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Abstract: Flagellin’s potential as a vaccine adjuvant has been increasingly explored over the last
three decades. Monomeric flagellin proteins are the only known agonists of Toll-like receptor 5
(TLR5). This interaction evokes a pro-inflammatory state that impacts upon both innate and adaptive
immunity. While pathogen associated molecular patterns (PAMPs) like flagellin have been used as
stand-alone adjuvants that are co-delivered with antigen, some investigators have demonstrated
a distinct advantage to incorporating antigen epitopes within the structure of flagellin itself.
This approach has been particularly effective in enhancing humoral immune responses. We sought to
use flagellin as both scaffold and adjuvant for HIV gp41 with the aim of eliciting antibodies to the
membrane proximal external region (MPER). Accordingly, we devised a straightforward step-wise
approach to select flagellin-antigen fusion proteins for gene-based vaccine development. Using
plasmid DNA vector-based expression in mammalian cells, we demonstrate robust expression of
codon-optimized full length and hypervariable region-deleted constructs of Salmonella enterica subsp.
enterica serovar Typhi flagellin (F1iC). An HIV gp41 derived sequence including the MPER (gp41407-6s3)
was incorporated into various positions of these constructs and the expressed fusion proteins were
screened for effective secretion, TLR5 agonist activity and adequate MPER antigenicity. We show
that incorporation of gp4lsy_s3 into a FliC-based scaffold significantly augments gp41407-683
immunogenicity in a TLR5 dependent manner and elicits modest MPER-specific humoral responses
in a mouse model.
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1. Introduction

Despite the tremendous success generated by an empiric approach to vaccine development,
eliciting robust and long-lasting protective immunity to certain pathogens remains challenging [1,2].
While live attenuated virus vaccines have remarkable efficacy, this is not a solution for all pathogens
either because they cannot be safely attenuated or because natural infection does not confer protective
immunity [2-9]. Purified protein or recombinant subunit vaccines have provided a way forward in
some instances, however the immunogenicity of such antigens is often poor or vaccination simply
does not generate the type of immune response required for protection [10,11]. In some instances,
the magnitude, longevity or quality of the immune response to such antigens has been improved
by using adjuvants, however the mechanism of adjuvant function has been ill-defined for most
adjuvants [10,11].
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The discovery of pathogen associated molecular patterns (PAMPs), particularly ligands for
Toll-like receptors (TLRs) have revolutionized our understanding of innate immunity and ushered
in a new era of rational adjuvant development [10,12,13]. One promising avenue of adjuvant
research has stemmed from work with the Toll-like receptor 5 (TLR5) ligand flagellin. Polymerized
flagellin proteins are the major component of the flagellar apparatus of motile gram-negative
and gram-positive bacteria [14]. Monomeric flagellin proteins are the only known agonists of
TLR5 [15] and a large body of work has explored the interaction between the major Salmonella
flagellin protein, FIiC and TLR5 [16-22]. TLR5 is expressed on a variety of cells including epithelial
cells, monocytes and dendritic cells [21,23]. Flagellin interacts with TLR5 on the cell surface in
a 2:2 complex and induces dimerization of flagellin-TLR5 pairs [24,25]. The resulting dimerization
of the intracellular TIR domains of TLRS5 activate downstream signaling pathways. This includes
a MyD88-dependent signalling cascade that culminates in the induction of transcription factors,
including NF-«kB [16-22,26]. In turn, these transcription factors upregulate cytokine transcription and
ultimately evoke a pro-inflammatory state.

Flagellin that gains access to the cytosol is also a trigger for the NAIP-NLRC4 inflammasome,
where flagellin is sensed by the cytosolic receptor, NAIP5/6 and provokes its interaction with the
adapter protein, NLRC4 [27-35]. This cascade triggers inflammasome assembly and subsequent
caspase-1 activation [32,34-37]. Activated caspase-1 processes several pro-inflammatory cytokines
including pro-IL1p and pro-IL-18, thus promoting secretion of their biologically active forms.

Flagellin has a four-domain structure [14,21,38], wherein domains DO and D1 are formed by
interaction between the N-terminal and C-terminal portions of the protein thus producing a stalk-like
structure with a concave surface. The central domains D2 and D3 form a cluster emanating at
an angle from this stalk (Figure 1). The N and C-termini are critical to flagellin polymerization and
certain residue stretches are highly conserved among 3 and y Proteobacteria, whereas the D2 and D3
domains are highly variable among different bacteria [21,39]. Conserved stretches of the D1 domain
contains the key residues engaging with TLR5 and remain sequestered from immune selective pressure
while flagellin is in a polymerized state [24,40-43]. The C-terminal portion of the DO domain is also
highly conserved and is essential for NAIP-NLRC4 inflammasome triggering [27,32,44]. Conversely,
the hypervariable region is exposed on the outside surface of the flagellar apparatus and is a dominant
target for humoral responses [42,45-47].
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Figure 1. Domain structure of full-length flagellin. Image derived from PDB ID: 1UCU [38] visualized with
iCn3D (https:/ /www.ncbinlm.nih.gov/Structure /icn3d / full html) and modified to indicate D0, D1, D2
and D3 domains. Residues 89-96 (QRVRELAV) in the D1 domain are encircled by a red dashed line.

Stemming from initial observations of broad and protective immune responses to live attenuated
Salmonella oral vaccines [48], it was postulated that such vaccines might prove useful as carriers
for heterologous antigens [49-51]. Thereafter, the insertion of heterologous epitopes into flagellin
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to produce a combined antigen-adjuvant module was described in seminal work using either live
attenuated Salmonella or purified flagellin as the epitope carrier [52-61]. Stemming from these initial
observations, additional studies have further defined the mechanisms behind the adjuvant effect
of flagellin [21,23] and led to testing of novel vaccine designs in pre-clinical [62-80] and clinical
studies [81-85]. Some have used flagellin as a stand-alone adjuvant that is concurrently delivered
with antigen [86-89], whereas other studies have demonstrated a distinct advantage to incorporating
heterologous epitopes within the structure of flagellin itself at either the N or C-terminus or within
the hypervariable region [72,73]. Flagellin mediated enhancement of humoral responses appears to
require stimulation of TLR5-expressing dendritic cells with subsequent activation of antigen-specific
CD4 T-cells [21,23,26,73,86,90,91]. The TLR5-MyD88 or NAIP-NLRC4 pathway dependence of these
adjuvant effects has clearly been demonstrated [21,23,33,72,91] but some work has raised the possibility
that flagellin may also enhance immune responses via alternate mechanisms [92-95].

