi.nlm.nih.gov/pubmed/11560957
http://dx.doi.org/10.1016/j.coi.2008.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18848883
http://dx.doi.org/10.1016/j.cell.2015.03.004
http://www.ncbi.nlm.nih.gov/pubmed/25865483
http://dx.doi.org/10.1038/345622a0
http://www.ncbi.nlm.nih.gov/pubmed/2190095
http://dx.doi.org/10.1097/00002030-199512000-00003
http://www.ncbi.nlm.nih.gov/pubmed/8605050
http://dx.doi.org/10.1093/infdis/173.1.52
http://www.ncbi.nlm.nih.gov/pubmed/8537682
http://dx.doi.org/10.1093/infdis/168.6.1387
http://www.ncbi.nlm.nih.gov/pubmed/8245523
http://dx.doi.org/10.1089/aid.1994.10.1713
http://www.ncbi.nlm.nih.gov/pubmed/7888231
http://dx.doi.org/10.1016/0264-410X(95)93138-Y


Viruses 2018, 10, 167 21 of 26

63. Migasena, S.; Suntharasamai, P.; Pitisuttithum, P.; Kitayaporn, D.; Wasi, C.; Huang, W.; Vanichseni, S.;
Koompong, C.; Kaewkungwal, J.; Raktham, S.; et al. AIDSVAX (MN) in Bangkok injecting drug users:
A report on safety and immunogenicity, including macrophage-tropic virus neutralization. AIDS Res.
Hum. Retrovir. 2000, 16, 655–663. [CrossRef] [PubMed]

64. Pitisuttithum, P.; Nitayaphan, S.; Thongcharoen, P.; Khamboonruang, C.; Kim, J.; de Souza, M.;
Chuenchitra, T.; Garner, R.P.; Thapinta, D.; Polonis, V.; et al. Safety and immunogenicity of combinations of
recombinant subtype E and B human immunodeficiency virus type 1 envelope glycoprotein 120 vaccines in
healthy Thai adults. J. Infect. Dis. 2003, 188, 219–227. [CrossRef] [PubMed]

65. Mooij, P.; van der Kolk, M.; Bogers, W.M.; ten Haaft, P.J.; Van Der Meide, P.; Almond, N.; Stott, J.;
Deschamps, M.; Labbe, D.; Momin, P.; et al. A clinically relevant HIV-1 subunit vaccine protects rhesus
macaques from in vivo passaged simian-human immunodeficiency virus infection. AIDS 1998, 12, F15–F22.
[CrossRef] [PubMed]

66. Stott, E.J.; Almond, N.; Kent, K.; Walker, B.; Hull, R.; Rose, J.; Silvera, P.; Sangster, R.; Corcoran, T.; Lines, J.;
et al. Evaluation of a candidate human immunodeficiency virus type 1 (HIV-1) vaccine in macaques: Effect
of vaccination with HIV-1 gp120 on subsequent challenge with heterologous simian immunodeficiency
virus-HIV-1 chimeric virus. J. Gen. Virol. 1998, 79 Pt 3, 423–432. [CrossRef] [PubMed]

67. Pitisuttithum, P.; Gilbert, P.; Gurwith, M.; Heyward, W.; Martin, M.; van Griensven, F.; Hu, D.; Tappero, J.W.;
Choopanya, K.; Bangkok Vaccine Evaluation, G. Randomized, double-blind, placebo-controlled efficacy trial
of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand.
J. Infect. Dis. 2006, 194, 1661–1671. [CrossRef] [PubMed]

68. Flynn, N.M.; Forthal, D.N.; Harro, C.D.; Judson, F.N.; Mayer, K.H.; Para, M.F.; rgp120 HIV Vaccine Study
Group. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection.
J. Infect. Dis. 2005, 191, 654–665. [PubMed]

69. Emu, B.; Sinclair, E.; Hatano, H.; Ferre, A.; Shacklett, B.; Martin, J.N.; McCune, J.M.; Deeks, S.G. HLA class
I-restricted T-cell responses may contribute to the control of human immunodeficiency virus infection,
but such responses are not always necessary for long-term virus control. J. Virol. 2008, 82, 5398–5407.
[CrossRef] [PubMed]

70. Altfeld, M.; Kalife, E.T.; Qi, Y.; Streeck, H.; Lichterfeld, M.; Johnston, M.N.; Burgett, N.; Swartz, M.E.; Yang, A.;
Alter, G.; et al. HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial
CD8(+) T Cell Response against HIV-1. PLoS Med. 2006, 3, e403. [CrossRef] [PubMed]

71. Harrer, T.; Harrer, E.; Kalams, S.A.; Elbeik, T.; Staprans, S.I.; Feinberg, M.B.; Cao, Y.; Ho, D.D.; Yilma, T.;
Caliendo, A.M.; et al. Strong cytotoxic T cell and weak neutralizing antibody responses in a subset of persons
with stable nonprogressing HIV type 1 infection. AIDS Res. Hum. Retrovir. 1996, 12, 585–592. [CrossRef]
[PubMed]

72. Jin, X.; Bauer, D.E.; Tuttleton, S.E.; Lewin, S.; Gettie, A.; Blanchard, J.; Irwin, C.E.; Safrit, J.T.; Mittler, J.;
Weinberger, L.; et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian
immunodeficiency virus-infected macaques. J. Exp. Med. 1999, 189, 991–998. [CrossRef] [PubMed]

73. Schmitz, J.E.; Kuroda, M.J.; Santra, S.; Sasseville, V.G.; Simon, M.A.; Lifton, M.A.; Racz, P.; Tenner-Racz, K.;
Dalesandro, M.; Scallon, B.J.; et al. Control of viremia in simian immunodeficiency virus infection by CD8+

lymphocytes. Science 1999, 283, 857–860. [CrossRef] [PubMed]
74. Shiver, J.W.; Fu, T.M.; Chen, L.; Casimiro, D.R.; Davies, M.E.; Evans, R.K.; Zhang, Z.Q.; Simon, A.J.;

Trigona, W.L.; Dubey, S.A.; et al. Replication-incompetent adenoviral vaccine vector elicits effective
anti-immunodeficiency-virus immunity. Nature 2002, 415, 331–335. [CrossRef] [PubMed]

75. Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.;
Marmor, M.; Del Rio, C.; et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step
Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008, 372, 1881–1893.
[CrossRef]

76. Gray, G.E.; Allen, M.; Moodie, Z.; Churchyard, G.; Bekker, L.G.; Nchabeleng, M.; Mlisana, K.; Metch, B.;
de Bruyn, G.; Latka, M.H.; et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based
HIV-1 vaccine in South Africa: A double-blind, randomised, placebo-controlled test-of-concept phase 2b
study. Lancet Infect. Dis. 2011, 11, 507–515. [CrossRef]

http://dx.doi.org/10.1089/088922200308882
http://www.ncbi.nlm.nih.gov/pubmed/10791876
http://dx.doi.org/10.1086/376506
http://www.ncbi.nlm.nih.gov/pubmed/12854076
http://dx.doi.org/10.1097/00002030-199805000-00002
http://www.ncbi.nlm.nih.gov/pubmed/9543435
http://dx.doi.org/10.1099/0022-1317-79-3-423
http://www.ncbi.nlm.nih.gov/pubmed/9519819
http://dx.doi.org/10.1086/508748
http://www.ncbi.nlm.nih.gov/pubmed/17109337
http://www.ncbi.nlm.nih.gov/pubmed/15688278
http://dx.doi.org/10.1128/JVI.02176-07
http://www.ncbi.nlm.nih.gov/pubmed/18353945
http://dx.doi.org/10.1371/journal.pmed.0030403
http://www.ncbi.nlm.nih.gov/pubmed/17076553
http://dx.doi.org/10.1089/aid.1996.12.585
http://www.ncbi.nlm.nih.gov/pubmed/8743084
http://dx.doi.org/10.1084/jem.189.6.991
http://www.ncbi.nlm.nih.gov/pubmed/10075982
http://dx.doi.org/10.1126/science.283.5403.857
http://www.ncbi.nlm.nih.gov/pubmed/9933172
http://dx.doi.org/10.1038/415331a
http://www.ncbi.nlm.nih.gov/pubmed/11797011
http://dx.doi.org/10.1016/S0140-6736(08)61591-3
http://dx.doi.org/10.1016/S1473-3099(11)70098-6


Viruses 2018, 10, 167 22 of 26

77. Rolland, M.; Tovanabutra, S.; deCamp, A.C.; Frahm, N.; Gilbert, P.B.; Sanders-Buell, E.; Heath, L.;
Magaret, C.A.; Bose, M.; Bradfield, A.; et al. Genetic impact of vaccination on breakthrough HIV-1 sequences
from the STEP trial. Nat. Med. 2011, 17, 366–371. [CrossRef] [PubMed]

78. Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.;
Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1
infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [CrossRef] [PubMed]

79. Robb, M.L.; Rerks-Ngarm, S.; Nitayaphan, S.; Pitisuttithum, P.; Kaewkungwal, J.; Kunasol, P.;
Khamboonruang, C.; Thongcharoen, P.; Morgan, P.; Benenson, M.; et al. Risk behaviour and time as
covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: A post-hoc
analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect. Dis. 2012, 12, 531–537. [CrossRef]

80. Gartland, A.J.; Li, S.; McNevin, J.; Tomaras, G.D.; Gottardo, R.; Janes, H.; Fong, Y.; Morris, D.; Geraghty, D.E.;
Kijak, G.H.; et al. Analysis of HLA A*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial.
J. Virol. 2014, 88, 8242–8255. [CrossRef] [PubMed]

81. Liao, H.X.; Bonsignori, M.; Alam, S.M.; McLellan, J.S.; Tomaras, G.D.; Moody, M.A.; Kozink, D.M.;
Hwang, K.K.; Chen, X.; Tsao, C.Y.; et al. Vaccine induction of antibodies against a structurally heterogeneous
site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 2013, 38, 176–186.
[CrossRef] [PubMed]

82. Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.;
Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive
vaccine. N. Engl. J. Med. 2013, 369, 2083–2092. [CrossRef] [PubMed]

83. DeCamp, A.C.; Rolland, M.; Edlefsen, P.T.; Sanders-Buell, E.; Hall, B.; Magaret, C.A.; Fiore-Gartland, A.J.;
Juraska, M.; Carpp, L.N.; Karuna, S.T.; et al. Sieve analysis of breakthrough HIV-1 sequences in HVTN
505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS ONE 2017, 12, e0185959.
[CrossRef] [PubMed]