For the majority of licensed vaccines, prevention of infection correlates with the induction of
pathogen-specific antibodies [96,97]. In the context of viral infection, neutralizing antibodies block
interaction of the virus with target receptors on host cells and prevent entry and thus subsequent
replication. Despite the recent discovery of a great number of potent HIV-1 envelope-specific broadly
neutralizing antibodies, an inability to elicit such antibodies through immunization continues to hinder
the HIV vaccine discovery enterprise [98,99].

The HIV gp4l membrane proximal external region (MPER) represents one important but
formidable target for HIV-1 vaccine development. The MPER is a highly conserved region targeted
by broadly neutralizing antibodies (bnAbs) [100]. Although such MPER-specific antibodies have
been shown to prevent infection through passive immunization [101-103], numerous animal studies
have failed to elicit robust or sufficiently broad neutralizing antibody responses using a variety of
strategies [104-114]. Issues hindering the development of gp41 MPER as a vaccine target include poor
immunogenicity due in part to steric hindrance and lack of accessibility [100,115], hydrophobicity that
renders the MPER prone to aggregation in solution [116], immunodominance of adjacent gp41 regions
lacking any neutralizing epitopes [117,118] and the apparent auto-reactivity of MPER-specific bnAbs
towards cell membrane lipids [119,120].

Considering these challenges, we sought to use flagellin as both scaffold and adjuvant for HIV
gp41, with the aim of eliciting antibodies to the MPER. We chose to pursue a gene-based vaccine
approach, aiming to provide future capacity to both develop platforms that could express proteins
with mammalian glycosylation and conduct iterative research with different DNA and viral vector
platforms, two parameters which will likely be key to developing a protective HIV vaccine. We devised
a straightforward step-wise approach to select FliC-antigen fusion proteins for gene-based vaccine
development. Accordingly, we generated plasmid DNA vaccine vectors encoding a variety of FliC-HIV
gp41 fusion proteins and screened candidate vaccines based on adequate mammalian cell expression,
fusion protein secretion, TLR5 agonist activity and gp41 MPER antigenicity. Insertion of a gp41-derived
sequence at different positions within FliC led to a broad spectrum of outcomes with regard to
secretion and agonist activity. Utilizing this multi-modal process, we selected a promising vaccine
candidate that fulfilled all our screening criteria. We demonstrate that this FliC-HIV gp41 DNA vaccine
candidate was highly immunogenic relative to a DNA vaccine encoding gp41 alone, eliciting modest
MPER-specific humoral immunogenicity. Moreover, the augmented immunogenicity of the vaccine
was TLR5-dependant.

2. Materials and Methods

2.1. Construction of FliC and HIV-1 gp41 Expression Vectors

All flagellin (FliC) and gp41 gene constructs described were codon optimized and synthesized
using the GENEART platform (http://www.lifetechnologies.com/ca/en/home/life-science/cloning/
gene-synthesis/geneart-gene-synthesis/geneoptimizer.html) (Life Technologies, Carlsbad, CA, USA).
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To produce a mammalian cell expressed FliC, we used an amino acid sequence identical to that of
Salmonella enterica subsp. enterica serovar Typhi flagellin (GenBank: AAA27067.1). Numbering of
FliC residues in our constructs was based on a previously established numbering convention [18].
We previously described generating a Clade C gp41 ectodomain consensus sequence [121]. Based on
this sequence we subsequently selected a shorter sequence corresponding to the gp41 ectodomain
spanning amino acids 607 to 683 in gp160 (according to HxB2 numbering), herein referred to as
gp41607-683 (see Supplementary Methods 1). For all gene constructs, a tPA signal sequence [122]
was added synthetically to the N-terminus and a GGGS linker and 3XFLAG tag were added
to the C-terminus. For constructs used to produce coating antigen for antibody binding assays,
a Twin-Strep-Tag was also added C-terminal to the 3XFLAG tag. Synthesized genes were cloned into
the pVAX plasmid using BamHI and Notl enzymes. Deletion and point mutants and fusion constructs
were generated using the Seamless Cloning Kit (Life Technologies, Carlsbad, CA, USA). The following
constructs were created: gp4lgo771 (lacking the twelve most C-terminal residues making up
the MPER), FliC R90D, FliC A89-96, FliC A174-400, FliC A220-320, FliC A89-96 A174-400, FliC
A89-96 A220-320, gp416077683 FliC A1 74-400, gp416077683 FliC A220-320, FliC A1 74'[gp416077683]'4001
FlLiC AZZO—[gp41607_683]-320, FlLiC gp41607—683r FliC A174-400 gp41607—683r FliC A220-320 gp41607—683
and FliC A89-96 A174-400 gp41¢07-683. All plasmid DNA expression vectors used in downstream
transfection or vaccination experiments were prepared using a Qiagen EndoFree Plasmid kit (Qiagen,
Hamburg, Germany).

2.2. Cell Culture

HEK 293T cells (CRL-3216; ATCC, Manassas, VA, USA) and the mouse monocyte/macrophage cell
line J774A.1 (TIB-67; ATCC, Manassas, VA, USA) were each cultured in Dulbecco’s Minimal Essential
Media (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), 10 mM HEPES, 100 U/mL penicillin
and 100 pg/mL streptomycin (all from Corning, Tewksbury, MA, USA). The human monocyte cell line,
THP-1 (TIB-202; ATCC, Manassas, VA, USA) was cultured in RPMI-1640 and the same supplements as
well as 0.05 mM 2-mercaptoethanol (Sigma, St Louis, MO, USA). HEK-Blue-hTLRS5 cells (Invivogen,
San Diego, CA, USA) were cultured in Dulbecco’s Minimal Essential Media (DMEM) supplemented
with 10% FBS, 10 mM HEPES, 50 U/mL penicillin, 50 pg/mL streptomycin, 30 pg/mL blasticidin
and 100 pg/mL zeocin (the latter two reagents from Invivogen, San Diego, CA, USA). All cells were
cultured at 37 °C and 5% CO, in a humidified incubator.

2.3. Transfection and Cell Lysate/Supernatant Preparation

HEK 293T cells were seeded at 3 x 10° cells/well in a 6 well plate 24 h prior to transfection.
JetPEI (Polyplus, Illkirch, France) was used for transient transfection of 293T cells. Media was changed
24 h after transfection to DMEM supplemented with 1% FBS but otherwise constituted as above.
Cell lysates and supernatants were collected 48 h after transfection. Cells were washed twice with
phosphate-buffered saline (PBS) and spun down at 300 g for 10 min. Cells were lysed in NP40 cell
lysis buffer (Life Technologies, Carlsbad, CA, USA) containing a protease inhibitor cocktail (Sigma,
St Louis, MO, USA). Cells supernatants were clarified by centrifugation for 15 min at 16,000 g. Cell
lysates and clarified supernatants were stored at —20 °C until analyzed.