84. Baba, T.W.; Liska, V.; Khimani, A.H.; Ray, N.B.; Dailey, P.J.; Penninck, D.; Bronson, R.; Greene, M.F.;
McClure, H.M.; Martin, L.N.; et al. Live attenuated, multiply deleted simian immunodeficiency virus causes
AIDS in infant and adult macaques. Nat. Med. 1999, 5, 194–203. [CrossRef] [PubMed]

85. Daniel, M.D.; Kirchhoff, F.; Czajak, S.C.; Sehgal, P.K.; Desrosiers, R.C. Protective effects of a live attenuated
SIV vaccine with a deletion in the nef gene. Science 1992, 258, 1938–1941. [CrossRef] [PubMed]

86. Learmont, J.; Tindall, B.; Evans, L.; Cunningham, A.; Cunningham, P.; Wells, J.; Penny, R.; Kaldor, J.;
Cooper, D.A. Long-term symptomless HIV-1 infection in recipients of blood products from a single donor.
Lancet 1992, 340, 863–867. [CrossRef]

87. Mikell, I.; Sather, D.N.; Kalams, S.A.; Altfeld, M.; Alter, G.; Stamatatos, L. Characteristics of the earliest
cross-neutralizing antibody response to HIV-1. PLoS Pathog. 2011, 7, e1001251. [CrossRef]

88. Van Gils, M.J.; Sanders, R.W. Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology
2013, 435, 46–56. [CrossRef] [PubMed]

89. Poignard, P.; Moulard, M.; Golez, E.; Vivona, V.; Franti, M.; Venturini, S.; Wang, M.; Parren, P.W.; Burton, D.R.
Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles
as probed by the binding of neutralizing and nonneutralizing antibodies. J. Virol. 2003, 77, 353–365.
[CrossRef] [PubMed]

90. McCoy, L.E.; van Gils, M.J.; Ozorowski, G.; Messmer, T.; Briney, B.; Voss, J.E.; Kulp, D.W.; Macauley, M.S.;
Sok, D.; Pauthner, M.; et al. Holes in the Glycan Shield of the Native HIV Envelope Are a Target of
Trimer-Elicited Neutralizing Antibodies. Cell Rep. 2016, 16, 2327–2338. [CrossRef] [PubMed]

91. Kwon, Y.D.; Pancera, M.; Acharya, P.; Georgiev, I.S.; Crooks, E.T.; Gorman, J.; Joyce, M.G.; Guttman, M.;
Ma, X.; Narpala, S.; et al. Crystal structure, conformational fixation and entry-related interactions of mature
ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 2015, 22, 522–531. [CrossRef] [PubMed]

92. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]

93. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF
Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/nm.2316
http://www.ncbi.nlm.nih.gov/pubmed/21358627
http://dx.doi.org/10.1056/NEJMoa0908492
http://www.ncbi.nlm.nih.gov/pubmed/19843557
http://dx.doi.org/10.1016/S1473-3099(12)70088-9
http://dx.doi.org/10.1128/JVI.01164-14
http://www.ncbi.nlm.nih.gov/pubmed/24829343
http://dx.doi.org/10.1016/j.immuni.2012.11.011
http://www.ncbi.nlm.nih.gov/pubmed/23313589
http://dx.doi.org/10.1056/NEJMoa1310566
http://www.ncbi.nlm.nih.gov/pubmed/24099601
http://dx.doi.org/10.1371/journal.pone.0185959
http://www.ncbi.nlm.nih.gov/pubmed/29149197
http://dx.doi.org/10.1038/5557
http://www.ncbi.nlm.nih.gov/pubmed/9930868
http://dx.doi.org/10.1126/science.1470917
http://www.ncbi.nlm.nih.gov/pubmed/1470917
http://dx.doi.org/10.1016/0140-6736(92)93281-Q
http://dx.doi.org/10.1371/annotation/8b3b24b5-d4ed-483a-b233-0a88513ad499
http://dx.doi.org/10.1016/j.virol.2012.10.004
http://www.ncbi.nlm.nih.gov/pubmed/23217615
http://dx.doi.org/10.1128/JVI.77.1.353-365.2003
http://www.ncbi.nlm.nih.gov/pubmed/12477840
http://dx.doi.org/10.1016/j.celrep.2016.07.074
http://www.ncbi.nlm.nih.gov/pubmed/27545891
http://dx.doi.org/10.1038/nsmb.3051
http://www.ncbi.nlm.nih.gov/pubmed/26098315
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://dx.doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254


Viruses 2018, 10, 167 23 of 26

94. Xiao, X.; Chen, W.; Feng, Y.; Zhu, Z.; Prabakaran, P.; Wang, Y.; Zhang, M.Y.; Longo, N.S.; Dimitrov, D.S.
Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope
glycoproteins: Implications for evasion of immune responses and design of vaccine immunogens.
Biochem. Biophys. Res. Commun. 2009, 390, 404–409. [CrossRef] [PubMed]