2.4. SDS-PAGE, Immunoblotting and Deglycosylation Studies

All SDS-PAGE and immunoblotting reagents and devices were from the same manufacturer
(Life Technologies, Carlsbad, CA, USA), unless otherwise stated. All procedures were carried out as
previously described [121]. Cell lysates and supernatants were incubated at 70 °C for 10 min after the
addition of 4X LDS Loading Buffer and Reducing Agent. Samples were run on NuPAGE 4-12% Bis-Tris
gels at 150 V under reducing conditions. Gels were transferred to PVDF membranes using the iBlot
transfer device. Membranes were blocked for 20 min in 10% non-fat dry milk dissolved in Tris-buffered
saline containing 0.05% Tween (TBS-T). Resolved proteins were detected by blotting with a mouse
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anti-FLAG tag antibody, clone M2 (Sigma, St. Louis, MO, USA) diluted to 0.5 pg/mL in 3% milk TBS-T
or a mouse anti-Tubulin antibody, clone B3 (Thermo Scientific, Waltham, MA, USA) diluted to 1:2500
in 1% milk TBS-T. A secondary goat anti-mouse IgG antibody conjugated to alkaline phosphatase (AP)
was diluted to 1:5000 in TBS-T and used to detect the primary antibody. CDP-star substrate was used to
generate a chemiluminescent signal, which was detected using X-ray film (VWR, Radnor, PA, USA) and
an X-ray imager (Kodak, Rochester, NY, USA). In deglycosylation studies, we used PNGase F (NEB,
Ipswich, MA, USA) to remove N-glycans from proteins of interest, secreted into cell supernatants. Cell
supernatants at a volume of 13.5 uL were incubated with 1.5 uL of glycoprotein denaturing buffer
(NEB, Ipswich, MA, USA) for 10 min at 99 °C. Samples were then treated with 1 pL. PNGase F for 1 h
at 37 °C in the presence of 2 uL NP-40 and 2 puL G7 buffer (NEB, Ipswich, MA, USA).

2.5. Secretion ELISA

Cell supernatants (100 pL per well) were applied to anti-FLAG tag antibody-coated plates
(GenScript, Piscataway, NJ, USA) and incubated for 1 h at room temperature (RT). Plates were
subsequently washed three times with PBS-T, then incubated with a mouse anti-FLAG tag antibody
conjugated to horseradish peroxidase (HRP) (Sigma, St. Louis, MO, USA) at a 1:20,000 dilution
for 1 h at RT. After incubation, plates were washed three times and relative amounts of secreted
protein were detected using the QuantaRed substrate system (Thermo Scientific, Waltham, MA, USA).
Data were collected as relative fluorescence units (RFU) using a fluorescence plate reader with
an excitation/emission filter of 544 nm /612 nm. The relative level of secreted FLAG-tagged protein
determined by this secretion ELISA was used to normalize input for the TLR5 agonist activity and
antibody binding assays described below.

2.6. TLR5 Agonist Activity Assays

2.6.1. HEK-Blue-hTLR5

A cell suspension of 140,000 cells/mL of HEK-Blue-hTLR5 was prepared and 180 uL was
plated in each well of a 96-well plate containing 20 uL of a 1:100 dilution of previously normalized
supernatants containing flagellin proteins. HEK-Blue-hTLR5 cell suspensions used were produced by
scraping and dissociation by gentle pipetting. Cell culture supernatants were normalized based on the
relative amounts of secreted protein determined by the secretion ELISA (described above). Treated
HEK-Blue-hTLR5 cells were incubated for 20 h prior to determining the quantity of secreted embryonic
alkaline phosphatase (SEAP) released into the supernatant using the QUANTI-Blue colorimetric
enzyme assay (Invivogen, San Diego, CA, USA) as per manufacturer’s instructions. Briefly, 5 uL of
treated HEK-Blue-hTLR5 supernatant from each condition was added to 200 uL of QUANTI-Blue
reagent. After one hour incubation at 37 °C, SEAP was quantified by measuring absorbance at 655 nm.
Relative quantities, presented as response ratios, were calculated by dividing the absorbance of each
condition by the absorbance of the control condition.

2.6.2. Transcriptional Activation of IL-1f3 in Monocyte/Macrophage Cell Lines

A cell suspension of 140,000 cells/mL of either THP-1 or J774A.1 cells was prepared then
180 uL was transferred to wells of a 96-well plate. Subsequently, 20 uL of a 1:100 dilution of
previously normalized supernatants containing flagellin proteins was added to each well. J774A.1 cell
suspensions used were produced by scraping and dissociation by gentle pipetting. LPS (Invivogen,
San Diego, CA, USA) diluted in culture medium at a final concentration of 1 pg/mL was used as
a positive control. Empty vector-transfected cell supernatant was used as a negative control. Treated
cells were incubated for 2 h then harvested and RNA was extracted using an RNeasy mini kit (Qiagen,
Valencia, CA, USA) with on-column DNase digestion as per the manufacturer’s instructions. Eluted
RNA was used in a two-step RT-PCR reaction, utilizing the SuperScript IV First-Strand Synthesis
System and Platinum Hot Start PCR Master Mix (both from Life Technologies, Carlsbad, CA, USA) as
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per the manufacturer’s instructions. Random hexamers were used in reverse transcription and the
following primers were used for PCR: illbeta forward 5'-TGTAATGAAAGACGGCACACC-3'; illbeta
reverse 5’ -TCTTCTTTGGGTATTGCTTGG-3'; gapdh forward 5'-AGCTTGTCATCAACGGGAAG-3/;
gapdh reverse 5-TTTGATGTTAGTGGGGTCTCG-3'. RT-PCR products underwent agarose gel
electrophoresis and were stained with SYBR Safe DNA Gel Stain (Life Technologies, Carlsbad, CA, USA)
then visualized with a blue-light transilluminator.