95. Doria-Rose, N.A.; Schramm, C.A.; Gorman, J.; Moore, P.L.; Bhiman, J.N.; DeKosky, B.J.; Ernandes, M.J.;
Georgiev, I.S.; Kim, H.J.; Pancera, M.; et al. Developmental pathway for potent V1V2-directed
HIV-neutralizing antibodies. Nature 2014, 509, 55–62. [CrossRef] [PubMed]

96. Scheid, J.F.; Mouquet, H.; Feldhahn, N.; Seaman, M.S.; Velinzon, K.; Pietzsch, J.; Ott, R.G.; Anthony, R.M.;
Zebroski, H.; Hurley, A.; et al. Broad diversity of neutralizing antibodies isolated from memory B cells in
HIV-infected individuals. Nature 2009, 458, 636–640. [CrossRef] [PubMed]

97. Kepler, T.B.; Liao, H.X.; Alam, S.M.; Bhaskarabhatla, R.; Zhang, R.; Yandava, C.; Stewart, S.; Anasti, K.;
Kelsoe, G.; Parks, R.; et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1
broadly reactive neutralizing antibodies. Cell Host Microbe 2014, 16, 304–313. [CrossRef] [PubMed]

98. Escolano, A.; Steichen, J.M.; Dosenovic, P.; Kulp, D.W.; Golijanin, J.; Sok, D.; Freund, N.T.; Gitlin, A.D.;
Oliveira, T.; Araki, T.; et al. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in
Ig Knockin Mice. Cell 2016, 166, 1445–1458 e1412. [CrossRef] [PubMed]

99. Steichen, J.M.; Kulp, D.W.; Tokatlian, T.; Escolano, A.; Dosenovic, P.; Stanfield, R.L.; McCoy, L.E.;
Ozorowski, G.; Hu, X.; Kalyuzhniy, O.; et al. HIV Vaccine Design to Target Germline Precursors of
Glycan-Dependent Broadly Neutralizing Antibodies. Immunity 2016, 45, 483–496. [CrossRef] [PubMed]

100. Landais, E.; Murrell, B.; Briney, B.; Murrell, S.; Rantalainen, K.; Berndsen, Z.T.; Ramos, A.; Wickramasinghe, L.;
Smith, M.L.; Eren, K.; et al. HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the
Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity 2017, 47, 990–1003
e1009. [CrossRef] [PubMed]

101. Abbott, R.K.; Lee, J.H.; Menis, S.; Skog, P.; Rossi, M.; Ota, T.; Kulp, D.W.; Bhullar, D.; Kalyuzhniy, O.;
Havenar-Daughton, C.; et al. Precursor Frequency and Affinity Determine B Cell Competitive Fitness in
Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity 2018, 48, 133–146
e136. [CrossRef] [PubMed]

102. Derdeyn, C.A.; Decker, J.M.; Bibollet-Ruche, F.; Mokili, J.L.; Muldoon, M.; Denham, S.A.; Heil, M.L.; Kasolo, F.;
Musonda, R.; Hahn, B.H.; et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual
transmission. Science 2004, 303, 2019–2022. [CrossRef] [PubMed]

103. Chohan, B.; Lang, D.; Sagar, M.; Korber, B.; Lavreys, L.; Richardson, B.; Overbaugh, J. Selection for human
immunodeficiency virus type 1 envelope glycosylation variants with shorter V1-V2 loop sequences occurs
during transmission of certain genetic subtypes and may impact viral RNA levels. J. Virol. 2005, 79,
6528–6531. [CrossRef] [PubMed]

104. Li, B.; Decker, J.M.; Johnson, R.W.; Bibollet-Ruche, F.; Wei, X.; Mulenga, J.; Allen, S.; Hunter, E.; Hahn, B.H.;
Shaw, G.M.; et al. Evidence for potent autologous neutralizing antibody titers and compact envelopes
in early infection with subtype C human immunodeficiency virus type 1. J. Virol. 2006, 80, 5211–5218.
[CrossRef] [PubMed]

105. Klasse, P.J.; Depetris, R.S.; Pejchal, R.; Julien, J.P.; Khayat, R.; Lee, J.H.; Marozsan, A.J.; Cupo, A.; Cocco, N.;
Korzun, J.; et al. Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope
glycoprotein. J. Virol. 2013, 87, 9873–9885. [CrossRef] [PubMed]

106. Cheng, W. The Density Code for the Development of a Vaccine? J. Pharm. Sci. 2016, 105, 3223–3232.
[CrossRef] [PubMed]

107. Yang, X.; Kurteva, S.; Ren, X.; Lee, S.; Sodroski, J. Stoichiometry of envelope glycoprotein trimers in the entry
of human immunodeficiency virus type 1. J. Virol. 2005, 79, 12132–12147. [CrossRef] [PubMed]

108. Klasse, P.J. Modeling how many envelope glycoprotein trimers per virion participate in human
immunodeficiency virus infectivity and its neutralization by antibody. Virology 2007, 369, 245–262. [CrossRef]
[PubMed]

109. Magnus, C.; Rusert, P.; Bonhoeffer, S.; Trkola, A.; Regoes, R.R. Estimating the stoichiometry of human
immunodeficiency virus entry. J. Virol. 2009, 83, 1523–1531. [CrossRef] [PubMed]