2.7. ELISA to Detect Binding by Monoclonal bnAb

To assess bnAb binding to secreted gp41ep7-6s3 or FliC gp4147-¢s3 proteins, cell supernatants
were diluted in DMEM according to the relative level of gp41l determined by the secretion
ELISA as previously described [121], then plated on streptavidin coated plates (Thermo Scientific,
Waltham, MA, USA) for 1 h at RT and subsequently washed three times with PBS-T. Each gp41 antigen
was synthetically linked to a 3XFLAG and Twin-Strep-Tag at its C-terminus. The following HIV-1
gp41 monoclonal antibody reagents were generously provided by investigators via the NIH AIDS
Reagent Program, Division of AIDS, NIAID, NIH: 4E10 (from Dr. Hermann Katinger) and 10E8 (from
Dr. Mark Connors). Each bnAb was diluted to 1 ug/mL in 100 pL of PBS-T containing 5% bovine
serum albumin (BSA), then applied to wells and allowed to bind for 1 h at RT. Plates were washed three
times and bnAb binding was probed using a mouse anti-human IgG AP-conjugated antibody (Life
Technologies, Carlsbad, CA, USA) diluted 1:5000 in PBS-T containing 5% BSA for 1 h at RT. Plates were
then washed three times, AttoPhos fluorescent substrate (Promega, Fitchburg, WI, USA) was applied
to wells and the plate was incubated for 15 min at RT. Data were collected as relative fluorescence
units (RFU) using a fluorescence plate reader with an excitation/emission filter of 485 nm /520 nm.
Results were normalized to levels of secreted protein captured in each well using an HRP-conjugated
anti-FLAG tag antibody and QuantaRed substrate as described above.

2.8. Mice and Immunizations

All procedures were approved by the institutional Animal Care Committee of McGill University
(Protocol #2012-7237 JGH,; first approval date: 01/01/2013). Guidelines and regulations established
by the Canadian Council on Animal Care were adhered to and all experiments complied with
ARRIVE guidelines. Six-week-old female BALB/c mice were obtained from Charles River Laboratories
(Montréal, QC, Canada) and housed under pathogen-free conditions. Mice were injected with 50 ng of
DNA in each tibialis anterior muscle (50 uL at a concentration of 1 pg/uL in sterile normal saline) with
either empty vector negative control (pVAX) or one of three DNA vaccines (gp41¢7-¢83, F1iC A174-400
gp41607-683 or FliC A89-96 A174-400 gp41407-683).- Mice were immunized with DNA vaccines either
two or four times, depending on the experiment, at two week intervals. Blood was collected 2 weeks
after the last immunization. Whole blood was allowed to clot for 1 h at room temperature then spun
down at 2000 g for 15 min. Sera were then collected and stored at —80 °C until analysis.

2.9. ELISA to Detect Mouse Anti-gp41 IgG Response

Streptavidin-coated (Roche, Basel, Switzerland) or Strep-Tactin-coated plates (IBA Life Sciences,
Goettingen, Germany) were coated with either gp41407_483 or gp4lep7—671 overnight at 4 °C. Each
gp41 antigen was synthetically linked to a 3XFLAG and Twin-Strep-Tag at its C-terminus. Antigen
was coated onto plates from clarified supernatants diluted to a concentration of 2 pg/uL of the
protein of interest. The concentration was determined by ELISA and a standard of FLAG tag
immunoprecipitation-purified gp41 as previously described [121]. Coated plates were washed three
times with PBS-T containing 0.01% BSA. Serum from each mouse was serially diluted up to 1:200
(see Supplementary Methods 2) in PBS-T containing 0.01% BSA, applied to the plates and incubated
for 2 h at room temperature. For experiments assessing MPER specificity of humoral response, sera
from the FliCA174-400 gp41407-683 vVaccinated group were pooled prior to dilution and processed
as described above. Plates were washed three times and antibody binding was probed using
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a goat anti-mouse IgG AP-conjugated antibody (Life Technologies, Carlsbad, CA, USA) diluted
to 1:5000 in PBS-T containing 0.01% BSA. Plates were incubated for 1 h, then washed three times.
The bound AP-conjugated secondary antibody was detected using the ELISA Amplification System
(Life Technologies, Carlsbad, CA, USA) as per manufacturer’s instruction. Plates were read on
an ELISA plate reader at an absorbance of 495 nm. An independent two sample t-test was used to
determine statistical significance between experimental arms.

3. Results

3.1. Codon-Optimized Salmonella enterica Subsp. enterica Serovar Typhi FIiC Can Be Expressed in and
Effectively Secreted from Mammalian Cells

We first set out to determine if the FliC gene could be well expressed and effectively secreted by
plasmid DNA vector-transfected cells. We produced mammalian codon-optimized FliC and inserted
it into a CMV promoter driven expression plasmid (pVAX). As the hypervariable region of FliC has
been shown to be a dominant antigenic region [42,47] that is not necessary for TLR5 agonist function,
we also generated 2 hypervariable region deletion mutants of FliC, one lacking residues 174-400 (FliC
A174-400) and another lacking residues 220-320 (FliC A220-320) (Figure 2A) and inserted them into
the same backbone vector. Similar deletion mutants have previously been described [42,47]. After
transfection of 293T cells, we gauged the level of expression and secretion using both immunoblotting
and ELISA-based methods. We observed robust expression of our three FliC variants in cell lysates
(Figure 2B), however we also visualized a ladder of products migrating below the predicted size of
protein variants suggesting that a portion of the expressed proteins underwent proteolytic cleavage.
Moreover, while the predicted molecular weight for full length FliC is approximately 60 kDa, the largest
and most abundant protein observed in our lysates migrated at approximately 80 kDa. Similar results
were observed for our deletion mutants (FliC A174-400 and FliC A220-320), with the largest band
migrating at a higher molecular mass then predicted. In corresponding supernatants, protein bands at
or above the predicted molecular weight were also observed (Figure 2B). These findings suggested
that the FliC variant, particularly the secreted forms, had undergone extensive glycosylation. Indeed,
flagellin is glycosylated in bacterial systems [123]. It has also been previously shown that baculovirus
encoded FliC undergoes N-linked glycosylation when expressed in insect cells (Spodoptera frugiperda
S19) [78]. In silico analysis revealed that the FliC amino acid sequence we utilized contains at least four
asparagine residues predicted to be N-glycosylated (http:/ /www.cbs.dtu.dk/services/NetNGlyc/ and
Figure S1). To address this possibility, supernatants were treated with PNGase F to remove N-linked
glycosylations. Treatment with PNGase F resulted in the disappearance of the higher molecular mass
proteins and visualization of proteins of the predicted size for all three FliC variants (Figure 2B),
thus confirming that FliC is glycosylated when expressed in a mammalian system. A shift in molecular
weight upon PNGase treatment was also observed in cell lysates for all three proteins (Figure S2).
Of the three FliC variants, full length FliC appeared to be the most highly expressed and secreted
(Figure 2B). To better estimate the relative degree of secretion of each variant, an ELISA-based assay
was used to measure the FLAG-tagged secreted proteins in culture supernatants. All FIiC variants were
readily detectable, however relative to full length FliC, FliCA174-400 and especially FliCA220-320
exhibited diminished secretion (Figure 2C).

3.2. Mammalian Cell-Expressed and Secreted FIiC Retains TLR5 Agonist Activity

Next, we sought to ascertain whether mammalian expressed FliC maintained TLR5 agonist
activity. To this end, we applied transfected cell culture supernatants containing either full length
FliC, FliC A174-400 or FliC A220-320 to HEK-Blue-hTLRS5 cells, a TLR5 agonist activity indicator cell.
Full length FliC and FliC A174-400 demonstrated robust TLR5 agonist activity, however FliC A220-320
only elicited a minor response (Figure 2D).
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To further confirm that our FliC variants were indeed signaling through TLR5, we sought to
modify residues in FliC that are necessary for TLR5 agonist activity. Residues 89-96 (QRVRELAV),
in the D1 domain of FliC, are required for FliC TLR5 agonist function [41,42]. We therefore produced
deletion mutants of this region (A89-96) in full length FliC, FliC A174-400 and FliC A220-320
(Figure 3A). All A89-96 constructs were expressed and secreted to a similar extent as their parent
constructs (Figure 3B). No TLR5 agonist activity was observed with any construct containing the
A89-96 deletion as compared to their parental constructs and in fact their responses were no different
than that produced by the empty vector control construct (Figure 3C). This confirmed that the responses
produced by the indicator cell line upon exposure to FliC, FIiC A174—400 and FliC A220-320 were
dependent on the TLR5 agonist activity of FliC.
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Figure 2. FliC constructs expressed in a mammalian system are secreted and maintain Toll-like receptor
5 (TLR5) agonist activity. (A) Schematic representation of flagellin (FIiC) constructs; (B) Western blot
of cell lysates, supernatants and PNGase F treated supernatants from transiently transfected 293T.
Cells were transfected with pVAX (empty vector), FliC, FliC A174-400 or FliC A220-320. Samples
were collected 48 h post transfection. Blots were probed with a mouse anti-FLAG tag antibody to
detect FLAG-tagged flagellin proteins. A mouse anti-tubulin antibody, was used to detect tubulin
as a loading control; (C) Measurement of relative secretion level of FLAG-tagged proteins using
capture ELISA. Supernatants from transiently transfected 293T were applied to anti-FLAG tag antibody
coated plates and probed with a horseradish peroxidase (HRP) conjugated mouse anti-FLAG tag
antibody. Results shown represent the mean of 4 different experiments where FliC is set to a value of 1.
Error bars represent standard error of the mean; (D) Relative TLR5 agonist activity of secreted FliC
proteins. Normalized supernatants from transiently transfected 293T were diluted 1:100 and added to
HEK-Blue-hTLRS5 cells. After 20 h incubation, the quantity of secreted embryonic alkaline phosphatase
(SEAP) produced was determined using a colorimetric enzyme assay. Relative quantities, presented as
response ratios, are indicative of TLR5 agonist activity. Results shown represent the mean of 4 different
experiments where pVAX is set to a value of 1. Error bars represent standard error of the mean.

Having confirmed TLR5 agonist activity for our FliC variants using HEK-Blue-hTLR5 cells, we then
wished to gauge their capacity for triggering a signaling cascade via TLR5 in a more biologically relevant
system. To this end we used monocyte cell lines THP-1 (human) and J774A.1 (mouse). These cell lines
express TLR5 on their surface and engagement of TLR5 by flagellin would activate signaling pathways
that would ultimately lead to the transcriptional upregulation of pro-inflammatory cytokines [124,125].
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Accordingly, we exposed these cells to either full length FliC, FliC A89-96 or full-length FliC containing
the point mutation R90D (FliC R90D). Mutations at position R90 in FliC have been previously shown to
diminish or abrogate signaling via mouse or human TLRS5, respectively [18,126-128].
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Figure 3. Residues QRVRELAV (89-96) of FliC are required for TLR5 agonist activity. (A) Schematic
representation of FliC constructs; (B) Western blots of cell lysates and supernatants from transiently
transfected 293T. Cells were transfected with pVAX, FliC, FliC A174-400, FliC A220-320, FliC A89-96,
FliC A89-96 A174-400 or FliC A89-96 A220-320. Blots were probed with a mouse anti-FLAG tag antibody
to detect FLAG-tagged flagellin proteins. A mouse anti-tubulin antibody, was used to detect tubulin as
a loading control; (C) Relative TLR5 agonist activity of secreted FliC proteins. Normalized supernatants
from transiently transfected 293T were diluted 1:100 and added to HEK-Blue-hTLR5 cells. After 20 h
incubation, the quantity of SEAP produced was determined using a colorimetric enzyme assay. Relative
quantities, presented as response ratios, are indicative of TLR5 agonist activity. Results shown represent the
mean of 4 different experiments where pVAX s set to a value of 1. Error bars represent standard error of
the mean; (D) Induction of IL-1 transcription detected by RT-PCR and gel electrophoresis. Normalized
supernatants from transiently transfected 293T were diluted 1:100 and added to THP-1 or ]J774A.1 cells.
Cells were incubated for 2 h then harvested and RNA was obtained for RT-PCR with IL-1§3 specific primers.
Cells treated with LPS or with supernatant from empty vector transfected cells were used as induced and
non-induced controls, respectively. RT-PCR with GAPDH specific primers was used as an internal control.
To exclude potential DNA carry-over and amplification or contamination, control reactions omitting the RT
enzyme (-RT) or omitting input RNA (negative control) are also shown.
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Focusing on one such cytokine, IL-1(3, we compared the relative abundance of IL-1§ transcripts in
THP-1 or J774A.1 cells after exposure to either full length FliC, FliC R90D or FliC A89-96. In parallel,
cells were also exposed to either positive or negative control conditions using LPS or supernatant from
empty vector-transfected cells, respectively. In THP-1 cells, full length FliC and LPS clearly induced IL-13
(Figure 3D). FliC R90D and FliC A89-96 failed to induce any IL-1f3 beyond the basal level present in our
negative control conditions. Results with ]J774A.1 cells were similar except that FliC R90D retained its ability
to induce IL-1p (Figure 3D). The difference in intra-species sensitivity to FliC R90 mutant agonist activity
was in keeping with previously published work [126-128]. Overall, these experiments further confirmed
that mammalian cell expressed FliC variants can trigger a signaling cascade via TLR5.