110. Brandenberg, O.F.; Magnus, C.; Rusert, P.; Regoes, R.R.; Trkola, A. Different infectivity of HIV-1 strains
is linked to number of envelope trimers required for entry. PLoS Pathog. 2015, 11, e1004595. [CrossRef]
[PubMed]

http://dx.doi.org/10.1016/j.bbrc.2009.09.029
http://www.ncbi.nlm.nih.gov/pubmed/19748484
http://dx.doi.org/10.1038/nature13036
http://www.ncbi.nlm.nih.gov/pubmed/24590074
http://dx.doi.org/10.1038/nature07930
http://www.ncbi.nlm.nih.gov/pubmed/19287373
http://dx.doi.org/10.1016/j.chom.2014.08.006
http://www.ncbi.nlm.nih.gov/pubmed/25211073
http://dx.doi.org/10.1016/j.cell.2016.07.030
http://www.ncbi.nlm.nih.gov/pubmed/27610569
http://dx.doi.org/10.1016/j.immuni.2016.08.016
http://www.ncbi.nlm.nih.gov/pubmed/27617678
http://dx.doi.org/10.1016/j.immuni.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29166592
http://dx.doi.org/10.1016/j.immuni.2017.11.023
http://www.ncbi.nlm.nih.gov/pubmed/29287996
http://dx.doi.org/10.1126/science.1093137
http://www.ncbi.nlm.nih.gov/pubmed/15044802
http://dx.doi.org/10.1128/JVI.79.10.6528-6531.2005
http://www.ncbi.nlm.nih.gov/pubmed/15858037
http://dx.doi.org/10.1128/JVI.00201-06
http://www.ncbi.nlm.nih.gov/pubmed/16699001
http://dx.doi.org/10.1128/JVI.01226-13
http://www.ncbi.nlm.nih.gov/pubmed/23824824
http://dx.doi.org/10.1016/j.xphs.2016.07.020
http://www.ncbi.nlm.nih.gov/pubmed/27649885
http://dx.doi.org/10.1128/JVI.79.19.12132-12147.2005
http://www.ncbi.nlm.nih.gov/pubmed/16160141
http://dx.doi.org/10.1016/j.virol.2007.06.044
http://www.ncbi.nlm.nih.gov/pubmed/17825343
http://dx.doi.org/10.1128/JVI.01764-08
http://www.ncbi.nlm.nih.gov/pubmed/19019953
http://dx.doi.org/10.1371/journal.ppat.1004595
http://www.ncbi.nlm.nih.gov/pubmed/25569556


Viruses 2018, 10, 167 24 of 26

111. Gnanakaran, S.; Bhattacharya, T.; Daniels, M.; Keele, B.F.; Hraber, P.T.; Lapedes, A.S.; Shen, T.; Gaschen, B.;
Krishnamoorthy, M.; Li, H.; et al. Recurrent signature patterns in HIV-1 B clade envelope glycoproteins
associated with either early or chronic infections. PLoS Pathog. 2011, 7, e1002209. [CrossRef] [PubMed]

112. Li, Y.; Luo, L.; Thomas, D.Y.; Kang, C.Y. The HIV-1 Env protein signal sequence retards its cleavage and
down-regulates the glycoprotein folding. Virology 2000, 272, 417–428. [CrossRef] [PubMed]

113. Li, Y.; Bergeron, J.J.; Luo, L.; Ou, W.J.; Thomas, D.Y.; Kang, C.Y. Effects of inefficient cleavage of the signal
sequence of HIV-1 gp 120 on its association with calnexin, folding, and intracellular transport. Proc. Natl.
Acad. Sci. USA 1996, 93, 9606–9611. [CrossRef] [PubMed]

114. Asmal, M.; Hellmann, I.; Liu, W.; Keele, B.F.; Perelson, A.S.; Bhattacharya, T.; Gnanakaran, S.; Daniels, M.;
Haynes, B.F.; Korber, B.T.; et al. A signature in HIV-1 envelope leader peptide associated with transition from
acute to chronic infection impacts envelope processing and infectivity. PLoS ONE 2011, 6, e23673. [CrossRef]
[PubMed]

115. Parrish, N.F.; Gao, F.; Li, H.; Giorgi, E.E.; Barbian, H.J.; Parrish, E.H.; Zajic, L.; Iyer, S.S.; Decker, J.M.;
Kumar, A.; et al. Phenotypic properties of transmitted founder HIV-1. Proc. Natl. Acad. Sci. USA 2013, 110,
6626–6633. [CrossRef] [PubMed]

116. McCurley, N.P.; Domi, A.; Basu, R.; Saunders, K.O.; LaBranche, C.C.; Montefiori, D.C.; Haynes, B.F.;
Robinson, H.L. HIV transmitted/founder vaccines elicit autologous tier 2 neutralizing antibodies for the
CD4 binding site. PLoS ONE 2017, 12, e0177863. [CrossRef] [PubMed]

117. Bonsignori, M.; Kreider, E.F.; Fera, D.; Meyerhoff, R.R.; Bradley, T.; Wiehe, K.; Alam, S.M.; Aussedat, B.;
Walkowicz, W.E.; Hwang, K.K.; et al. Staged induction of HIV-1 glycan-dependent broadly neutralizing
antibodies. Sci. Transl. Med. 2017, 9, eaai7514. [CrossRef] [PubMed]