3.3. Adding gp41 MPER (gp41607-6s3) to the C Terminus of FIiCA174-400 Results in a Secreted Protein that
Maintains TLR5 Agonist Activity

We next sought to use FliC as both a scaffold and adjuvant for HIV gp41. To determine the
optimal position to insert gp41 (amino acids 605-683, gp41407-¢s3 herein), we generated eight different
constructs wherein gp41¢p7-¢g3 was inserted at the amino- or carboxy-terminus of full length FIiC,
FliC A174-400 and FliC A220-320, or alternatively within the remaining hypervariable regions of FliC
A174-400 and FliC A220-320 (Figure 4A). All proteins were expressed and secreted to varying degrees
as observed by immunoblotting (Figure 4B). An ELISA-based assay was once again used to measure
the secreted proteins in culture supernatants (Figure 4C). The level of secretion varied widely among
the different constructs. Relative to full length FliC, gp41407_6s3 insertion at the amino-terminus or
within the hypervariable region of FliC A174-400 and FliC A220-320 variants resulted in an increase in
protein secretion (Figure 4C). Insertion of gp41407-¢s3 at the carboxy-terminus produced variants that
were poorly secreted except for the FliC A174—400 variant.

Having gauged the relative secretion levels of our constructs, we next sought to determine if
they were able to maintain TLR5 agonist activity. Despite their superior propensity for secretion, once
normalized for the relative amount of secreted protein, FliC variants with gp41¢p7_¢s3 inserted at the
amino-terminus or within the hypervariable regions of FliC A174-400 and FliC A220-320, manifested
weaker TLR5 agonist activity relative to their parent constructs (Figure 4D). Instead we observed that
insertion of gp41407_¢s3 at the carboxy-terminus preserved TLR5 agonist activity to a greater degree.
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Figure 4. FliC A174-400 with gp4149y7.6s3 inserted at its N-terminus is secreted and maintains TLR5
agonist activity. (A) Schematic representation of flagellin constructs; (B) Western blot of cell lysates
and supernatants from transiently transfected 293T. Cells were transfected with pVAX, FliC, FliC
A174-400, FLiC A220-320, gp41607-683 FliC, gp41e07-6s3 FLiC A174-400, gp41407-683 FliC A220-320, FliC
A174-[gp41607_683]-400, FliC AZZO-[gp41607_683]-320, FliC 8P41607—683r FliC A174-400 gP41607—683 or
FliC A220-320 gp414p7-683- Samples were collected 48 h post transfection. Blots were probed with
a mouse anti-FLAG tag antibody to detect FLAG-tagged flagellin proteins. A mouse anti-tubulin
antibody, was used to detect tubulin as a loading control; (C) Measurement of relative secretion level
of FLAG-tagged proteins using capture ELISA. Supernatants from transiently transfected 293T were
applied to anti-FLAG tag antibody coated plates and probed with an HRP conjugated mouse anti-FLAG
tag antibody. Results shown represent the mean of 3 different experiments where FliC is set to a value
of 1. Error bars represent standard error of the mean; (D) Relative TLR5 agonist activity of secreted FliC
proteins. Normalized supernatants from transiently transfected 293T were diluted 1:100 and added to
HEK-Blue-hTLR5 cells. After 20 h incubation, the quantity of SEAP produced was determined using
a colorimetric enzyme assay. Relative quantities, presented as response ratios, are indicative of TLR5
agonist activity. Results shown represent the mean of 3 different experiments where pVAX is set to
a value of 1. Error bars represent standard error of the mean.

3.4. Adding gp41 MPER (gp41607-6s3) to the C Terminus of FIiCA174—400 Maintains gp41 Antigenicity

As we wished to minimize humoral responses to the FliC hypervariable region, and FliC A174-400
produced superior TLR5 agonist activity compared to FliC A220-320 (Figure 4D), we chose to
pursue the development FliC A174-400 gp41¢07-6s3 as a DNA vaccine candidate. FliC A174-400
gp41607-683, FliC A174-400 and gp4le7-¢s3 were readily detectable in transiently transfected cell
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lysates and treatment of lysates with PNGase allowed better visualization of each protein (Figure 5A).
Immunoblotting also allowed us to readily detect secreted proteins although gp41¢07_ss3 was only
detectable after PNGase treatment (Figure 5A). To test if FliC A174-400 gp41¢07-683 maintained
gp41 antigenicity, we next sought to ascertain if this protein was bound by the bNAbs 10E8 and
4E10 (Figure 5B) as compared to positive (gp41¢p7-6g3 in the absence of flagellin) and negative (FLiC
A174-400) control proteins. Our experiments revealed that FliC A174-400 gp41¢07-683 was bound by
10E8 and 4E10, albeit to a lesser degree than gp41¢p7-¢s3 (Figure 5C), thus demonstrating preservation
of gp41 antigenicity.

A C e e C
S < < 2
2 2 g 2 3
3 3 1 i g
= = > = 2
=23 =a=4 j=a=4 I=2=3 -
$9¢ $%33 $33 $%g F
T T ¥ + T P T TP T T % & 08
St s =t =S5 =t s o 07
§<1<£é<1<1£ §<1<3é<1<1£ -
TYuLiIITYLYY T YYTEULR ¢ 06 @ 10x10° 1pg/mL
G L 5R2LCL L O RLL O BLLO £ 05 m 4x10'0 1ug/mL
160 e 04
| 2 03
110 =
- g 02
80 2 03
60—} - - 2 0
50] 4 - - anti-FLAG z 3 8 2 3
| ' a > i s "
40 - - o N 2 3
o B g 8 D T
201 s o> - 2 o
15— o 2
10— 3
e s — anti-tubulin ~
<
PNGase F PNGase F Q
w
lysates supernatant Supernatant protein
B 4x10

607- AVPWNSSWSNKSQEDIWDNMTWMQWDREISNYTDTIYRLLEESQNQQEKNEKDLLALDSWKNLWNWFDITNWLWYIK -683

10x108

Figure 5. FliC A174-400 gp4107-683 and gp41407_¢83 have similar gp41 antigenicity. (A) Western blot of
cell lysates, supernatants and PNGase F treated supernatants from transiently transfected 293T. Cells
were transfected with pVAX, FliC A174-400, FIiC A174-400 gp41407-683 Or gp4leoy—683. Samples were
collected 48 h post transfection. Blots were probed with a mouse anti-FLAG tag antibody to detect
FLAG-tagged flagellin proteins. A mouse anti-tubulin antibody, was used to detect tubulin as a loading
control; (B) Schematic representation of 4E10 and 10E8 binding sites; (C) Binding of MPER-specific
broadly neutralizing antibodies (bnAB) to FliC A174-400 gp41ep7-6s3 and gp41leo7-6s3. Normalized
supernatants from transiently transfected 293T were added to streptavidin coated plates. Captured
antigen was probed with either 10E8 or 4E10 antibodies, then an AP-conjugated mouse anti-human
IgG secondary antibody was used to detect antigen-bound 10E8 and 4E10. Binding was measured
using a fluorescent AP substrate assay and further normalized to levels of captured antigen in each
well. Results shown represent the mean of 3 different experiments where gp4147_¢s3 is set to a value of
1. Error bars represent standard error of the mean.