118. Sagar, M.; Wu, X.; Lee, S.; Overbaugh, J. Human immunodeficiency virus type 1 V1-V2 envelope loop
sequences expand and add glycosylation sites over the course of infection, and these modifications affect
antibody neutralization sensitivity. J. Virol. 2006, 80, 9586–9598. [CrossRef] [PubMed]

119. Bradley, T.; Fera, D.; Bhiman, J.; Eslamizar, L.; Lu, X.; Anasti, K.; Zhang, R.; Sutherland, L.L.; Scearce, R.M.;
Bowman, C.M.; et al. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing
Antibodies Targeting the Receptor-Binding Site. Cell Rep. 2016, 14, 43–54. [CrossRef] [PubMed]

120. Maxfield, L.F.; Abbink, P.; Stephenson, K.E.; Borducchi, E.N.; Kirilova, M.M.; Paulino, N.; Boyd, M.;
Shabram, P.; Ruan, Q.; Patel, M.; et al. Attenuation of Replication-Competent Adenovirus Serotype 26
Vaccines by Vectorization. Clin. Vaccine Immunol. 2015, 22, 1166–1175. [CrossRef] [PubMed]

121. Penaloza-MacMaster, P.; Provine, N.M.; Ra, J.; Borducchi, E.N.; McNally, A.; Simmons, N.L.; Iampietro, M.J.;
Barouch, D.H. Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced
anamnestic capacity compared to Ad5 vectors. J. Virol. 2013, 87, 1373–1384. [CrossRef] [PubMed]

122. Teigler, J.E.; Phogat, S.; Franchini, G.; Hirsch, V.M.; Michael, N.L.; Barouch, D.H. The canarypox virus vector
ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC
in rhesus monkeys. J. Virol. 2014, 88, 1809–1814. [CrossRef] [PubMed]

123. Alexander, J.; Mendy, J.; Vang, L.; Avanzini, J.B.; Garduno, F.; Manayani, D.J.; Ishioka, G.; Farness, P.;
Ping, L.H.; Swanstrom, R.; et al. Pre-clinical development of a recombinant, replication-competent
adenovirus serotype 4 vector vaccine expressing HIV-1 envelope 1086 clade C. PLoS ONE 2013, 8, e82380.
[CrossRef] [PubMed]

124. Alayo, Q.A.; Provine, N.M.; Penaloza-MacMaster, P. Novel Concepts for HIV Vaccine Vector Design. mSphere
2017, 2, e00415. [CrossRef] [PubMed]

125. Kim, J.H.; Excler, J.L.; Michael, N.L. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search
for correlates of protection. Annu. Rev. Med. 2015, 66, 423–437. [CrossRef] [PubMed]

126. Barouch, D.H.; Stephenson, K.E.; Borducchi, E.N.; Smith, K.; Stanley, K.; McNally, A.G.; Liu, J.; Abbink, P.;
Maxfield, L.F.; Seaman, M.S.; et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous
SHIV challenges in rhesus monkeys. Cell 2013, 155, 531–539. [CrossRef] [PubMed]

127. Experimental HIV Vaccine Regimen Is Well-Tolerated, Elicits Immune Responses. Available
online: https://www.niaid.nih.gov/news-events/experimental-hiv-vaccine-regimen-well-tolerated-elicits-
immune-responses (accessed on 10 January 2018).

http://dx.doi.org/10.1371/journal.ppat.1002209
http://www.ncbi.nlm.nih.gov/pubmed/21980282
http://dx.doi.org/10.1006/viro.2000.0357
http://www.ncbi.nlm.nih.gov/pubmed/10873786
http://dx.doi.org/10.1073/pnas.93.18.9606
http://www.ncbi.nlm.nih.gov/pubmed/8790377
http://dx.doi.org/10.1371/journal.pone.0023673
http://www.ncbi.nlm.nih.gov/pubmed/21876761
http://dx.doi.org/10.1073/pnas.1304288110
http://www.ncbi.nlm.nih.gov/pubmed/23542380
http://dx.doi.org/10.1371/journal.pone.0177863
http://www.ncbi.nlm.nih.gov/pubmed/29020058
http://dx.doi.org/10.1126/scitranslmed.aai7514
http://www.ncbi.nlm.nih.gov/pubmed/28298420
http://dx.doi.org/10.1128/JVI.00141-06
http://www.ncbi.nlm.nih.gov/pubmed/16973562
http://dx.doi.org/10.1016/j.celrep.2015.12.017
http://www.ncbi.nlm.nih.gov/pubmed/26725118
http://dx.doi.org/10.1128/CVI.00510-15
http://www.ncbi.nlm.nih.gov/pubmed/26376928
http://dx.doi.org/10.1128/JVI.02058-12
http://www.ncbi.nlm.nih.gov/pubmed/23152535
http://dx.doi.org/10.1128/JVI.02386-13
http://www.ncbi.nlm.nih.gov/pubmed/24257612
http://dx.doi.org/10.1371/journal.pone.0082380
http://www.ncbi.nlm.nih.gov/pubmed/24312658
http://dx.doi.org/10.1128/mSphere.00415-17
http://www.ncbi.nlm.nih.gov/pubmed/29242831
http://dx.doi.org/10.1146/annurev-med-052912-123749
http://www.ncbi.nlm.nih.gov/pubmed/25341006
http://dx.doi.org/10.1016/j.cell.2013.09.061
http://www.ncbi.nlm.nih.gov/pubmed/24243013
https://www.niaid.nih.gov/news-events/experimental-hiv-vaccine-regimen-well-tolerated-elicits-immune-responses
https://www.niaid.nih.gov/news-events/experimental-hiv-vaccine-regimen-well-tolerated-elicits-immune-responses


Viruses 2018, 10, 167 25 of 26

128. Safety, Tolerability, and Immunogenicity Study of Homologous Ad26 Mosaic Vector Vaccine Regimens or
Heterologous Ad26 Mosaic and MVA Mosaic Vector Vaccine Regimens With Glycoprotein 140 (gp140) for
Human Immunodeficiency Virus (HIV) Prevention. Available online: https://clinicaltrials.gov/ct2/show/
NCT02315703 (accessed on 10 January 2018).

129. Safety, Tolerability and Immunogenicity Study of Different Vaccine Regimens of Trivalent Ad26.Mos.HIV or
Tetravalent Ad26.Mos4.HIV Along With Clade C Glycoprotein (gp)140 in Healthy Human Immunodeficiency
Virus (HIV)-Uninfected Adults. Available online: https://clinicaltrials.gov/ct2/show/NCT02788045
(accessed on 10 January 2018).

130. HPX2003/HVTN118/IPCAVD012/ASCENT. Available online: https://www.avac.org/trial/
hpx2003hvtn118ipcavd012ascent (accessed on 10 January 2018).

131. Ackerman, M.E.; Barouch, D.H.; Alter, G. Systems serology for evaluation of HIV vaccine trials. Immunol. Rev.
2017, 275, 262–270. [CrossRef] [PubMed]

132. Tarca, A.L.; Carey, V.J.; Chen, X.W.; Romero, R.; Draghici, S. Machine learning and its applications to biology.
PLoS Comput. Biol. 2007, 3, e116. [CrossRef] [PubMed]

133. Nakaya, H.I.; Li, S.; Pulendran, B. Systems vaccinology: Learning to compute the behavior of vaccine
induced immunity. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 193–205. [CrossRef] [PubMed]

134. Arnold, K.B.; Chung, A.W. Prospects from systems serology research. Immunology 2018, 153, 279–289.
[CrossRef] [PubMed]

135. Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.;
Marzolf, B.; et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.
Nat. Immunol. 2009, 10, 116–125. [CrossRef] [PubMed]

136. Nakaya, H.I.; Wrammert, J.; Lee, E.K.; Racioppi, L.; Marie-Kunze, S.; Haining, W.N.; Means, A.R.; Kasturi, S.P.;
Khan, N.; Li, G.M.; et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol.
2011, 12, 786–795. [CrossRef] [PubMed]

137. Vahey, M.T.; Wang, Z.; Kester, K.E.; Cummings, J.; Heppner, D.G., Jr.; Nau, M.E.; Ofori-Anyinam, O.;
Cohen, J.; Coche, T.; Ballou, W.R.; et al. Expression of genes associated with immunoproteasome processing
of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria
vaccine. J. Infect. Dis. 2010, 201, 580–589. [CrossRef] [PubMed]

138. Kazmin, D.; Nakaya, H.I.; Lee, E.K.; Johnson, M.J.; van der Most, R.; van den Berg, R.A.; Ballou, W.R.;
Jongert, E.; Wille-Reece, U.; Ockenhouse, C.; et al. Systems analysis of protective immune responses to RTS,S
malaria vaccination in humans. Proc. Natl. Acad. Sci. USA 2017, 114, 2425–2430. [CrossRef] [PubMed]

139. Churchyard, G.J.; Morgan, C.; Adams, E.; Hural, J.; Graham, B.S.; Moodie, Z.; Grove, D.; Gray, G.; Bekker, L.G.;
McElrath, M.J.; et al. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a
multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PLoS ONE 2011, 6, e21225. [CrossRef]
[PubMed]

140. Chung, A.W.; Kumar, M.P.; Arnold, K.B.; Yu, W.H.; Schoen, M.K.; Dunphy, L.J.; Suscovich, T.J.; Frahm, N.;
Linde, C.; Mahan, A.E.; et al. Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using
Systems Serology. Cell 2015, 163, 988–998. [CrossRef] [PubMed]

141. Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.;
Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-correlates analysis of an HIV-1 vaccine efficacy
trial. N. Engl. J. Med. 2012, 366, 1275–1286. [CrossRef] [PubMed]

142. Tomaras, G.D.; Ferrari, G.; Shen, X.; Alam, S.M.; Liao, H.X.; Pollara, J.; Bonsignori, M.; Moody, M.A.; Fong, Y.;
Chen, X.; et al. Vaccine-induced plasma IgA specific for the C1 region of the HIV-1 envelope blocks binding
and effector function of IgG. Proc. Natl. Acad. Sci. USA 2013, 110, 9019–9024. [CrossRef] [PubMed]

143. Yates, N.L.; Liao, H.X.; Fong, Y.; deCamp, A.; Vandergrift, N.A.; Williams, W.T.; Alam, S.M.; Ferrari, G.;
Yang, Z.Y.; Seaton, K.E.; et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk
and declines soon after vaccination. Sci. Transl. Med. 2014, 6, 228ra239. [CrossRef] [PubMed]