3.5. FliC Augments gp41607-633 Immunogenicity and Elicits MPER-Specific Humoral Responses

Having determined that FIiC A174-400 gp41¢7-¢s3 retained gp41 antigenicity, we then proceeded
to gauge the immunogenicity of the expressed protein in the context of a DNA vaccine. Mice were
immunized with one of three DNA vaccines: pVAX (empty vector control), gp41407-¢s3 or FLiC A174-400
gp41407-683- Mice were immunized on days 0, 14, 28 and 42 and blood was collected 2 weeks post the
fourth immunization. We then measured gp41-specific IgG responses by ELISA (Figure 6A). For the
majority of the mice who received FliC A174-400 gp41407-33, strong responses were detectable out
to a 1/200 dilution of serum (Figure 6A). Although the response to FliC A174-400 gp41¢07-¢s3 wWas
modest, it was significantly greater than the response elicited by gp414p7-¢s3. At this dilution, sera
from mice that received gp41¢p7-¢g3 alone manifested responses that were no better than sera from
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mice who received an empty vector control vaccine (Figure 6A). We then wished to determine if the
humoral response generated by FliC A174-400 gp4147-¢s3 targeted the C-terminal portion of the
MPER or rather residues N-terminal to this region, such as the immunodominant region or the HR2
region [100]. We therefore coated our ELISA plate with either gp41¢p7_¢83 as above or a truncated
protein devoid of the majority of the MPER (gp41407_671), then gauged the specificity of pooled sera
from our FliC A174-400 gp41407-683 Vaccinated group. The response to the protein containing the
MPER was at least five-fold greater in magnitude than that to the protein lacking the MPER (Figure 6B),
suggesting that immunization with FliC A174-400 gp41 407-s3 did indeed elicit an MPER-specific
response. Taken together our results revealed that FliC, deleted of a large portion of its hypervariable
region, augmented humoral responses to gp4147-¢83 and especially the MPER, when gp4147_¢s3 was
incorporated into its C-terminus.
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Figure 6. FliCA174-400 augments HIV-1 gp4lep7_sg3 immunogenicity. (A) Detection of HIV-1
gp41407-683 binding antibodies in vaccinated mice. Female BALB/c mice (10 mice per experimental
arm) were injected intramuscularly with either pVAX (empty vector) or DNA vaccines FliCA174-400
gp41607-683 or gp4lg07-6s3 (50 UL in each hind leg at a concentration of 1 pg/pL). Two weeks following
the 4th vaccination, mouse serum (1:200 dilution) was analyzed for a gp4147-¢s3 specific IgG response.
Each point represents the mean absorbance value obtained from individual mouse serum (each
analyzed in duplicate). Horizontal bars represent average values per vaccine group and error bars
represent +/— standard error of the mean. Significance was determined using an unpaired t-test
with ** indicating a p value < 0.01; (B) Detection of antibodies binding C-terminal residues of HIV-1
gp41607-683- Mouse sera from the mice vaccinated with FliCA174-400 gp4147_¢g3 Were analyzed for
an MPER-specific IgG response by comparing binding to gp41407_s3 (containing the entire MPER) and
gp41607-671 (lacking the twelve C-terminal residues of MPER). Vertical bars graphs represent the mean
absorbance value obtained for pooled sera (n = 10 mice) analyzed in duplicate. Error bars represent
standard error of the mean.
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3.6. The Adjuvant Effect of FliC is TLR5 Dependent

Our DNA vaccine studies revealed that flagellin did indeed impart an adjuvant effect that
enhanced immunogenicity of the gp41 antigen. Accordingly, we then wished to gauge the extent
to which the adjuvant effect was TLR5 agonist-related or alternatively whether the flagellin scaffold
merely acted as a carrier. To do so, we immunized mice with one of three vaccines: pVAX (empty
vector control), FliC A174-400 gp41407-¢s3 or FliC A89-96 A174—400 gp4107-683. In order to minimize
any accumulated effect of CD4 helper responses on the humoral response, each group only received
a vaccine on days 0 and 14. Blood was collected 2 weeks post the second immunization and analyzed
for gp41-specific responses by ELISA. Relative to FliC A174-400 gp41407-683, an inferior response was
observed for mice vaccinated with FliC A89-96 A174-400 gp414gy-s3 (Figure 7), indicating that the
majority of the adjuvant effect of the FliC scaffold was indeed TLR5 dependent.
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Figure 7. Deletion of FliC residues 89-96 results in a reduced adjuvant effect on HIV-1 gp41497_4s3
immunogenicity. Female BALB/c mice (10 mice per experimental arm) were injected intramuscularly
with either pVAX (empty vector) or DNA vaccines FliCA174—-400 gp41407-6s3 or FliC A89-96 A174-400
gp41407-683 (50 pL in each hind leg at a concentration of 1 pg/uL). Two weeks following the 4th
vaccination, mouse serum (1:200 dilution) was analyzed for a gp41¢p7-¢s3 specific IgG response. Each
point represents the mean absorbance value obtained from individual mouse serum (each with two
replicates per mouse). Horizontal bars represent average values per vaccine group and error bars
represent standard error of the mean. Significance was determined using an unpaired ¢-test with **
indicating a p value < 0.01.

4. Discussion

The present work demonstrates that codon-optimized Salmonella FliC can be expressed in and
effectively secreted from mammalian cells. The secreted FliC retains TLR5 agonist activity. These
findings are in agreement with previous work where a gene-based or viral vector approach was used
to express flagellin [127,129-131].