144. Leroux-Roels, G.; Maes, C.; Clement, F.; van Engelenburg, F.; van den Dobbelsteen, M.; Adler, M.;
Amacker, M.; Lopalco, L.; Bomsel, M.; Chalifour, A.; et al. Randomized Phase I: Safety, Immunogenicity and
Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes.
PLoS ONE 2013, 8, e55438. [CrossRef] [PubMed]

145. Yook, S.H.; Oltvai, Z.N.; Barabasi, A.L. Functional and topological characterization of protein interaction
networks. Proteomics 2004, 4, 928–942. [CrossRef] [PubMed]

https://clinicaltrials.gov/ct2/show/NCT02315703
https://clinicaltrials.gov/ct2/show/NCT02315703
https://clinicaltrials.gov/ct2/show/NCT02788045
https://www.avac.org/trial/hpx2003hvtn118ipcavd012ascent
https://www.avac.org/trial/hpx2003hvtn118ipcavd012ascent
http://dx.doi.org/10.1111/imr.12503
http://www.ncbi.nlm.nih.gov/pubmed/28133810
http://dx.doi.org/10.1371/journal.pcbi.0030116
http://www.ncbi.nlm.nih.gov/pubmed/17604446
http://dx.doi.org/10.1002/wsbm.163
http://www.ncbi.nlm.nih.gov/pubmed/22012654
http://dx.doi.org/10.1111/imm.12861
http://www.ncbi.nlm.nih.gov/pubmed/29139548
http://dx.doi.org/10.1038/ni.1688
http://www.ncbi.nlm.nih.gov/pubmed/19029902
http://dx.doi.org/10.1038/ni.2067
http://www.ncbi.nlm.nih.gov/pubmed/21743478
http://dx.doi.org/10.1086/650310
http://www.ncbi.nlm.nih.gov/pubmed/20078211
http://dx.doi.org/10.1073/pnas.1621489114
http://www.ncbi.nlm.nih.gov/pubmed/28193898
http://dx.doi.org/10.1371/journal.pone.0021225
http://www.ncbi.nlm.nih.gov/pubmed/21857901
http://dx.doi.org/10.1016/j.cell.2015.10.027
http://www.ncbi.nlm.nih.gov/pubmed/26544943
http://dx.doi.org/10.1056/NEJMoa1113425
http://www.ncbi.nlm.nih.gov/pubmed/22475592
http://dx.doi.org/10.1073/pnas.1301456110
http://www.ncbi.nlm.nih.gov/pubmed/23661056
http://dx.doi.org/10.1126/scitranslmed.3007730
http://www.ncbi.nlm.nih.gov/pubmed/24648342
http://dx.doi.org/10.1371/journal.pone.0055438
http://www.ncbi.nlm.nih.gov/pubmed/23437055
http://dx.doi.org/10.1002/pmic.200300636
http://www.ncbi.nlm.nih.gov/pubmed/15048975


Viruses 2018, 10, 167 26 of 26

146. Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell's functional organization.
Nat. Rev. Genet. 2004, 5, 101–113. [CrossRef] [PubMed]

147. Barouch, D.H.; Alter, G.; Broge, T.; Linde, C.; Ackerman, M.E.; Brown, E.P.; Borducchi, E.N.; Smith, K.M.;
Nkolola, J.P.; Liu, J.; et al. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus
monkeys. Science 2015, 349, 320–324. [CrossRef] [PubMed]

148. Bradley, T.; Pollara, J.; Santra, S.; Vandergrift, N.; Pittala, S.; Bailey-Kellogg, C.; Shen, X.; Parks, R.;
Goodman, D.; Eaton, A.; et al. Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency
virus challenge. Nat. Commun. 2017, 8, 15711. [CrossRef] [PubMed]

149. Vaccari, M.; Gordon, S.N.; Fourati, S.; Schifanella, L.; Liyanage, N.P.; Cameron, M.; Keele, B.F.; Shen, X.;
Tomaras, G.D.; Billings, E.; et al. Adjuvant-dependent innate and adaptive immune signatures of risk of
SIVmac251 acquisition. Nat. Med. 2016, 22, 762–770. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nrg1272
http://www.ncbi.nlm.nih.gov/pubmed/14735121
http://dx.doi.org/10.1126/science.aab3886
http://www.ncbi.nlm.nih.gov/pubmed/26138104
http://dx.doi.org/10.1038/ncomms15711
http://www.ncbi.nlm.nih.gov/pubmed/28593989
http://dx.doi.org/10.1038/nm.4105
http://www.ncbi.nlm.nih.gov/pubmed/27239761
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Immune Response to HIV Infection 
	Previous HIV-1 Vaccine Efficacy Trials 
	Preclinical Evaluation of Novel Protein Based Immunogens 
	Inferring from Transmitted Founder (T/F) Viruses to Guide HIV Vaccine Development 
	Ongoing Clinical and Preclinical Testing of HIV Vaccines 
	HVTN702 
	Imbokodo Efficacy Trials 

	Application of Systems Biology and Serology for Improved Vaccines 
	Summary 
	References