Other investigators have selected a variety of sites for insertion of heterologous into flagellin [23].
This has primarily included either the N or C-terminus [63,64,71-75,90] or sites within the
hypervariable region [67,69] and in some instances both the hypervariable region and C-terminus were
used [62,68,79,84]. Although this selection seems at times to be empiric, these sites have historically
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been selected to both fully expose the inserted epitopes and avoid disrupting conserved flagellin
residues, particularly those amino acids shown to be required for TLR5 agonist activity.

We postulated that the location of the inserted heterologous sequence, in our case HIV gp41407_683,
would affect the degree of secretion and the TLR5 agonist activity of the resulting fusion protein.
Indeed, upon testing we noted tremendous variation for different fusion proteins in regard to these
two parameters. While some fusion proteins were highly secreted, their ability to trigger TLR5
mediated signaling was relatively poor. Accordingly, we pursued antigenicity and immunogenicity
testing for FliC A174-400 HIV gp41407-6s3, the vaccine candidate that fulfilled both parameters and
also lacked immunodominant FliC epitopes [42,45-47]. We subsequently showed that although FIliC
A174-400 HIV gp41407-683 appeared not to be as readily bound by MPER-specific bnAbs, relative
to gp41e07-683, it was markedly more immunogenic and appeared to elicit MPER-specific humoral
responses. Moreover, we showed that the enhancement of immunogenicity was indeed dependent on
TLR5 interaction.

We did not pursue immunization experiments in TLR5 knock out mice but instead compared
humoral responses between mice that received FliC A174-400 HIV gp41497-6s3 to those that received
FIiC A89-96 A174-400 gp41l407-683. As expected, immunization with the latter vaccine, which lacked
residues essential to TLR5 interaction [41,42], produced a humoral response of relatively low magnitude
that was only marginally superior to immunization with an empty vector control vaccine. Although,
we have not definitively excluded a contribution of the NAIP/NLRC4 inflammasome [33] to the
adjuvant effect of FliC on humoral responses in the present work, the near complete loss of adjuvant
activity with FliC A89-96 A174-400 gp41407-¢s3 argues against this possibility.

It could be argued that the adjuvant activity we observed was due in part to binding of
our expressed fusion protein to TLR5 on dendritic cells or other APC, resulting in facilitated
internalization and antigen processing rather than solely initiation of a pro-inflammatory signaling
cascade [33,73,90,91,93]. Indeed, we cannot exclude the possibility that TLR5-mediated internalization
by APC played some role in adjuvant activity or that antigen internalization, dendritic cell maturation
and the induction of a pro-inflammatory milieu occurred contemporaneously.

Several observations in our present work generate further questions that we believe should be
pursued. Two types of post-translational modification were evident in the context of our experiments.
First, we discovered that vector-expressed FliC was significantly glycosylated. Indeed, this was
predicted by in silico analysis. Moreover, to augment secretion of expressed FliC, all our vectors
incorporated a signal peptide fused to the N-terminus of the expressed gene. This design would be
expected to guide the protein to the secretory pathway where N-glycosylation of FliC might produce
progressively oligomeric and branched structures. It is unclear if such glycosylation is advantageous.
Whereas future efforts to purify fusion proteins might be complicated by the presence of a broad
spectrum of glycoforms, N-linked glycosylation of FliC might enhance protein stability or perhaps
shield and prevent unmasking of sub-dominant B-cell epitopes and thus allow the humoral response to
focus on any inserted heterologous epitopes. Second, vector-expressed FliC which accumulated
intracellularly appeared to undergo extensive proteolytic degradation. We did not address the
mechanism of degradation in our experiments. Proteasomal or lysosomal degradation may have been
induced by over-expression and protein misfolding or aggregation [132]. It is also interesting to note
that the C-terminus of FliC is disordered and appears to be a target of cleavage and subsequent FliC
instability [133]. Specifically addressing these issues might provide strategies to augment secretion of
intact FliC and FliC-antigen fusion proteins. Conversely, some propensity for proteolytic cleavage may
be advantageous if FliC is taken up by APC and more readily processed for loading onto MHC II.

A major conclusion of the present work is that the insertion site of a heterologous antigen
within the FliC scaffold has a marked impact on the resulting fusion protein’s secretion and TLR5
agonist activity. It is conceivable that excessive protein aggregation might modulate these parameters.
Alternatively, interference of the inserted antigen with either TLR5 binding or ligand-receptor
dimerization, via inter or intramolecular interaction, might hinder robust signaling. Larger inserts
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might have a more dramatic impact on these parameters. Such considerations might influence the
desirability of using flagellin as an epitope scaffold rather than a stand-alone co-delivered adjuvant.

We did not specifically address to what extent immune humoral responses were also generated
towards the FliC scaffold itself. Although the hypervariable region we deleted is known to contain
the immunodominant FliC epitopes [42,45-47], it is possible that its deletion allowed subdominant
B-cell epitopes in other regions to elicit a greater response. This may be important to consider with
further development, for several reasons. First, dominance of B-cell epitopes within FliC might
detract to some extent from a robust humoral response to inserted heterologous epitopes. Second,
the generation of antibodies to regions important for TLR5 binding might neutralize FliC’s potential to
act as an adjuvant [42,127]. We must also consider that as FliC and gp41 are delivered together in the
context of a fusion protein, FliC CD4 epitopes might provide CD4 T-cell help for antibody responses to
gp41. Further assessment of this possibility should be carried out, both to delineate potential helper
epitopes and to gauge the need to introduce heterologous helper epitopes to further enhance the
humoral response to gp41.

While we successfully obtained humoral responses to gp41, and to some extent MPER-specificity,
the magnitude of responses remained modest. Other investigators have also explored using flagellin as
an adjuvant to augment responses to the HIV-1 envelope proteins [52,134-136] but have not explored
flagellin’s potential to augment responses to gp41 MPER. Prior to expanding our research to include
immunization of rabbits or guinea pigs and evaluation of HIV-1 neutralization capacity, we must both
address some of the outstanding questions posed above and devise a regimen to further improve
immunogenicity. Immunogenicity of our present DNA vaccine, FliC A174-400 HIV gp41¢07-683,
would likely be significantly improved by enhanced delivery methods such as in vivo electroporation.
A prime-boost strategy will also likely be necessary to achieve the desired level of immunogenicity.
Accordingly, DNA prime-protein boost or DNA prime-viral vector boost regimens should be explored.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/10/3/100/s1,
Supplementary Methods 1: HIV-1 gp41 sequence selection, Supplementary Methods 2: End-point titer selection,
Figure S1: In silico prediction of N-glycosylation of FliC amino acid residues, Figure S2: Western blot of cell lysates
from transiently transfected 293T before and after treatment with PNGase F.
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